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Abstract The Ornstein-Uhlenbeck model is one of the most popular stochastic pro-

cesses. It has found many interesting applications including physical phenomena.

However, for many real data, the classical Ornstein-Uhlenbeck process cannot be

applied. It is related to the fact that for many phenomena the vectors of observa-

tions exhibit the so-called heavy-tailed behaviour. In such cases, the modi�cations

of the classical models need to be used. In this paper, we analyze the Ornstein-

Uhlenbeck process based on stable distribution. This distribution is one of the most

classical members of the heavy-tailed class of distributions. In the literature, one

can �nd various applications of stable processes. However, the heavy-tailed property

implies that the classical methods of estimation and statistical investigation cannot

be applied. In this paper, we propose a new method of estimation of the stable

Ornstein-Uhlenbeck process. This technique is based on the alternative measure of

dependence, called fractional lower order covariance, which replaces the classical co-

variance for in�nite-variance distribution. The proposed research is a continuation of

the authors' previous studies, where the measure called covariation was proposed as

the base for the estimation technique. We introduce the stable Ornstein-Uhlenbeck

process and remind its main properties. In the main part, we de�ne the new estima-

tor of the parameters for discrete representation of the Ornstein-Uhlenbeck process.

Its e�ectiveness is checked by Monte Carlo simulations.
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1. Introduction. Continuous time models are popular in various ap-
plications. They seem to be the most natural for modelling high-frequency
data, which appear for instance in �nance. One of the most famous examples
of continuous time models is the Ornstein-Uhlenbeck (O-U) process. It was
introduced by Uhlenbeck and Ornstein [40] and its classical version is related
to the ordinary Brownian motion. This process is considered as a stationary
solution for the classical Klein-Kramers dynamics [20]. One can �nd di�erent
applications of the Ornstein-Uhlenbeck process among which the most known
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are the economic studies. In �nance, it is known as the Vasiček model, [41],
which was one of the stochastic models used to describe the interest rate
data. The Ornstein-Uhlenbeck process exhibits the so-called mean reversion
feature which is very often visible in the economic phenomena. One can �nd
many other applications of the Ornstein-Uhlenbeck process, like physical and
biological phenomena [7, 9, 37].

However, the analysis of real-life data shows that the classical Ornstein-
Uhlenbeck process very often cannot be directly applied. This is related to the
fact that many real phenomena exhibit non-Gaussian behaviour and the dis-
tribution of the data belongs rather to the heavy-tailed family of distributions.
The probability distribution is called heavy-tailed if its tail (1-cumulative dis-
tribution function) has power-law behaviour. In such a case, there is a higher
probability of large observations than in the Gaussian case. One of the most
popular distributions with this property is a stable one (called also α-stable
or Lévy stable). In the literature one can �nd many di�erent applications of
this distribution e.g. in �nance [6, 29, 32], biology [5], physics [25] and signal
processing [31]. This distribution is considered as the generalization of the
Gaussian one and possesses many useful properties. However, one of its main
drawbacks is that for most of the cases (except the Gaussian case) the sec-
ond moment and variance do not exist. Therefore, for models based on stable
distribution, the covariance cannot be considered as the measure of depen-
dence. Moreover, for most of the members of the stable distribution family,
the probability density function is not given in the closed form. Therefore,
this distribution is described in the language of the characteristic function.

One can consider the stochastic processes with the stable distribution.
The Ornstein-Uhlenbeck process based on stable distribution [33] is one of
the examples. This process arises as the classical Ornstein-Uhlenbeck model
for which the Brownian motion is replaced by the process with stationary
independent increments having stable distribution [4]. This process is widely
discussed in the literature in di�erent aspects [11, 12, 16, 17, 18, 24, 35, 38].
For such a process, the typical measure of dependence i.e. autocorrelation,
does not exist. Therefore, alternative measures have to be used [43]. A few
popular choices are: covariation [35], codi�erence [44] and fractional lower
order covariance (FLOC) [23].

In this paper, we consider the Ornstein-Uhlenbeck process based on stable
distribution and propose the new estimation method for its parameters. The
idea of the proposed technique is based on the discrete representation of the
analyzed process which in the statistical literature is called an autoregressive
model of order 1 (AR(1)). For the discrete version of the Ornstein-Uhlenbeck
process based on the stable distribution, we propose to apply the modi�ed
Yule-Walker method. The classical Yule-Walker method, which is used for
the estimation of the autoregressive models' parameters, is based on the au-
tocovariance function of the given process [3]. Because for the models based
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on stable distribution the autococovariance function is not properly de�ned,
we propose to replace it by one of the alternative measures of dependence
mentioned above. This paper is a continuation of the authors' previous re-
search presented in [21], where the modi�ed Yule-Walker method based on
autocovariation was de�ned. In this article, a similar approach is described.
We are going to focus on fractional lower order covariance. This measure is an
extension of covariance for in�nite variance stable distributions. In the litera-
ture one can �nd interesting applications of this statistic, see e.g. [22, 34, 46].
The proposed technique is straightforward and it can be easily adapted to
a modi�ed Yule-Walker equation. It can be applied to general autoregres-
sive processes with stable distribution, however, we demonstrate its e�ective-
ness for an autoregressive model with order 1, as the discrete version of the
Ornstein-Uhlenbeck process.

In the literature one can �nd di�erent approaches used in the problem of
the parameters' estimation for the stable Ornstein-Uhlenbeck process. We
only mention here the selected approaches, such as the trajectory �tting
method and the weighted least squares approach [14, 15, 45] as well as meth-
ods based on the discrete version of the Ornstein-Uhlenbeck process [8, 28, 47].
The proposed approach is a new idea which extends the existing methods.

The rest of the paper is structured as follows: In section 2 the stable
distribution is recalled. Moreover, we describe the alternative measures of de-
pendence and their basic properties. Section 3 consists of the de�nition of the
O-U process with Gaussian and stable distribution. Then, the novel estima-
tor of the O-U process parameters is proposed in section 4. The performance
of this estimator is tested on simulated data (section 5). The last section
summarises the article and contains the conclusions.

2. The stable distribution. The stable distribution can be considered
as an extension of the Gaussian one. This distribution is characterized by
four parameters: the stability index α, the scale parameter σ, the skewness
parameter β and the shift parameter µ. The theory of stable distribution was
introduced by Paul Lévy and Aleksander Khinchine in the 1920s and 1930s.
These random variables can be de�ned in several ways, one of the most useful
de�nition is based on the characteristic function. Let X be a random variable,
it is said to have a stable distribution (X ∼ S(α, σ, β, µ)) if its characteristic
function has the following form [35]:

φX(t) = EeitX =


exp

{
−σα|t|α

(
1− iβ sign(t) tan

(
πα
2

))
+ iµt

}
α 6= 1,

exp
{
−σ|t|

(
1 + iβ 2

π sign(t) ln (|t|)
)

+ iµt
}

α = 1,
(1)

where parameters α ∈ (0, 2], β ∈ [−1, 1], σ > 0 and µ ∈ R.
In the case of the stability index equal to α = 2 and the skewness parame-

ter β = 0, the stable distribution is reduced to the Gaussian one. Furthermore,
the stability index informs about the property of the tail of the distribution.
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Indeed, in the case of α < 2 the considered distribution has heavy tails,
which means that there is a higher probability to obtain observation far from
the mean. It is worth mentioning that, usually the probability density func-
tions for the stable distribution are not given in the closed form. There are
a few exceptions like Gaussian distribution (S(2, σ, 0, µ), Cauchy distribution
(S(1, σ, 0, 0)) or Lévy distribution (S(1/2, σ, 1, µ)). One can observe that the
sum of random variables from the stable distribution is also stable. Let us as-
sume that X1 and X2 are independent and Xi ∼ S(α, σi, βi, µi) and i = 1, 2.
Then,

