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Generalized relative spectra

In [3] relative spectra for normalable elements of a linear lattice 
are defined and subsequently are used as a tool in proving many im­
portant results concerning linear lattices.

Relative spectra were originally defined for continuous linear lattices 
in [2 ]. Amemiya attempted to generalize them for arbitrary linear lat­
tices in [1]. However, his method is different from that in [2]. If we use 
cluster lattices as in [5], we can generalize relative spectra for arbitrary 
linear lattices by the same method as in [2 ], using the cluster {ж}-1-1- instead 
of the projector [ж]. This is the purpose of this paper.

All proofs similar to ones found in [3] will be omitted.

1. Representation spaces. We begin by letting L denote a linear lattice 
and G its associated cluster lattice as defined in [5]. Since G is a complete 
Boolean algebra we can define the representation space (£ as in [3], where 
(£ consists of all maximal ideals p c C  and where all sets of the form 
Ux =  {p: X e V, X*G]  determine a unique compact, Hausdorff topology 
on (£. It is easily shown that Ux  is an open compact set for every X eG  
and, moreover, as a consequence of the general theory for representation 
spaces we have the following elementary properties:

(1.1) Ux  =  0  if and only if X  =  {0};
(1 .2 ) Ux  c  TJ у if and only if X  c  Y;
(1.3) Ux 'dUY =  TJXwY and TJx r\TJY — JJx * y 5

(1 .4) Ux - U r  =  Vx_x . r ,
(1-5) G =  U  Uxi

X e C

(1 -6 ) UXL = ( U x y.

By Theorem 5.17 in [4] we have

(1.7) If  A is a normalable manifold of L, then for any manifold В we have 
A 11- n B 11- — [A ] ! ? - 1 -1  =  ([A ]#)1-1- and UA±± n UB±± =  G[A]R)-l±.
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2. Properties of proper neighborhoods. In this section it is convenient 
to employ the notational device of denoting the basic set U{x̂ ±± by TĴ  
and Ux for xe L will be called a proper neighborhood. The proofs of the 
following collection of properties are for the most part straightforward 
and are therefore omitted with the exception of (2.6):

( 2. 1)

(2 .2 )

(2.3)

(2.4)

(2.5)

(2 . 6 )

U\a] =  Ut and Uaa =  Ua for а Ф 0 ;

Ua ^ TJfj =  U{a>by±-L ~  \̂a\ \̂b\ =  \̂a\ + \b\i 
Ua Ub =  TJ|a| A |5| J 

Uan Ub = 0  if and only if a J_b;

Ua =  Ua+ u Ua~ and Ua+ n Ua-  =  0  ;

I f  a =  V ал and ax >  0 (Xe A), then üa =  (\J  U )~.
АсЛ АсЛ

Proof. Trivially Ua => (U  Ua.)~. If there exists pe TJac\((J TJa.)~'r
Ac Л Л АеЛ

then there exists a positive element b e L such that p e с  n (U  Ua )~'9
АсЛ

and &лал = 0  for all Xe A. Thus we must have Ьла — 0. This cannot 
be possible because Uan U b =  TJb Ф 0 . Therefore Ua =  (U  Ua.)~.

Ac Л Л

3. Proper values. As in [3] we are motivated to define the proper 
value (a, p) of an element a in I  at the point p in d by

+  oo for p € Ua+ ,
(a, p) =  I 0 for pe TJa;

■oo for pe Ua~.

For proper values we have trivially by definition

(3.1) (0,p) = 0  for any pe(£,

(3.2) (a,p) ^  0 if and only if p 4 TJa~,

(3.3) (a, p) ^  0 if and only if p 4 TJa+,

(3.4) (a, p) Ф 0 if and only if pe TJa.

By definition and (1.7), it easily follows that

(3.5) (a, p) =  ([A]«,p),  if A is normalable and pe UA±±.

For arbitrary elements a and b in L  such that афЪ, it is always 
true that a+ >  b+ ^  0 and 0 <  a~ <  b~. From these inequalities it follows 
that Ub+ <= XJa+ and XJa-  c  Ub-  so that we obtain

(3.6) a ^  b implies (a, p) (b,P).
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We can easily prove

(3.7) ( a a , p )  =  a (u ,p ) for all real a and a e  L

i f we use the convention 0 ( ±  oo) =  0 .

