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On certain modi�cation of age-dependent
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Abstract This work proposes a new model of coexistence of a predator population
with a population of prey. In works [5] and [7] it is assumed that the number of prey
aged x eaten by predators aged y is directly proportional to the number of prey aged
x and the number of predators aged y. This paper presents a more general model.
First of all, the dependency is functional, i.e. the chances of being eaten are a�ected
by the structure of the whole population. In addition, this dependence is not bilinear
because the predator, after satisfying its hunger, will give up the hunt for prey.
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1. Introduction The classical Lotka-Volterra model [15] is described by
the system of di�erential equations{ dx

dt = αx− βxy
dy
dt = kβxy −my (1)

where x denotes the biomass of preys and y that of predators. This model
assumes that each contact of a predator with its prey ends up with the preda-
tor eating the prey. In papers [1], [2], [4], [12], [14] the more general model is
also assumed { dx

dt = f(x)αx− g(x, y)x
dy
dt = kg(x, y)x−mxy (2)

where g is called the trophic function and denotes the number of prey eaten
by one predator within a particular unit of time and f denotes the capacity
of the area, i.e. the number of prey capable of �tting in the whole area in
question. The model, which is called the Arditi�Ginzburg model, declines
the assumptions that the only problem for prey is the predator and that each
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contact of the predator with its prey ends up with the predator eating the prey.
In paper [2] there is an overview of various forms of the trophic function. In
papers [5] and [7] an analogical model of (1) is presented in the case when the
chance of eating the prey by the predator depends on the age of the predator
and the age of the prey. This assumption, however, is somewhat simplifying.
The predator will not necessarily choose to hunt the prey which happens
to be encountered. Knowing that it can hunt down better prey to provide
more food, or weaker one which can be hunted with less e�ort, the predator
will not necessarily hunt any prey it encounters. Therefore, the dependence
of the number of prey eaten on the structure of both populations in this
model is not function-wise, but functional. Moreover, in order to develop the
predator needs to eat a certain amount of prey. At some point, after having
eaten enough prey, it will not hunt as actively as before. Hence, the assumed
bilinearity of the functional describing the consumption of prey is also too
limiting.

2. Age-dependent model

At �rst, let us recall the model from paper [5]. The two basic variables in
the model are as follows:

• u1(t, x) denotes density of a population of predators of age x at time t;

• u2(t, x) denotes density of a population of preys of age x at time t.

We assume that predators generally die a natural death. We can express
their mortality by classical McKendrick-von Foerster equation (see [10] and
[13])

∂u1
∂t

+
∂u1
∂x

= −λ(x)u1(t, x). (3)

Prey is either eaten by predators or dies a natural death. We assume that the
parameter α(x, y) denotes the e�ectiveness of hunting during the contact of
the prey aged x with the predator aged y. Then, the equation describing the
mortality of the prey takes the following form

∂u2
∂t

+
∂u2
∂x

= −
∫ ∞
0

α(x, y)u1(t, y)dy · u2(t, x)− µ(x)u2(t, x). (4)

In paper [6] we present an analogical equation but without the natural mortal-
ity for prey. According to the classical Lotka-Volterra model we assume that
food resources for prey are unlimited. The birth process of prey is described
by means of the following renewal equation

u2(t, 0) =

∫ ∞
0

β(x)u2(t, x)dx. (5)

We assume that a predator gains energy needed for reproduction as a re-
sult of successful hunting. The coe�cient k is the biomass conversion of the
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hunted prey. It denotes the energy derived from hunting used in the process
of reproduction

u1(t, 0) = k

∫ ∞
0

∫ ∞
0

α(x, y)u2(t, x)u1(t, y)dxdy. (6)

We are considering the system with the following initial conditions

u1(0, x) = v1(x), u2(0, x) = v2(x). (7)

In this paper we will consider the age-dependent analogue of the Rosenzweig-
MacArthur model, i.e. the particular case of the Arditi-Ginzburg model, where
the trophic function depends only on the population of prey.

3. Age-dependent Rosenzweig-MacArthur model In the classical
Arditi-Ginzburg model function f characterizes the suppression of prey repro-
duction connected with the limited capacity of the environment. Therefore, it
is a decreasing function which zeroes above value M characterizing the max-
imum number of prey that can �t in the environment. A classical example is
the following function

f(x) = max{M − ax, 0}.

In the age-dependent model γ(x) will denote the biotope resources used by
the prey aged x. Then, the resources used by the entire population of prey
will be as follows ∫ ∞

0
γ(x)u2(t, x)dx.