X1 +X2 ∼ S(α, σ, β, µ),

where σ = (σα1 + σα2 )1/α, β =
β1σα1 +β2σα2
σα1 +σα2

and µ = µ1 + µ2.
This fact easily follows from the property of independence and the de�ni-

tion of the stable distribution. Finally, we can formulate another important
property of the stable distribution. Let X ∼ S(α, σ, β, µ) and a, b ∈ R are
some constants, then:

aX + b ∼ S(α, |a|σ, sign (a)β, aµ+ b) α 6= 1,

aX + b ∼ S(α, |a|σ, sign (a)β, aµ− 2/πaσβ ln |a|+ b) α = 1.

This fact is also satis�ed due to the de�nition and properties of the charac-
teristic function. Finally, we would like to de�ne the symmetric stable distri-
bution (SαS). Let X be a real-valued random variable, then it follows SαS
distribution when its characteristic function is given by:

φX(t) = exp(−σα|t|α).

In this case, the characteristic function depends only on two parameters (α
and σ), remaining parameters are equal to zero. For the stable distribution
with α < 2 the variance and second moment do not exist. However, the
Fractional Lower Order Moments (FLOM) can be introduced. Let X be a
random variable, the FLOM of order 0 < p < 2 is de�ned as:

FLOM(X, p) = E|X|p.

It is worth mentioning, that FLOM exists for each order p < α. Therefore,
this statistic is well-de�ned for the stable distribution. Furthermore, for SαS
random variable FLOM satis�es the following equation [35]:

FLOM(X, p) = C(p, α)σ
p
α for 0 < p < α,

where

C(p, α) =
2p+1Γ(p+1

2 )Γ(−pα )

α
√
πΓ(−p2 )

,

where Γ(·) is a Gamma function.
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The stability index is also related to the rate of the distribution tail decay.
For α < 2 the distribution exhibits a power-law behaviour:

limx−→∞ xαP{X > x} = Cα
1+β

2 σα,

limx−→∞ xαP{X < −x} = Cα
1−β

2 σα,

(2)

where Cα =
(∫∞

0 x−α sin(x)dx
)−1

= 1
πΓ(α) sin(πα2 ).

2.1. Measures of dependence for in�nite variance processes. One
of the most common measures of dependence are undoubtedly covariance and
correlation. They can be used for any distribution with �nite variance and
second moment (e.g. Gaussian). Therefore, they are not well de�ned for the
stable distribution with α < 2. In such case the alternative measures should
be used.

2.1.1. Covariation This measure is well de�ned for SαS random vari-
ables with the stability index α > 1. Let X1 and X2 follow SαS distribution
with α > 1. Furthermore, Γs is a spectral measure of the random vector
(X1, X2). Then, the covariation CV (X1, X2) is de�ned as [35]:

CV (X1, X2) =

∫
S2

s1s
<α−1>
2 Γs(ds), (3)

where S2 is the unit sphere in R and a<p> = |a|p sign a is a signed power.
Covariation can be also de�ned using the joint moment of random variables
X1, X2 of order p ∈ (1, α). The formula (3) can be equivalently written [10]:

CV (X1, X2) = p
E(X1X

<p−1>
2 )σαX2

E|X2|p
, (4)

where σX2 is a scale parameter for random variable X2. Let us present some
properties of this measure. It is worth mentioning, that covariation is not
symmetric. Furthermore, it is linear and additive with respect to the �rst
argument. Let us assume that X1, X2, Y are SαS random variables and pa-
rameters a, b ∈ R. Then, following equation is satis�ed:

CV (aX1 + bX2, Y ) = aCV (X1, Y ) + bCV (X2, Y ).

On the other hand, the additivity in the second argument CV (X,Y1 + Y2) =
CV (X,Y1) +CV (X,Y2) is satis�ed if and only if random variables Y1 and Y2

are independent. Furthermore, the covariation has the scaling property. In-
deed, for SαS random variables X and Y and real numbers a, b, the following
condition holds [35]:

CV (aX, bY ) = ab<α−1>CV (X,Y ).
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One of the main properties of the covariation is formulated for independent
random variables. Let us assume that X and Y are independent SαS, then
CV (X,Y ) = 0. However, for 1 < α < 2 it is possible to have CV (X,Y ) = 0
with dependent X and Y . Finally, for α = 2 the covariation is equal to half
of the covariance. Moreover, for α > 1, the covariation induces a norm on the
linear space of jointly SαS random variables. If X is a SαS random variable
with α > 1, then:

||X||α = (CV (X,X))1/α.

The autocovariation of the stationary process {X(t)} for lag k is de�ned as
the covariation of random variables X(t) and X(t− k):

CV (X(t), X(t− k)) =
E(X(t)X(t− k)p sign(X(t− k))

σαX(t−k) E |X(t− k)|
.

In the literature, one can �nd several methods for estimation of the co-
variation and the autocovariation [10, 21].

2.1.2. Codi�erence Another alternative measure of dependence that
can be considered instead of classical covariance is the codi�erence [35]. Let
X1 and X2 be the in�nitely divisible random variables, then the codi�erence
is de�ned as:

CD(X1, X2) = − log(E exp(i(X1 −X2)) + log(E exp(iX1))

+ log(E exp(−iX2)).

On the other hand the codi�erence can be also represented alternatively as:

CD(X1, X2) = log
(

ΦX1−X2
(1)

ΦX1
(1)ΦX2

(1)

)
,

where ΦXu(t) is the characteristic function of the random variable Xu for
point t. Using this formula one can see that the codi�erence is always well
de�ned for all in�nitely divisible random variables (e.g. SαS). Moreover,
CD(X1, X2) = CD(X2, X1), for symmetric random variables. Finally, there
is a relation between the codi�erence and the covariation. Let us assume that
SαS with α > 1, then the codi�erence can be expressed by the means of the
covariation norm, namely:

CD(X1, X2) = ||X1||αα + ||X2||αα − ||X1 −X2||αα. (5)

Furthermore, for independent random variables X and Y the codi�erence
is equal to zero CD(X,Y ) = 0. It is worth mentioning that for Gaussian
random variables codi�erence is reduced to covariance. In particular, for
X,Y ∼ S(2, σ, β, µ) we obtain CD(X,Y ) = Cov(X,Y ). It is worth mention-
ing that, this measure is more general and is well de�ned for any in�nitely
divisible process.
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The autocodi�erence of the stationary process {X(t)} for lag k is de�ned
as the codi�erence of random variables X(t) and X(t− k):

CD(X(t), X(t− k)) = log
(

ΦX(t)−X(t−k)(1)

ΦX(t)(1)Φ−X(t−k)(1)

)
. (6)

The estimator of codi�erence is described for instance in [44].