In  the following proof sums and differences of the forms oo — oo 
and — oo — ( — oo) do not make sense. B y (2.2) and the identity

(a +  b)+ +  a~ +  b~ =  (a +  b)~ +  a+- +  b+
we have

(A) ^ \a+b)~ ^  Ua— ^  Ub-  =  U(a+ty- U Ua+ U Ub+ .
I f  we suppose that (a, p) =  ±  oo and (&,p) =  T  then (a,p) +  (6 ,p> 
does not make sense. N ext let us suppose that (a, p) =  +  °o and (b, p) >  0. 
In  this case clearly we have (a ,p) +  (6 ,p ) =  +  oo. On the other hand, 
pe Ua+ and (6 ,p ) >  0 im ply p^ TJa-  and p^ Ub~. Since pe TJa+, by (A ) 
we conclude pe I7(a+b)+ which means (a +  fe,p) =  +  oo. I f  (й ,р) =  — oo 
and (b, p) <  0, then replace a by — a and b by —b in  the previous argument 
and apply (3.7) to obtain (a +  &, p) =  (a, p ) - f  (b, p). F in a lly, if (a, p) =  0 
and (&,p) = 0, then b y definition of proper value we have y 4 Ua and 
p  ̂ Ub. B y (2.5) this means p e Ua± and p^ Ub± . I f  we suppose that p 4 Û a+b)+r 
then by (A)pe U(a+b)-  because p^ TJa+ and p^ Ub+. This is impossible 
by (2.5). B y  sim ilar reasoning we cannot have pe TJ(a+b)- .  Thus p^ Û a+by 
and (a-\-b, p) =  0 by definition. In  all cases we have verified that

(3.8) (a +  ft, p) =  (a, p) +  (b,p) under the assumption that the right- 
hand side of the equality makes sense.

Since (a v b)+ =  a+ v b+ and (a v b)~ — a~ л b~,, applying (2 .2 ) 
and (2.3) we obtain U(a„b)+ =  Ua+ и  Ub+ and U(a„b)-  =  U a-  n U b- . 
B y the definition of proper values, (a v  D,p) '= + 0 0  is equivalent to 
(a,p) =  4-00 or (Ь,р) =  + 00. Hence {a v &,p) =  M ax{(a,p), (&, p)} =  +oo- 
in this case. S im ilarly (a v 6 ,p ) =  — 00 is equivalent to pe Ua~ r \U b-~ 
Therefore Max {(a, p), (b, p)} =  — 00 in  this case. F in a lly, if P4 Ua„b? 
then Ua-  n  Ub~. This means (a , p) and (b, p) are not both — 00. A lsu 
by (3.6) and the fact that both a and b are <  a v b, we have that (a, p) 
and (b, p) are both <  0. Thus either (a, p) =  0 or (b, p) = 0  and we have 
verified that in all cases

(3.9) (a v b, p) =  Max {(a, p), (6 , p)}.

On replacing a b j  —a and b b y —b it  follows that

(3.10) (a л b, p) =  Min {(a, p), (b, p)}.

4. Relative spectra. Paralleling [3], we can prove that for any two 
elements a and b of L  and pc Ua there exists a unique extended real 
number X0 for wdiich {Xa — 6 ,p ) = ( a , p )  when X >  X0 and {Xa — &,p>



32 J .  E.  B r i e r l y  and H. N a k a n o

=  —(a, p) when A <  A0. Henceforth the unique value A0 is called the 
relative spectrum of b by a at p and is denoted by (b/a, p). All of the theorems 
in section 18 of [3] generalize directly with the exception of 18.4 which should 
be changed to read (b/a, p) =  ([A]b/a,p) =  (b/[A]a,p) =  ([A]b][A]a, p) 
for a normalable manifold A and pe Uan U AA.±. For convenience 
we list the analogues to the theorems found in section 18 of [3]:

(4.1) I f  (Aa-b,  p) =  (a, p) Ф 0, then A ^  (b ja, p) and if (Aa — b, p) 
=  — (a,p) Ф 0, then A <  (b/a, p);

(4.2) For every real a , (aa/a,p) =  a, where pe Ua]

(4.3) (b, p) = 0  implies (b/a, p) =  0 for pe Z7a;

(4.4) (b/a, p) =  ([A]b/a, p) =  (b/[A]a, p) =  ([A]bJ[A]a, p) for 
a normalable manifold A and pe TJac\TJ

(4.5) For every real a,(a&/a,p) — a(b/a,p), where pe and 
0(±oo) = 0  by convention;

(4.6) For peUa, ((& Ac)/a, p) =  (b/a, p) +  (c/a, p) if the right-hand 
side makes sense;

(4.7) For а Ф 0, (ab/aa,p) =  (b/a,p), where pe?7a;

(4.8) For every peï7a+ if b ^ c  we have (b/a, p) ^  (c/a, p);

(4.9) For every pe Ua+, (b v c/a, p) =  Max {(b/a, p), (c[a, p)} and 
(b a c/a, p) =  Min{(b/a, p), (c/a, p)};

(4.10) Forpe Ua, \(b/a, p)| =  |(|b|/a,p)| =  |(6/|a|,p)| =  (|b|/|a|,p);

(4.11) \b\ ^  a \a\ implies [ (b/a, p)| ^  a for pe Ua",

(4.12) For pe Uan U b,(c/a,p)  =  (c/b, p)(b/a, p)
if the right-hand side makes sense.