Therefore, the biotope resources consumed within the unit of time cannot
be exceeded. In accordance with the age-independent models, these resources
will be marked as M . So, the renewal equation for prey (5) will take the
following form

u2(t, 0) = f

(∫ ∞
0

γ(x)u2(t, x)dx

)∫ ∞
0

β(x)u2(t, x)dx (8)

where f is the function analogous to that used in the Arditi-Ginzburg model.
Let us now consider what the trophic function may look like. Since it depends
not only on the number of prey but also on their age structure, it will not
be a function, but a functional. Function α must be replaced by a certain
functional. Let

A(v1, v2)(x)

denote the number of prey aged x eaten by all the predators within the given
age structure of predators and prey. Clearly, in the model considered in [5],
[7], [8] the functional takes the following form

A(v1, v2)(x) =

∫ ∞
0

α(x, y)v1(y)dy · v2(x).
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Of course, it is natural to assume that

A(v1, v2)(x) ≤
∫ ∞
0

α(x, y)v1(y)dy · v2(x) (9)

for a certain function α, and that functional A is increasing with respect to
both variables. Let ρ denote the nutritional values of meat of the prey aged
x. In this situation equation (4) takes the following form

∂u2
∂t

+
∂u2
∂x

= −A(u1(t, ·), u2(t, ·))(x)− µ(x)u2(t, x). (10)

Similarly, equation (6) obtains the following form

u1(t, 0) =

∫ ∞
0

ρ(x)A(u1(t, ·), u2(t, ·))(x)dx. (11)

Thus, our system of equations takes the following form
∂u1
∂t + ∂u1

∂x = −λ(x)u1(t, x)
∂u2
∂t + ∂u2

∂x = −A(u1(t, ·), u2(t, ·))(x)− µ(x)u2(t, x)
u1(t, 0) =

∫∞
0 ρ(x)A(u1(t, ·), u2(t, ·))(x)dx

u2(t, 0) = f
(∫∞

0 γ(x)u2(t, x)dx
) ∫∞

0 β(x)u2(t, x)dx.

(12)

4. Solutions The structure of the solution to system (12) is a natu-
ral modi�cation of the structure described in [5], [8], where v1, v2 are the
continuous non-negative and integrable functions [0,∞) → R satisfying the
conditions

v1(0) =

∫ ∞
0

ρ(x)A(v1, v2)(x)dx,

v2(0) = f

(∫ ∞
0

γ(x)v2(x)dx

)∫ ∞
0

β(x)v2(x)dx.

For T > 0 let ϕ = (ϕ1, ϕ2) : [0, T ] → R2 is a continuous function satisfying
the conditions

ϕ1(0) = v1(0), ϕ2(0) = v2(0). (13)

At �rst we consider an auxiliary problem, that is equations (12)1, (12)2 with
conditions (7), (13) and

u1(t, 0) = ϕ1(t), u2(t, 0) = ϕ2(t). (14)

The solution to the problem can be expressed in the form (see [6] or [8])

u1(t, x) =

{
ϕ1(t− x)e−

∫ x
0 λ(s)ds for x ≤ t

v1(x− t)e−
∫ t
0 λ(x−s)ds for x > t.

(15)



A.L.Dawidowicz, A. Poskrobko 121

Until then, the model does not di�er from the one in [5], [7], [8]. However, a
di�erent procedure has to be applied in order to determine the formula for
u2. Let us consider the function

ψ : [0, T ]× [0,∞)→ R

and de�ne

u2(t, x) =


ϕ2(t− x)e−

∫ x
0 µ(s)ds +

∫ t
0 e
−

∫ x
s µ(x−τ)dτψ(s, s+ t− x)ds

for x ≤ t
v2(x− t)e−

∫ t
0 µ(x−s)ds +

∫ t
0 e
−

∫ t−s
0 µ(x−τ)dτψ(s, s+ x− t)ds

for x > t.

(16)
Formulas (15) and (16) result naturally from the fact that equations (12) along
the characteristics are ordinary di�erential equations, and the characteristics
are straight lines parallel to the straight line x = t (see [9], [11]). Let us now
de�ne space X by the following formula

X =
{
ψ ∈ C([0, T ], [0,∞)) : ψ(t, ·) ∈ L1([0,∞)), lim

x→∞
ψ(t, x) = 0

}
.

Having de�ned u1 and u2, we can determine the operator

A : X → X

by means of the following formula

(Aψ) (t, x) = A(u1(t, ·), u2(t, ·))(x)

where u1 and u2 are de�ned by formulas (15) and (16). We now need to de�ne
the functional space in which operator A will have the �xed-point property
and let ψ0 be the �xed point. Now let u1 be de�ned by formula (15) and û2 -
by formula (16) after substituting ψ with ψ0. Further procedure is a copy of
the procedure described in [5], [7], [8].