2.1.3. Fractional lower order covariance (FLOC). FLOC is a natu-
ral extension of the covariance. It can be computed for SαS random variables
with the stability index α ≤ 2. Let X1 and X2 be SαS random variables, then
the FLOC is de�ned as follows [23]:

FLOCX1,X2(A,B) = E[X<A>
1 X<B>

2 ], (7)

where parameters A + B < α and A,B ≥ 0. Therefore, FLOC can be com-
puted for any SαS random variable, even for stability indexes smaller than 1.
However, this statistic depends on parameters A,B and each set of parame-
ters changes the value of FLOC. Furthermore, for Gaussian random variables,
FLOC reduces to covariance when A = B = 1. Three properties of FLOC are
presented below, these results were calculated by Authors, thus the proofs are
also included. The main property of the FLOC is following.

Fact 2.1 Let us assume that X,Y are independent SαS random variables

with the stability index α. Then, for all A+B < α we obtain FLOCX,Y (A,B) =
0.

Proof

FLOCX,Y (A,B) = E[X<A>]E[Y <B>] =

=

(
E[|X|A] ∗ 1

2
− E[|X|A] ∗ 1

2

)(
E[|Y |B] ∗ 1

2
− E[|Y |B] ∗ 1

2

)
= 0

Furthermore, it can be shown that for some real parameter c FLOC has
scaling property:

Fact 2.2 Let us assume that X,Y are random variables with the stability

index α and c ∈ R. Then, for all A+B < α the following formulas hold:
FLOCcX,Y (A,B) = c<A>FLOCX,Y (A,B)

FLOCX,cY (A,B) = c<B>FLOCX,Y (A,B).
(8)

Proof We are going to prove only the �rst equation from system (8). The
second one follows exactly the same. We have the following:

FLOCcX,Y (A,B) = E[(sign(cX)|cX|AY <B>] (9)

=

{
cAE[(sign(X)|X|AY <B>] c > 0
−cAE[(sign(X)|X|AY <B>] c < 0

= c<A>FLOCX,Y (A,B).
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Fact 2.3 Let us assume that X,Y1, Y2 are random variables with the stability

index α. Furthermore, Y1 and Y2 are independent. Then, for all A+B < α:

FLOCX,Y1+Y2(A,B) = FLOCX,Y1(A,B) + FLOCX,Y2(A,B).

The proof for this fact is analogous to covariation, which is derived in Property
2.7.15 in [35]. It is worth mentioning that the independence of Y1 and Y2 is
crucial here. In the case of dependent variables the above fact is not satis�ed.

Moreover, the autoFLOC of the stationary process {X(t)} for lag k is
de�ned as FLOC of random variables X(t) and X(t− k):

FLOC(k,A,B) = FLOCX(t),X(t−k)(A,B). (10)

Finally, we would like to introduce the estimator of the autoFLOC. It is
derived directly from equation (7). Let us assume that

X = {X(1), X(2), . . . X(N)}

is a trajectory of length N , then the estimator of FLOC based on X is de�ned
as [23]:

F̂LOC(k,A,B) =

∑L2
n=L1

|X(n)|A|X(n+ k)|B sign[X(n)X(n+ k)]

L2 − L1
, (11)

where L2 = min(N,N − k) and L1 = max(0,−k).

3. The Ornstein-Uhlenbeck process The Ornstein-Uhlenbeck process
can be de�ned as a stationary solution of the Langevian equation with respect
to Brownian motion. Therefore, it satis�es the following equation:

dX(t) = θ(µ−X(t))dt+ σdB(t), (12)

where θ, σ > 0, µ ∈ R and {B(t)} is a Brownian motion. One of the main
properties of this process is a mean reversion. In a signi�cant long term, the
process will have values around the long term mean. For instance, when the
process is below the equilibrium level, the drift is positive, otherwise, it is
negative and pulls the process down to reach the mean. As it was mentioned,
the O-U process is especially popular in �nancial mathematics and it is typi-
cally used to model interest rates.
One can obtain the unique solution of equation (12):

X(t) = X(0)e−θt + µ(1− e−θt) + σ

∫ t

0
e−θ(t−s)dB(s). (13)

Therefore, {X(t)} is a Gaussian process. Moreover, for the �xed value of the
starting parameter X(0) the distribution tends (t → ∞) to the stationary
distribution N(µ, σ

2

2θ ).
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The approach proposed in this paper is based on the discrete version of the
O-U process, which is based on the Euler scheme discretization and takes the
form:

X(t+ ∆t)−X(t) = θ(µ−X(t))∆t+ σ
√

∆Bt, (14)

where t = 0,∆t, . . . , ∆t is a time step and Bt = B(t+ ∆t)−B(t). Taking ∆t
equal to 1 and µ = 0 we obtain the time series AR(1).

The problem of discretization of the continuous-time processes is widely
discussed in the literature. One can �nd di�erences related related to the
continuous and the discrete version of the given process and the in�uence of
the discretization, for instance, on the estimation results [1, 13, 27, 30, 36, 39,
45]. The proposed discretization is the simplest one. However, this approach
is not new in the literature. As it was mentioned in the Introduction, in
the literature one can �nd few methods of the Ornstein-Uhlenbeck process
parameters estimation which are based on its discrete version.

3.1. The Ornstein-Uhlenbeck process with stable distribution.

The classical O-U process assumes that data follows the Gaussian distribu-
tion. However, in real cases very often data reveals the property of heavy tails,
which is not related to Gaussian behaviour. Therefore, in the literature, one
can �nd the extension of the O-U process with the stable distribution [33]. In
such cases, some signi�cant jumps and changes would be present in the data.
In order to apply this, the distribution in equation (12) has to be changed.
The O-U process driven by stable Lévy process is de�ned by the following
stochastic di�erential equation:

dX(t) = θ(µ−X(t))dt+ σdZ(t), (15)

where {Z(t)} is a Lévy process, i. e. process with independent, stationary and
SαS increments. The Euler discretization scheme can be de�ned similarly to
the classical case. It is given by the formula:

X(t+ ∆t)−X(t) = θ(µ−X(t))∆t+ σ(∆t)1/αZt, (16)

where t = 0,∆t, . . . and Zt = Z(t + ∆t) − Z(t). Taking ∆t equal to 1 and
µ = 0 we obtain the time series AR(1) with the stable distribution. Indeed,
we obtain the following expression for AR(1):

Xt − φXt−1 = σZt, (17)

where φ = 1 − θ and {Zt} constitute sequence of independent, identically
distributed (i.i.d.) SαS random variables. For the AR time series with stable
innovations several estimation methods are described in the literature e.g.
modi�ed Yule-Walker [21], normalized covariation [10] and Whittle method
[2]. Under such assumptions it is proved in [35] that the system satisfying
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equation (17) has a unique, stationary solution of the following form:

Xt =

∞∑
i=0

ciZt−i, t ∈ Z, Zt ∼ SαS, a.s (18)

where real ci's satisfy |ci| < Q−1, where Q > 1 if and only if polynomial
φ(z) has no roots in the unit disc z : |z| ≤ 1. The sequence {Xt} is then a
stationary process and has SαS distribution.

4. Estimation of the stable O-U parameters based on FLOC.

The main aim of the paper is to present a new method of estimation for
parameters of the O-U process with the stable distribution based on fractional
lower order covariance. The new method is a modi�cation of the classical
Yule-Walker method. However, instead of the autocovariance function, the
FLOC is used. The need for the substitution is lack of the theoretical �nite
second moment for random variables with SαS distribution. The FLOC is well
de�ned for the class of such variables, therefore it can be successfully used in
that case. In this article, we are going to analyse the discretized version of
the O-U process, which is an AR(1) model. The estimation procedure of this
process consists of several steps.

