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Generalized relative spectra

In [3] relative spectra for normalable elements of a linear lattice
are defined and subsequently are used as a tool in proving many im-
portant results concerning linear lattices.

Relative spectra were originally defined for continuous linear lattices
in [2]. Amemiya attempted to generalize them for arbitrary linear lat-
tices in [1]. However, his method is different from that in [2]. If we use
cluster lattices as in [5], we can generalize relative spectra for arbitrary
linear lattices by the same method as in [2], using the cluster {#}*+ instead
of the projector [#]. This is the purpose of this paper.

All proofs similar to ones found in [3] will be omitted.

1. Representation spaces. We begin by letting L denote a linear lattice
and C its associated cluster lattice as defined in [5]. Since C is a complete
Boolean algebra we can define the representation space § as in [3], where
€ consists of all maximal ideals p = C and where all sets of the form
Ux = {p: Xep, XeC} determine a unique compact, Hausdorff topology
on . It is easily shown that Ux is an open compact set for every Xe C
and, moreover, as a consequence of the general theory for representation
Spaces we have the following elementary properties:

(1.1) Ux =@ if and only if X = {0};
(1.2) Ux c Uy if and only if X = ¥;
(1.3) UxVUUy =Ux,y and UxnUyp = Ux,y;
(1.4) Ux—Uy = Ux_x.7v;
(1.5) C =) Ux;
XeC
(1.6) Uxt = (Ux).

By Theorem 5.17 in [4] we have

1.7)  If A is a normalable manifold of L, then for any manifold B we have
ALJ‘ HBJ-J- 5 [A]B'L‘L = ([A]B)'L'L a/nd UA_L.L N UB.L.L = U([.A]B)-L—L’
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2. Properties of proper neighborheods. In this section it is convenient
to employ the notational device of denoting the basic set Ugyia by Ug
and U, for we L will be called a proper neighborhood. The proofs of the
following collection of properties are for the most part straightforward
and are therefore omitted with the exception of (2.6):

(2.1) Ug=U, and U, =1U, for a+#0;
(2.2)
(2.3) UsnUp = Uiy v
)
)
)

~

U WUy = Upgpit = Upjoppy = Upgnis

(2.4 U,N Uy, =0 if and only if a | b;

2.5 U, =U,+VUp and Uy nUyz- =0;

(2.6 If a =V a; and a; =0 (Ae A), then U, = (UU%}'.
Aea

Aed
Proof. Trivially U, > (U Ug)~. If there exists pe U,n (U U,)7s
Aed Aed
then there exists a positive element be L such thatpe U, =« U,n (U TU,,)™,
ied
and baa; =0 for all Ae A. Thus we must have baa = 0. This cannot
be possible because U,nU, = U, #@. Therefore U, =(U,)".
Aen

3. Proper values. As in [3] we are motivated to define the proper
value (a, p) of an element @ in L at the point p in € by

400 for pe Uyt,
(@,p) ={ 0 for pe U,y
—oo  for pe U,—.

For proper values we have trivially by definition

(3.1) ' (0,p) =0 for any peC,

(3.2) (a,p) =0 if and only if p¢ U,-,
(3.3) (@, ) < 0 if and only if p¢ Ug+,
(3.4) (a,p) # 0 if and only if pe U,.

By definition and (1.7), it easily follows that
(3.5) (a, p) = ([A]a,p), if A is normalable and pe U 411,

For arbitrary elements ¢ and b in L such that @ > b, it is always
true that a™ > " > 0 and 0 < ¢~ < ™. From these inequalities it follows
that Uy+ « U,+ and U,- < U,- so that we obtain

(3.6) a > b implies (a,p) = (b, p).
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We can easily prove

{3.7) (aa,p) = ala,p) forallrealaandae L

if we use the convention 0(4 o0) = 0.

In the following proof sums-and differences of the forms oo —oo
and —oco —(—o0) do not make sense. By (2.2) and the identity
(a4b)"+a" +b" =(at+b) +at+b"
we have
(A) U(a—{—b)_ U LTaL— v Ub_ = L’Y(a+b)— ) Ua+ ) Ub+‘

If we suppose that (a,p) = + oo and (b, p) = F oo, then (a,p)+ (b, p}
does not make sense. Next let us suppose that (a, p) = +ocand (b, p) = 0.
In this case clearly we have (&, p)+ (b, p) = 4+ oo. On the other hand,
pe U, and (b, p) > 0 imply p¢ U, and p¢ U,-. Since pe U,+, by (4)
we conclude pe U, p+ Which means (a-+b,p) = +oo. Ii (a,p) = —o0
and (b, p) < 0, then replace ¢ by —a and b by —b in the previous argument
and apply (3.7) to obtain (¢ +b, p) = (a, p)+ (b, p). Finally, if (a,p) =0
and (b, p) = 0, then by definition of proper value we have p¢ U, and
p¢ U,. By (2.5) this means p e U, and p¢ U+ . If we suppose that p¢ U,ip)+,
then by (4)pe Upyy- because p¢ U,+ and p¢ Uy, This is impossible
by (2.5). By similar reasoning we cannot have pe U,,)—~. Thus p¢ Uy, 4,
and (a-+b,p) = 0 by definition. In all eases we have verified that

(3.8) (a+b,p) = (a,p)+ (b, p) under the assumption that the righi-
hand side of the equalily makes sense.