Let us de�ne operator Θ : C([0, T ],R2)→ C([0, T ],R2),

Θϕ = ((Θϕ)1, (Θϕ)2) : [0, T ]→ R2

on a Banach space C([0, T ],R2) with the norm

‖ϕ‖ = sup
t∈[0,T ]

(|ϕ1(t)|+ |ϕ2(t)|) (17)

by means of the following formulas

(Θϕ)1(t) =
∫∞
0 ρ(x)A(u1(t, ·), û2(t, ·))(x)dx,

(Θϕ)2(t) = f
(∫∞

0 γ(x)û2(t, x)dx
) ∫∞

0 β(x)û2(t, x)dx.

Now we will consider the solution to system (12) with initial conditions
(7) for t ∈ [0, T ].
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Definition 4.1 By the solution to (12) with initial conditions (7) we con-
sider the function u = (u1, u2) ∈ L1([0, T ] × R+,R2) ∩ C([0, T ] × R+,R2)
de�ned by (15) and (16), when the function ϕ is a �xed-point of the operator
Θ i.e. Θϕ = ϕ.

Remark 4.2 The classical solution to (12) with initial conditions (7) is the
solution in the sense of De�nition 4.1. Moreover, function u di�erentiable in
[0, T ]× R+ which is the solution to (12) in the sense of De�nition 4.1 is also
the classical solution.

By the technique analogous to that of [8] the following theorem can be
proved

Theorem 4.3 Let β, λ, ρ ≥ 0. We assume also that β ∈ L∞(0,∞). Let

A : (L1([0,∞))2 → L1([0,∞)) satisfy condition (9) and satisfy a Lipschitz

condition with respect to the second variable. Then, system (12) with initial

conditions (7) has exactly one non-negative solution on set [0,∞)× [0,∞).

Proof In the �rst instance we can notice that if we de�ne ū2 replacing ψ by
ψ̄ in formula (16), we will get the following estimate

|u2(t, x)− ū2(t, x)| ≤
∫ t

0
|ψ(s, s+ |t− x|)− ψ̄(s, s+ |t− x|)|ds.

For further considerations we will use a slightly modi�ed Bielecki method [3].
On the space X we will de�ne a norm with the help of the following formula

‖ψ‖ = sup
t∈[0,T ]

e−γt‖ψ(t, ·)‖L1

where a proper constant γ will be chosen. Therefore,

‖u2(t, ·)− ū2(t, ·)‖ ≤
∫ t

0
‖ψ − ψ̄‖ds =

1

γ
(1− e−γt)‖ψ − ψ̄‖.

Thus, it follows from the de�nition of A and Lipschitz continuity of A that

‖Aψ − Aψ̄‖ ≤ C

γ
‖ψ − ψ̄‖

where C is the Lipschitz constant for the operator A. Choosing γ > C from
the Banach �xed-point theorem, we can insert the �xed point in equation
(16) in the place of ψ and continuing with reasoning as mentioned above, i.e.
copying the procedures used in [5], [8], [7] we will get the conclusion. �
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5. Conclusions It turns out that the age-dependent model can be con-
sidered with the non-linear trophic function. Interestingly, the proof method
does not require the use of a new mathematical apparatus, it only requires a
more subtle use of the existing one. What is particularly encouraging is a bit
wider look at the Bielecki method, which may be useful in others applications.
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Pewna mody�kacja modelu drapie»ca-o�ara zale»nego od wieku

Antoni Leon Dawidowicz i Anna Poskrobko

Streszczenie Praca niniejsza proponuje nowy model koegzystencji populacji dra-
pie»cy z populacj¡ o�ar. W pracach [5] i [7] zaªo»ono, »e liczba o�ar w wieku x
zjadanych przez drapie»c¦ w wieku y jest wprost proporcjonalna do liczby o�ar w
wieku x i do liczby drapie»ców w wieku y. W niniejszej pracy zaprezentowany jest
ogólniejszy model. Przede wszystkim zale»no±¢ jest funkcjonalna, czyli na szanse
zjedzenia ma wpªyw struktura caªej populacji. Poza tym zale»no±¢ ta nie jest dwu-
liniowa, gdy» drapie»ca po zaspokojeniu gªodu zrezygnuje z polowania na o�ary.

Klasy�kacja tematyczna AMS (2010): 35F50, 92D25, 35R09.

Sªowa kluczowe: model drapie»ca-o�ara, model koegzystencji, istnienie i jednoznacz-
no±¢ rozwi¡zania.
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