Theorem 1 Let us assume that the vector {X1, ..., XN} is a realization of a
discrete version of the O-U process given by equation (17) with the sequence
{Zt} of an i.i.d. SαS random variables. Moreover, we assume α > 1 and
σ = 1. Then, the estimator of the parameter φ is given by the following
formula:

φ̂ =

∑N−1
n=1 |Xn|A|Xn+1|B sign[XnXn+1]∑N−1

n=1 |Xn|A−1|Xn+1|B+1
, (19)

where A and B are parameters satisfying inequalities 0 < A+B < α.

Proof Let us assume that St = sign(Xt) and

FLOC(k,A,B) = E[X<A>
t X<B>

t−k ].

Let us multiply the equation (17) by StSt−1

XtStSt−1 − φXt−1StSt−1 = ZtStSt−1

It is clear that XtSt = |Xt|:

|Xt|St−1 − φ|Xt−1|St = ZtStSt−1

Let us multiply the above equation by: |Xt|a−1|Xt−1|b:

|Xt|a|Xt−1|bSt−1 − φ|Xt|a−1|Xt−1|b+1St = ZtStSt−1|Xt|a−1|Xt−1|b
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Let us multiply the above equation by St

|Xt|a|Xt−1|bSt−1St − φ|Xt|a−1|Xt−1|b+1S2
t = ZtS

2
t St−1|Xt|a−1|Xt−1|b

It is clear that S2
t = 1:

|Xt|a|Xt−1|bSt−1St − φ|Xt|a−1|Xt−1|b+1 = ZtSt−1|Xt|a−1|Xt−1|b

By taking the expectation we obtain:

E[|Xt|a|Xt−1|bSt−1St]− φE[|Xt|a−1|Xt−1|b+1] = E[ZtSt−1|Xt|a−1|Xt−1|b]

Let us use the representation of {Xt} given by equation (18):

E[|Xt|a|Xt−1|bSt−1St]− φE[|Xt|a−1|Xt−1|b+1] =

= E[Zt

∣∣∣∣∣
( ∞∑
i=0

ciZt−i−1

)∣∣∣∣∣
a−1

|(
∞∑
j=0

cjZt−j−1)|bSt−1].

The left side of the above equation can be rewritten as follows:

E[|Xt|a|Xt−1|bSt−1St]− φE[|Xt|a−1|Xt−1|b+1]

=
∞∑
i=0

∞∑
j=0

E[Zt|ciZt−i|a−1|cjZt−j−1|bSt−1].

The random variables Zt, Zt−i and Zt−j−1 are not independent if and only if
t = t−i = t−j−1. It is clear that the above equality is always false. Therefore,
the random variables are independent and any of them has EZt = µ = 0,
if the assumption that α > 1 and {Zt} ∼ SαS is valid. After applying that
remark and the de�nition of FLOC we get an explicit form for the parameter
φ:

φ =
E[|Xt|a|Xt−1|bSt−1St]

E[|Xt|a−1|Xt−1|b+1]
=

FLOC(1, a, b)

E[|Xt|a−1|Xt−1|b+1]
. (20)

Then, after substitution of the theoretical FLOC with its estimator and the-
oretical fractional moments with empirical ones we get the estimator of pa-
rameter φ.

Additionally, it is worth mentioning that the estimator of parameter θ can be
easily calculated as θ̂ = 1− φ̂.

5. Monte Carlo simulations.

5.1. Optimal A,B parameters for the estimator of the stable O-U

process parameter with �xed θ and α In order to test the e�ectiveness
of O-U process parameters' estimators, the analysis of the simulated data
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was performed. The FLOC-based estimation using Theorem 1 was done. We
analyse the O-U process which satis�es the following equation:

dX(t) = −0.9X(t)dt+ Z(t), (21)

where {Z(t)} is the stable Lévy process. The Euler discretization of equation
(21) takes the form:

Xt − 0.1Xt−1 = Zt, (22)

where {Zt} constitutes a sample of i.i.d. random variables from SαS distri-
bution with the stability parameter α = 1.9 and the scale parameter σ = 1.
Using the Monte Carlo method we generate the trajectory of length 1000 of
the model given by equation (21) and estimate the discrete time O-U pro-
cess parameter using FLOC-based estimator. The sample trajectory of such
a model is presented in Fig. 1.

Figure 1: A sample trajectory of the discrete time O-U process model given by
equation (21)

In order to �nd the parameters A and B which will be the most optimal
the estimations for di�erent pairs were performed. We �x the values of θ = 0.9
and α = 1.9. Then, for each pair of A,B = 0, 0.1, . . . , α, A + B < α the
parameter θ is estimated. For each pair of parameters A,B 10000 Monte
Carlo simulations were performed and then the means of estimated values
were calculated. The results are presented in Tab. 1.
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Table 1: The table of means of 10000 estimated values θ̂ for the stable time O-U process with

di�erent values of parameters A and B, θ = 0.9, σ = 1 and α = 1.9.

A
/
B

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

0
0
.9
8
8
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.9
8
8

0
.9
8
8
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.9
8
8

0
.9
8
9

0
.9
8
9
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9
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.9
8
9
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9
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9
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The best pairs A,B (for which the means of estimated values are closest
to θ = 0.9) were highlighted in the Tab. 1. In particular, for A = 0.9 and
B = 0.5 we obtain the most appropriate results.

5.2. Optimal A,B for the stable O-U process with random θ �xed
α A similar study was performed for di�erent values of the θ parameter in
order to check how sensitive are A,B for di�erent values of θ. Therefore, the
following model was considered:

dX(t) = −θX(t)dt+ Z(t). (23)

where {Z(t)} is a stable Lévy process. In Tab. 2 the obtained results for
0 < θ < 1 and in Tab. 3 for 1 < θ < 2 are presented. Moreover, there are also
illustrated mean errors (ME) calculated for any θ from the following formula:

ME =

∣∣∣∣∣ 1n
n∑
i=1

θ̂i − θ

∣∣∣∣∣ ,
where n is equal to 1000 and it is the number of Monte Carlo simulations, θ
is the theoretical value of the parameter and θ̂i is its i-th estimator. Similarly,
the mean percentage error (MPE) is calculated using the following formula:

MPE =

∣∣∣∣∣ 1
n

∑n
i=1 θ̂i − θ
θ

∣∣∣∣∣ .
We are looking for the pair of parameters A,B = 0, 0.05, . . . , α, A+B < α,
which minimise the ME and MPE. In Tab. 2 and Tab. 3 for each value of θ
the most suitable A,B, the estimator θ̂, ME and MPE are presented. One
can observe that both ME and MPE are small and the estimators are close
to the real values of parameter θ. In particular, the optimal values of A,B
are varying. However, the optimal A is close to 1 for all values of θ.