5. Relative spectra as functions of p. With a few minor alterations 
in hypotheses the next group of theorems are analogous to some of the 
results found in section 19 of [3]. Excepting for (5.3) their proofs are 
sufficiently different to warrant their inclusion:

(5.1) For 0 ^ a e  L, if (b/a, p) >  0 for all pe Ua
and bsfa}1-^, then b ^ 0 .

Proof.  It follows immediately from the hypotheses and (1.2) that 
XJa =  Ua+ and Ub c  Ua+ . Trivially Ub-  c  Ub. Suppose there exists 

p e  Ub~. For this p we have (b,p) =  — oo and (a, p) =  +oo. By (3.8) 
we obtain (Aa— b, p) =  +oo for all A >  0 and pe Ub- .  Clearly we can find 
a real A0 >  0 such that 0 <  A0 <  (b/a, p). By definition of relative spectrum
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for A0 we have (A0a — 5,p) =  —(a, p) =  — oo, contradicting that 
(Au —5,p) =  +oo for A >  0. Thus Ub~ =  0  and by (1.2) b~ =  0 esta­
blishing (5.1).

An element aeL  is said to be archimedean if Д £|u| = 0 . With
s>o

this definition we have
(5.2) If a is a positive, archimedean element of L, (b/a, p) >  0

for all pe Ua and be then b >  0 .
Proof. By (4.2) and (4.6), {(b +  ea)ja, p) =  {bja, p) -f e >  0  for ar­

bitrary e > 0 .  By (5.1), b j - e a ^  0. The conclusion follows immediately 
because a is archimedean.

The proof of Theorem 19.2 in [3] is available for
(5.3) (6 /a,p) is continuous as a function on Ua',
(5.4) For an archimedean beL  (5/u,p) is almost finite on Ua.

Proof. It is required to show that there exists an open dense subset 
of TJa, where (b/a, p) is finite. Let A =  (pe Ua: |(b/a, p)| <  -f-oo). Because 
(bja, p) is continuous, A is an open set. Suppose UanA~' Ф0.  There 
exists X e C  such that Ux <=. UanA~' and X  Ф {0}. Thus there exists 
y e X  such that у Ф 0. It follows from (1.2) that TJV cr Ux c  UanA~' 
and u \a\*w\ =  Ĉ i/by (2.3). By (4.10) we have \{bja, p)| = ( | 6 |/|a|,p) =  +  oo 
for all p e TJy. Therefore by definition of relative spectra (A \a\ — \b\, p) 
=  — (И , p) =  — oo for any A and pe Uv. Prom this relationship we con­
clude TJy C Р(Л|а|_ |Ь|)-  for arbitrary real A. Thus TJy nTJ(m __m+ = 0  
and this implies by (2.3) |у|л (А|а| — |&|)+ =  0  for all A. Since b is archi-

/ 1  \ + t°°medean by assumption, we have ( |u |-----|6 | I \a\ and we obtain
' v j V=1

\y\ л \a\ = 0 . Hence Uv =  0  contrary to assumption.
(5.5) If a is a positive, archimedean element of L , b and c are elements

of such that one of b and c is archimedean and (6 /u,p)
>  (c/а, p) for all pe Ua, then b ^  c.

Proof. We suppose that c is archimedean. Then by (5.4) there is 
an open set A <= Ua such that A~ =  TJa and (c/a , p) is finite in A. Thus 
(b — c[a, p) >  0 for pe A by (4.6). Since ((b — c)ja, p) is continuous by (5.3), 
we have ( ( 6  — c)/a, p) >  0  for pe Ua, and we obtain b — c >  0 by (5.2).
(5.6) For any pair of archimedean elements a and b of L, if (b/a, p) 

=  (c/а, p) for all pe Ua and b, се {«}±х, then b =  c.
Proof. By (3.9), (3.10), and (4.10) we obtain immediately that 

(&±/N> P) =  (с*/|a|,p). The desired conclusion follows from (5.5).
(5.7) For a positive, archimedean aeL,  и^а_щ+ла =  (p: (bja, p) 

< A}- and и (Ха_Ь)- ла =  (p: (b/a, p) >  A}~. 3
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Proof.  If (bja, p) <  A, then since a >  0, we have pe TJa and (Aa — b, p) 
=  (a,p) =  +oo. Thus pe ü (Àa_b)+ n TJa =  Т7{Ха_ь)+ла by (2.3). This 
proves (p: {b/a, p) <  A}~ c  U{Xa_b)+ â. Next suppose V* U(Xa_b)+^a.. 
We evidently have (Aa —ô,p) =  -fcx> =  (a,p). By (4.1) (&/a, p ) <  A. 
In other words for any real A we have V^a_b)+„a <= : (b/a, p) <  A}-
Now

Since a is archimedean by assumption we have -la —6 ла =

Clearly we also have

и {ы-ъ)-~а =  и (_ьа+Ь)+ла =  (p : ( —b/a,  p) <  - A } "  =  (p : (b/a, p) >  A}“ 

by (4.5).
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=  (Аа — Ь)+ ла. Therefore by (2.6)
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