Table 2: The table of estimated values θ̂ for the stable O-U process for di�erent
values of parameters A and B, 0 < θ < 1, σ = 1 and α = 1.7

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A 0.95 0.9 0.95 0.9 0.9 0.85 0.8 0.75 0.7

B 0.55 0.1 0.7 0.4 0.5 0.3 0.1 0 0

θ̂ 0.10001 0.20033 0.29984 0.39859 0.50073 0.59996 0.69908 0.79995 0.89978

ME 0.00001 0.00033 0.00016 0.00141 0.00073 0.00004 0.00092 0.00005 0.00022

MPE 0.00009 0.00164 0.00054 0.00353 0.00146 0.00007 0.00131 0.00007 0.00024

5.3. Optimal A,B for stable O-U process with random θ and

α In a real case, the values of θ are unknown, thus we would like to test
the most suitable A,B for any θ and α. Parameters A,B have to be �xed
in the estimation procedure, thus the following test is proposed. Indeed, in
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Table 3: The table of estimated values θ̂ for the stable O-U process for di�erent
values of parameters A and B, 1 < θ < 2, σ = 1 and α = 1.7

θ 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

A 0.75 0.75 0.8 0.85 0.85 0.9 0.95 0.9 0.95

B 0.25 0 0.1 0.3 0.15 0.45 0.7 0.1 0.55

θ̂ 1.10060 1.20048 1.29992 1.40038 1.49882 1.59836 1.70062 1.80002 1.90009

ME 0.00060 0.00048 0.00008 0.00038 0.00118 0.00164 0.00062 0.00002 0.00009

MPE 0.00055 0.00040 0.00006 0.00027 0.00079 0.00103 0.00037 0.00001 0.00005

the simulation procedure, the parameter θ and the stability index α were
drawn from the uniform distribution. It was assumed that 0 < θ < 2, θ 6= 1
and 1.5 < α < 1.9. Therefore, the most appropriate parameters A,B =
0, 0.05, . . . , α, A + B < α are going to be chosen. In order to choose the
optimal A,B, the mean absolute error (MAE) is calculated using the following
formula:

MAE =

∑n
i=1

∣∣∣θ̂i − θ∣∣∣
n

, (24)

where n is the number of Monte Carlo simulation. The results of the test
with drawn θ and α parameters are presented in Tab. 4. In the procedure
1000 Monte Carlo simulations were performed and three best sets of A,B
are illustrated. One can observe that parameter A should be close to 1 and
parameter B is around 0.5. It is worth mentioning that the MAE is small
and the proposed estimator can be used even though we do not know the
theoretical values of α.

Table 4: The table of estimated values θ̂ for the stable O-U process for drawn
values of 0 < θ < 2, θ 6= 1, 1.5 < α < 1.9 and �xed σ = 1. The best three set
of parameters A,B are presented.

#1 #2 #3
A 0.9 0.9 0.9
B 0.55 0.5 0.45
MAE 0.023777 0.024321 0.025658

5.4. The optimal A,B selection for given α. In the case of real
data analysis, it is crucial to properly select the A,B parameters. Indeed, A,B
in�uence the estimation results. It has already been tested, which values of
A,B should be used for data with unknown α (Tab. 4). However, it is possible
to optimize the estimation procedure. Particularly, it is proposed to choose
appropriate A,B parameters for given α. Let us assume that {X(t)} is the
O-U process with the stable distribution, given by equation (15). Then, this
process {X(t)} also has a stable distribution. Thus, in the �rst step, the
parameter α can be estimated for {X(t)}. In the literature one can �nd many
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Table 5: Parameters A,B, for which the estimator θ̂ has the smallest MSE,
with α from di�erent intervals.

α ∈ A B MSE MAE
(1.1, 1.3) 0.75 0 0.0055 0.0549
(1.3, 1.5) 0.85 0.4 0.0018 0.0326
(1.5, 1.7) 0.9 0.55 0.0009 0.0229
(1.7, 1.9) 0.9 0.5 0.0009 0.0236

di�erent estimators of stable distribution parameters i.e. the approximated
maximum likelihood method [42], McCulloch's method [26] or the regression
method [19]. It is su�cient to apply one of them and then the appropriate
A,B parameters for an estimated α can be used. The simulation study for
di�erent α was performed and for each interval, the most appropriate A,B
were selected. In Tab. 5 the results of the simulation study are presented. It
was tested for α ∈ (1.1, 1.9), for each interval 1000 trajectories of the O-U
process were simulated. In each case, the trajectory length was N = 1000. In
each repetition, the α parameter was drawn from the appropriate interval. In
this case, the additional error, namely mean squared error (MSE) is calculated
using the following formula:

MSE =
1

n

n∑
i=1

(θ̂i − θi)2. (25)

In Tab. 5 the parameters A,B with the smallest MSE and MAE are presented.
It can be observed that the bigger α is, the higher values of A,B parameters
should be used.

5.5. The comparison with another estimators of the O-U process

parameters As it was mentioned, in the literature one can �nd several
di�erent approaches used for the estimation of the parameters of the O-U
process with the stable distribution. In this section, the estimator based on
FLOC measure is compared with two other estimators, which are proposed
for the discrete version of the O-U process. Particularly, we compare the
introduced approach with the method based on normalized covariation (NCV)
[21] and the Whittle method [28]. Firstly, the MSEs for the three estimation
methods are compared. In Tab. 6 the MSE for each method is presented. It
was calculated based on simulated 1000 trajectories for each interval of α. In
each case, the trajectory length was 1000. Moreover, in the method based on
FLOC, we apply theA,B parameters, which are optimal for the corresponding
α taken from Tab. 5. One can observe that the smallest value of MSE is
obtained for the Whittle method. However, FLOC method outperforms the
approach based on NCV. Furthermore, for α > 1.3 the results for FLOC and
Whittle methods are almost the same. Only for α ∈ (1.1, 1.3) the Whittle



P.Kruczek, W. �uªawi«ski, P.Pagacz, A. Wyªoma«ska 285

Table 6: The MSE for a di�erent estimation method, random α ∈ (1.1, 1.9)
and φ ∈ (−1, 1)\{0}.

method \ α ∈ (1.1, 1.3) (1.3, 1.5) (1.5, 1.7) (1.7, 1.9)
FLOC 0.0057 0.0019 0.0008 0.0009
Whittle 0.0004 0.0006 0.0005 0.0006
NCV 0.0240 0.0102 0.0037 0.0024

Table 7: The computational time (in seconds) forM = 100 trajectories of the
O-U process with a di�erent trajectory length N .

FLOC(0.8, 0.2) Whittle NCV
N = 100 0.0071 0.2570 0.0028
N = 200 0.0122 0.2646 0.0029
N = 300 0.0177 0.2825 0.0032
N = 400 0.0232 0.2900 0.0035
N = 500 0.0285 0.2993 0.0038
N = 600 0.0338 0.3092 0.0040
N = 700 0.0398 0.3176 0.0044
N = 800 0.0453 0.3286 0.0048
N = 900 0.0502 0.3372 0.0049
N = 1000 0.0559 0.3499 0.0053
N = 10000 0.3066 1.1326 0.0324

method outperforms the other techniques.
Another important property of the estimator is the computational time. In
order to test this, the simulation study was performed. We consider here
di�erent trajectory lengths of the O-U process based on stable distribution.
For each case, we simulate 100 trajectories. In Tab. 7 the computational time
is presented for 100 trajectories. The least complex method is the one based
on NCV. However, the FLOC outperforms the Whittle method. In Fig. 2
the time in log scale is presented. The results are presented for α = 1.9 and
θ = 0.5, however, we observe that the α and θ parameters have no in�uence
on the computational time. The only parameter which in�uences the results
is the trajectory length N . Although the Whittle method is more precise, it
is more complex and its computational time is longer. On the other hand, the
estimators based on the NCV and FLOC methods have simpler formulas and
their computation is faster.
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Figure 2: The computational time for a di�erent sample length in log scale.

6. Conclusions. In this paper, we study the Ornstein-Uhlenbeck process
based on the stable distribution. It arises after replacement of the ordinary
Brownian motion in the classical Ornstein-Uhlenbeck process by the process
of stationary independent increments with the stable distribution. The stable
processes are widely discussed in the literature and have found various ap-
plications. However, their use implies that the classical estimation methods
cannot be applied. In this paper, we propose a novel technique of the sta-
ble Ornstein-Uhlenbeck process parameters estimation. The new method is
based on the fractional lower order covariance, one of the alternative measures
of dependence adequate for in�nite-variance processes. The presented study
is the extension of the authors' previous research where the covariation was
proposed as the base for the estimation of the stable autoregressive models.
However, in contrast to the covariation-based technique, the proposed in this
paper method is simple and the obtained estimator is given in the explicit
form. The e�ectiveness of the proposed method is checked by the Monte Carlo
simulations.

Author Contributions: Theoretical analysis of the estimation method, Pi-
otr Kruczek, Patrycja Pagacz; simulations, Patrycja Pagacz, Wojciech �uªaw-
i«ski; conceptualization, AgnieszkaWyªoma«ska, Writing�original draft prepa-
ration, Piotr Kruczek, Patrycja Pagacz, Wojciech �uªawi«ski ; writing�review
and editing, Agnieszka Wyªoma«ska.
Funding. This work was supported by the Polish National Science Center
grant Opus No. 2016/21/B/ST1/00929.
Con�icts of Interest: The authors declare no con�ict of interest.



P.Kruczek, W. �uªawi«ski, P.Pagacz, A. Wyªoma«ska 287

7. References

[1] P. Brockwell. Continuous-time ARMA processes. Handbook of statistics,
19:249�276, 2001. doi: 10.1016/S0169-7161(01)19011-5. Cited on p. 277.

[2] P. J. Brockwell and R. A. Davis. Time series: theory and methods.
Springer Science & Business Media, 2013. Zbl 1169.62074. Cited on
p. 277.

[3] P. J. Brockwell and R. A. Davis. Introduction to time series and fore-

casting. springer, 2016. Zbl 1355.62001. Cited on p. 270.

[4] P. J. Brockwell and T. Marquardt. Lévy-driven and fractionally in-
tegrated ARMA processes with continuous time parameter. Statistica

Sinica, pages 477�494, 2005. Zbl 1070.62068. Cited on p. 270.

[5] K. Burnecki and A. Weron. Fractional Lévy stable motion can model
subdi�usive dynamics. Physical Review E, 82(2):021130, 2010. doi:
10.1103/PhysRevE.82.021130. Cited on p. 270.

[6] K. Burnecki, J. Gajda, and G. Sikora. Stability and lack of mem-
ory of the returns of the hang seng index. Physica A: Statisti-

cal Mechanics and its Applications, 390(18-19):3136�3146, 2011. doi:
10.1016/j.physa.2011.04.025. Cited on p. 270.

[7] K. Burnecki, G. Sikora, A. Weron, M. M. Tamkun, and D. Krapf. Identi-
fying di�usive motions in single-particle trajectories on the plasma mem-
brane via fractional time-series models. Physical Review E, 99(1):012101,
2019. doi: 10.1103/PhysRevE.99.012101. Cited on p. 270.

[8] R. Davis and S. Resnick. Limit theory for the sample covariance and
correlation functions of moving averages. The Annals of Statistics, pages
533�558, 1986. doi: 10.1214/aos/1176349937. Zbl 0605.62092. Cited on
p. 271.

[9] T. Frank, A. Da�ertshofer, and P. Beek. Multivariate Ornstein-
Uhlenbeck processes with mean-�eld dependent coe�cients: Applica-
tion to postural sway. Physical Review E, 63(1):011905, 2000. doi:
10.1103/PhysRevE.63.011905. Cited on p. 270.

[10] C. M. Gallagher. A method for �tting stable autoregressive models using
the autocovariation function. Statistics & Probability Letters, 53(4):381�
390, 2001. doi: 10.1016/S0167-7152(01)00041-4. Zbl 0982.62075. Cited
on pp. 273, 274, and 277.

[11] P. Garbaczewski and R. Olkiewicz. Ornstein�Uhlenbeck�Cauchy pro-
cess. Journal of Mathematical Physics, 41(10):6843�6860, 2000. doi:
10.1063/1.1290054. Zbl 1056.82009. Cited on p. 270.

[12] R. Hintze, I. Pavlyukevich, et al. Small noise asymptotics and �rst pas-
sage times of integrated Ornstein�Uhlenbeck processes driven by α-stable
Lévy processes. Bernoulli, 20(1):265�281, 2014. doi: 10.3150/12-BEJ485.
Zbl 1309.60059. Cited on p. 270.

http://dx.doi.org/10.1016/S0169-7161(01)19011-5
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1169.62074&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1355.62001&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an: 1070.62068&format=complete
http://dx.doi.org/10.1103/PhysRevE.82.021130
http://dx.doi.org/10.1103/PhysRevE.82.021130
http://dx.doi.org/10.1016/j.physa.2011.04.025
http://dx.doi.org/10.1016/j.physa.2011.04.025
http://dx.doi.org/10.1103/PhysRevE.99.012101
http://dx.doi.org/10.1214/aos/1176349937
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0605.62092&format=complete
http://dx.doi.org/10.1103/PhysRevE.63.011905
http://dx.doi.org/10.1103/PhysRevE.63.011905
http://dx.doi.org/10.1016/S0167-7152(01)00041-4
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0982.62075&format=complete
http://dx.doi.org/10.1063/1.1290054
http://dx.doi.org/10.1063/1.1290054
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1056.82009&format=complete
http://dx.doi.org/10.3150/12-BEJ485
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1309.60059&format=complete


288 Fractional Ornstein-Uhlenbeck process with stable distribution

[13] I. Horenko, C. Hartmann, C. Schütte, and F. Noe. Data-based parameter
estimation of generalized multidimensional Langevin processes. Physical
Review E, 76(1):016706, 2007. doi: 10.1103/PhysRevE.76.016706. Cited
on p. 277.

[14] Y. Hu and H. Long. Parameter estimation for Ornstein-Uhlenbeck
processes driven by α-stable Lévy motions. Communications on

Stochastic Analysis, 1(2):1, 2007. doi: 10.31390/cosa.1.2.01. Zbl
10.1016/j.spa.2008.12.006. Cited on p. 271.

[15] Y. Hu and H. Long. Least squares estimator for Ornstein�Uhlenbeck
processes driven by α-stable motions. Stochastic Processes and their

applications, 119(8):2465�2480, 2009. doi: 10.1016/j.spa.2008.12.006. Zbl
1171.62045. Cited on p. 271.

[16] A. Janicki and A. Weron. Simulation and chaotic behavior of alpha-stable

stochastic processes, volume 178. CRC Press, 1993. Zbl Simulation and
chaotic behavior of alpha-stable stochastic processes. Cited on p. 270.

[17] A. Janicki, K. Podgórski, and A. Weron. Computer simulation of α-
stable Ornstein-Uhlenbeck processes. In Stochastic Processes, pages 161�
170. Springer, 1993. doi: 10.1007/978-1-4615-7909-0_19. Zbl 0783.60052.
Cited on p. 270.

[18] R. Kawai and H. Masuda. In�nite variation tempered stable Ornstein�
Uhlenbeck processes with discrete observations. Communications

in Statistics-Simulation and Computation, 41(1):125�139, 2012. doi:
10.1080/03610918.2011.582561. Zbl 06073004. Cited on p. 270.

[19] I. A. Koutrouvelis. Regression-type estimation of the parameters of stable
laws. Journal of the American Statistical Association, 75(372):918�928,
1980. doi: 10.1080/01621459.1980.10477573. Zbl 0449.62026. Cited on
p. 284.

[20] H. A. Kramers. Brownian motion in a �eld of force and the di�u-
sion model of chemical reactions. Physica, 7(4):284�304, 1940. doi:
10.1016/S0031-8914(40)90098-2. Zbl 0061.46405. Cited on p. 269.

[21] P. Kruczek, A. Wyªoma«ska, M. Teuerle, and J. Gajda. The mod-
i�ed Yule-Walker method for α-stable time series models. Physica

A: Statistical Mechanics and its Applications, 469:588�603, 2017. doi:
10.1016/j.physa.2016.11.037. Zbl 1400.62185. Cited on pp. 271, 274,
277, and 284.

[22] T.-H. Liu and J. M. Mendel. A subspace-based direction �nding al-
gorithm using fractional lower order statistics. IEEE Transactions on

Signal Processing, 49(8):1605�1613, 2001. doi: 10.1109/78.934131. Zbl
1369.94212. Cited on p. 271.

[23] X. Ma and C. L. Nikias. Joint estimation of time delay and fre-
quency delay in impulsive noise using fractional lower order statistics.
IEEE Transactions on Signal Processing, 44(11):2669�2687, 1996. doi:

http://dx.doi.org/10.1103/PhysRevE.76.016706
http://dx.doi.org/10.31390/cosa.1.2.01
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:10.1016/j.spa.2008.12.006&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:10.1016/j.spa.2008.12.006&format=complete
http://dx.doi.org/10.1016/j.spa.2008.12.006
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1171.62045&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1171.62045&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:Simulation and chaotic behavior of alpha-stable stochastic processes&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:Simulation and chaotic behavior of alpha-stable stochastic processes&format=complete
http://dx.doi.org/10.1007/978-1-4615-7909-0_19
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0783.60052&format=complete
http://dx.doi.org/10.1080/03610918.2011.582561
http://dx.doi.org/10.1080/03610918.2011.582561
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06073004&format=complete
http://dx.doi.org/10.1080/01621459.1980.10477573
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0449.62026&format=complete
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0061.46405&format=complete
http://dx.doi.org/10.1016/j.physa.2016.11.037
http://dx.doi.org/10.1016/j.physa.2016.11.037
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1400.62185&format=complete
http://dx.doi.org/10.1109/78.934131
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1369.94212&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1369.94212&format=complete
http://dx.doi.org/10.1109/78.542175
http://dx.doi.org/10.1109/78.542175
http://dx.doi.org/10.1109/78.542175


P.Kruczek, W. �uªawi«ski, P.Pagacz, A. Wyªoma«ska 289

10.1109/78.542175. Cited on pp. 270, 275, and 276.

[24] M. Maejima, K. Yamamoto, et al. Long-memory stable Ornstein-
Uhlenbeck processes. Electronic Journal of Probability, 8, 2003. doi:
10.1214/EJP.v8-168. Zbl 1087.60034. Cited on p. 270.

[25] M. Magdziarz and K. Weron. Anomalous di�usion schemes underlying
the Cole�Cole relaxation: the role of the inverse-time α-stable subordi-
nator. Physica A: Statistical Mechanics and its Applications, 367:1�6,
2006. doi: 10.1016/j.physa.2005.12.011. Cited on p. 270.

[26] J. H. McCulloch. Simple consistent estimators of stable distribution pa-
rameters. Communications in Statistics-Simulation and Computation, 15
(4):1109�1136, 1986. doi: 10.1080/03610918608812563. Zbl 0612.62028.
Cited on p. 284.

[27] D. W.-C. Miao. Analysis of the discrete Ornstein-Uhlenbeck process
caused by the tick size e�ect. Journal of Applied Probability, 50(4):1102�
1116, 2013. doi: doi.org/10.1239/jap/138937010. Zbl Analysis of the
discrete Ornstein-Uhlenbeck process caused by the tick size e�ect. Cited
on p. 277.

[28] T. Mikosch, T. Gadrich, C. Kluppelberg, and R. J. Adler. Parameter
estimation for ARMA models with in�nite variance innovations. The

Annals of Statistics, 23(1):305�326, 1995. doi: 10.1214/aos/1176324469.
Zbl 0822.62076. Cited on pp. 271 and 284.

[29] S. Mittnik and S. T. Rachev. Modeling asset returns with alternative
stable distributions. Econometric Reviews, 12(3):261�330, 1993. doi:
10.1080/07474939308800266. Zbl 0801.62096. Cited on p. 270.

[30] M. Niemann, T. Laubrich, E. Olbrich, and H. Kantz. Usage of the Mori-
Zwanzig method in time series analysis. Physical Review E, 77(1):011117,
2008. doi: 10.1103/PhysRevE.77.011117. Cited on p. 277.

[31] C. L. Nikias and M. Shao. Signal processing with alpha-stable distribu-

tions and applications. Wiley-Interscience, 1995. Cited on p. 270.

[32] J. P. Nolan. Modeling �nancial data with stable distributions. Handbook
of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book,
1:105�130, 2003. doi: 10.1016/B978-044450896-6.50005-4. Cited on p.
270.

[33] J. Obuchowski and A. Wyªoma«ska. Ornstein�Uhlenbeck process with
non-Gaussian structure. Acta Physica Polonica B, 44(5), 2013. doi:
10.5506/APhysPolB.44.1123. Zbl 1371.60140. Cited on pp. 270 and 277.

[34] M. Rupi, P. Tsakalides, E. Del Re, and C. L. Nikias. Constant modu-
lus blind equalization based on fractional lower-order statistics. Signal

Processing, 84(5):881�894, 2004. doi: 10.1016/j.sigpro.2004.01.006. Zbl
1153.94330. Cited on p. 271.

[35] G. Samorodnitsky and M. Taqqu. Stable Non-Gaussian Random Pro-

http://dx.doi.org/10.1109/78.542175
http://dx.doi.org/10.1109/78.542175
http://dx.doi.org/10.1109/78.542175
http://dx.doi.org/10.1214/EJP.v8-168
http://dx.doi.org/10.1214/EJP.v8-168
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1087.60034&format=complete
http://dx.doi.org/10.1016/j.physa.2005.12.011
http://dx.doi.org/10.1080/03610918608812563
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0612.62028&format=complete
http://dx.doi.org/doi.org/10.1239/jap/138937010
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:Analysis of the discrete {Ornstein-Uhlenbeck} process caused by the tick size effect&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:Analysis of the discrete {Ornstein-Uhlenbeck} process caused by the tick size effect&format=complete
http://dx.doi.org/10.1214/aos/1176324469
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0822.62076&format=complete
http://dx.doi.org/10.1080/07474939308800266
http://dx.doi.org/10.1080/07474939308800266
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0801.62096&format=complete
http://dx.doi.org/10.1103/PhysRevE.77.011117
http://dx.doi.org/10.1016/B978-044450896-6.50005-4
http://dx.doi.org/10.5506/APhysPolB.44.1123
http://dx.doi.org/10.5506/APhysPolB.44.1123
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1371.60140&format=complete
http://dx.doi.org/10.1016/j.sigpro.2004.01.006
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1153.94330&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1153.94330&format=complete


290 Fractional Ornstein-Uhlenbeck process with stable distribution

cesses: Stochastic Models with In�nite Variance. Chapman and Hall,
1994. Zbl 0925.60027. Cited on pp. 270, 271, 272, 273, 274, 276, and 277.

[36] J. �lezak and A. Weron. From physical linear systems to discrete-time
series. a guide for analysis of the sampled experimental data. Physical

Review E, 91(5):053302, 2015. doi: 10.1103/PhysRevE.91.053302. Cited
on p. 277.

[37] B. Spagnolo, S. Spezia, L. Curcio, N. Pizzolato, A. Fiasconaro, D. Valenti,
P. L. Bue, E. Peri, and S. Colazza. Noise e�ects in two di�erent biological
systems. The European Physical Journal B, 69(1):133�146, 2009. doi:
10.1140/epjb/e2009-00162-y. Cited on p. 270.

[38] G. Terdik and W. A. Woyczynski. Rosinski measures for tempered stable
and related Ornstein-Uhlenbeck processes. Probability and Mathematical

Statistics, 26(2):213, 2006. Zbl 1134.60014. Cited on p. 270.

[39] M. A. Thornton and M. J. Chambers. The exact discretisation of
CARMA models with applications in �nance. Journal of Empirical

Finance, 38:739�761, 2016. doi: doi.org/10.1016/j.jemp�n.2016.03.006.
Cited on p. 277.

[40] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the Brownian
motion. Phys. Rev., II. Ser., 36:823�841, 1930. ISSN 0031-899X. doi:
10.1103/PhysRev.36.823. Zbl 56.1277.03. Cited on p. 269.

[41] O. Vasicek. An equilibrium characterization of the term structure. Jour-
nal of Financial Economics, 5(2):177�188, 1977. doi: 10.1016/0304-
405X(77)90016-2. Zbl 1372.91113. Cited on p. 270.

[42] B. Wade Brorsen and S. R. Yang. Maximum likelihood estimates
of symmetric stable distribution parameters. Communications in

Statistics-Simulation and Computation, 19(4):1459�1464, 1990. doi:
10.1080/03610919008812928. Zbl 0850.62248. Cited on p. 284.

[43] A. Wyªoma«ska. Measures of dependence for Ornstein�Uhlenbeck pro-
cesses with tempered stable distribution. Acta Physica Polonica B, 42
(10), 2011. doi: 10.5506/APhysPolB.42.2049. Zbl 1371.60084. Cited on
p. 270.

[44] A. Wyªoma«ska, A. Chechkin, J. Gajda, and I. M. Sokolov. Codif-
ference as a practical tool to measure interdependence. Physica A:

Statistical Mechanics and its Applications, 421:412�429, 2015. doi:
10.5506/APhysPolB.44.1123. Zbl 1395.62286. Cited on pp. 270 and 275.

[45] Q. Yu, G. Shen, and M. Cao. Parameter estimation for Ornstein�
Uhlenbeck processes of the second kind driven by α-stable Lévy motions.
Communications in Statistics-Theory and Methods, 46(21):10864�10878,
2017. doi: 10.1080/03610926.2016.1248786. Zbl 10.31390/cosa.1.2.01.
Cited on pp. 271 and 277.

[46] G. �ak, A. Wyªoma«ska, and R. Zimroz. Periodically impulsive be-
havior detection in noisy observation based on generalized fractional

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0925.60027&format=complete
http://dx.doi.org/10.1103/PhysRevE.91.053302
http://dx.doi.org/10.1140/epjb/e2009-00162-y
http://dx.doi.org/10.1140/epjb/e2009-00162-y
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1134.60014&format=complete
http://dx.doi.org/doi.org/10.1016/j.jempfin.2016.03.006
http://dx.doi.org/10.1103/PhysRev.36.823
http://dx.doi.org/10.1103/PhysRev.36.823
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:56.1277.03&format=complete
http://dx.doi.org/10.1016/0304-405X(77)90016-2
http://dx.doi.org/10.1016/0304-405X(77)90016-2
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1372.91113&format=complete
http://dx.doi.org/10.1080/03610919008812928
http://dx.doi.org/10.1080/03610919008812928
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0850.62248&format=complete
http://dx.doi.org/10.5506/APhysPolB.42.2049
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1371.60084&format=complete
http://dx.doi.org/10.5506/APhysPolB.44.1123
http://dx.doi.org/10.5506/APhysPolB.44.1123
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1395.62286&format=complete
http://dx.doi.org/10.1080/03610926.2016.1248786
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:10.31390/cosa.1.2.01&format=complete


P.Kruczek, W. �uªawi«ski, P.Pagacz, A. Wyªoma«ska 291

order dependency map. Applied Acoustics, 144:31�39, 2017. doi:
10.1016/j.apacoust.2017.05.003. Cited on p. 271.

[47] S. Zhang and X. Zhang. A least squares estimator for discretely ob-
served Ornstein�Uhlenbeck processes driven by symmetric α-stable mo-
tions. Annals of the Institute of Statistical Mathematics, 65(1):89�103,
2013. doi: 10.1007/s10463-012-0362-0. Zbl 06131981. Cited on p. 271.

Estymator bazuj¡cy na uªamkowych momentach dla procesu

Ornsteina-Uhlenbecka z rozkªadem stabilnym

Piotr Kruczek,Wojciech �uªawi«ski, Patrycja Pagacz, Agnieszka
Wyªoma«ska

Streszczenie Proces Ornsteina-Uhlenbecka jest jednym z najbardziej popularnych

procesów stochastycznych. Znalazª on wiele ciekawych praktycznych zastosowa«.

Nale»y jednak zwróci¢ uwag¦, »e klasyczny proces Ornsteina-Uhlenbecka nie mo»e

by¢ zastosowany dla wielu danych rzeczywistych, poniewa» cz¦sto pochodz¡ one

z rozkªadów ci¦»ko- ogonwych, dla których nie istnieje drugi moment. W takich

przypadkach niezb¦dna jest mody�kacja klasycznego modelu z wykorzystaniem roz-

kªadu stabilnego. Z powodu zastosowania rozkªadu stabilnego niezb¦dne jest u»ycie

innej metody estymacji ni» bazuj¡cej na autokowariancji. Zaproponowana zostaªa

nowa metoda bazuj¡ca na uªamkowych momentach. Praca jest kontynuacj¡ wcze-

±niej otrzymanych rezultatów dla innej alternatywnej miary zale»no±ci, kowariacji.

W pracy przypomniana zostaªa de�nicja stabilnego procesu Ornsteina-Uhlenbecka

wraz z propozycj¡ nowych estymatorów dla parametrów tego procesu. W celu spraw-

dzenia ich wªa±ciwo±ci wykonane zostaªy symulacje Monte Carlo.

Klasy�kacja tematyczna AMS (2010): 92C50; 62P10.

Sªowa kluczowe: proces Ornsteina-Uhlenbecka, FLOC, estymacja, rozkªad stabilny.
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