Since (a v b)) =a' v T and (av b)” =a” A b7, applying (2.2)
and (2.3) we obtain Uy, py+ = Ugr VUpr and Uy - = Up-NUp-.
By the definition of proper values, (@ v b,p) = + oo is equivalent to
(a,p) = + oo or (b,p) = + co. Hence (a v b,p) = Max{(a,p), (b,p)} = + o0
in this case. Similarly (& v b, p) = — oo is equivalent to pe U, NU,-.
Therefore Max {(a,p), (b, p)} = —oo in this case. Finally, if p¢ U,.,,
then p¢ U,~ N U,~. This means (a, p) and (b, p) are not both — . Also
by (3.6) and the fact that both ¢ and b are < a v b, we have that (a, p) -
and (b, p) are both < 0. Thus either (a,p) = 0 or (b, p) = 0 and we have
verified that in all cases

(3.9) (v b,p) = Max{(a,p), (b, p)}.
On replacing a by —a and b by —b it follows that
(3.10) (@ A b, p) = Min{(a, p), (b, p)}.

4. Relative spectra. Paralleling [3], we can prove that for any two
elements a and b of L and pe U, there exists a unique extended real
number 1, for which (ila—b,p) = (a,p) when 1> 1, and (la—b,p)
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= —(a@,p) when 1< A;,. Henceforth the unique value A, is called the
relative spectrum of b by a at p and is denoted by (b/a, p). All of the theorems
in section 18 of [3] generalize directly with the exception of 18.4 which should
be changed to read (b/a, p) = ([A]b/a, p) = (b/[A]a,p) = ([4]b/[A]a, p)
for a normalable manifold 4 and pe U,nU, 1.. For convenience
we list the analogues to the theorems found in section 18 of [3]:

(4.1) If (Aa—b,p) = (a,p) # 0, then A= (bla,p) and if (Aa—b,p)
= —(a,p) #0, then 1< (b/a’a_p)§

(4.2) For every real a, (aala,p) = a, where pe Ug;

(4.3) (b, p) = 0 implies (bla,p) = 0 for pe Uy;

(4.4) (ba,p) = ([A]bla,p) = (b/[A]a, p) = ([4]1b/[4]a, p) for
a normalable manifold A and pe U, N U 41175

(4.5) For every real a,(abla,p) = a(bla,p), where pe U, and
0(-+o0) =0 by convention;

(4.6) For peU,, ((b+¢)/a,p) = (bla,p)+(c/a,p) if the right-hand
side makes sense;

(4.7) For a #0, (abfaa, p) = (b/a, p), where peU,;

(4.8) For every peUgr if b= c we have (bla, p) = (¢/a, p);

(4.9) For every pe Ugr, (bvela,p) =Max{(b/a,p), (c/a,p)} and

(bAacla, p) = Min{(b/a, p), (c/a, p)};
(4.10) Forpe Uy, l(bfa, p)| = [(1bl/a, p)| = |(b]lal, )] = ([bl/lal, p);
(4.11) b < ala| implies |(bla, p)l < a for pe U,

(4.12) For pe U, N Uy, (¢/a,p) = (¢[b, p)(bla, p)
if the right-hand side makes sense.

5. Relative specira as functions of p. With a few minor alterations
in hypotheses the next group of theorems are analogous to some of the
results found in section 19 of [3]. Excepting for (5.3) their proofs are
sufficiently different to warrant their inclusion:

(5.1) For 0<ae L, if (bfa,p) >0 for all pe U,
and be {a}tLl, then b= 0.

Proof. It follows immediately from the hypotheses and (1.2) that
U,=U, and U, c Uyy. Trivially U, < U,. Suppose there exists
pe Uy—. For this p we have (b,p) = —oo and (a,p) = +oco. By (3.8)
we obtain (da—b, p) = 4 oo for all A > 0 and pe U,-. Clearly we can find
areal 4, > 0 such that 0 < 1, < (b/a, p). By definition of relative spectrum
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for 4, we have (i,6a—b,p) = —(a,p) = —oo, contradicting that
(Aa—b,p) = +o0 for 1> 0. Thus Uy~ =0 and by (1.2) b~ = 0 esta-
blishing (5.1). .

An element ae L is said to be archimedean if A &la| = 0. With

>0
this definition we have
{5.2) If a is a positive, archimedean element of L, (bl/a,p) >0
for all pe U, and be {a}*L, then b> 0.

Proof. By (4.2) and (4.6), ((b+ea)/a,p) = (b/a, p)+2> 0 for ar-
bitrary ¢ > 0. By (5.1), b+¢a > 0. The conclusion follows immediately
because a is archimedean.

The proof of Theorem 19.2 in [3] is available for

{5.3) (b/a,p) is continuous as a function on U,;
{5.4) For an archimedean be L (b/a, p) is almost finite on U,.

Proof. It is required to show that there exists an open dense subset
of U,, where (b/a, p) is finite. Let A = {pe U,: |(b/a, p)] < + oo}. Because
(bj/a, p) is continuous, 4 is an open set. Suppose U,Nn A~ £ @. There
exists XeC such that Uy <« U,n47" and X +# {0}. Thus there exists
ye X such that y = 0. It follows from (1.2) that U, « Uy =« U,NnA™’
and U,.,, = U, by (2.3). By (4.10) we have [(b/a, p)| = (|b|/|al, p) = + oo
for all pe U,. Therefore by definition of relative spectra (1|a|— |b|, p)
= —(la],p) = —oo for any 24 and pe U,. From this relationship we con-
clude U, = Ugyg -y~ for arbitrary real 1. Thus U,NUgyg_py+ =9
and this implies by (2.3) ly|A (4]a]— b))t = 0 for all . Since b is archi-

oo

1 +
medean by assumption, we have (la| -——lb|) la| and we obtain
Vv

v=1

/A la] = 0. Hence U, =@ contrary to assumption.

(5.5) If a is a positive, archimedean element of L, b and ¢ are elements
of {a}*+ such that one of b and ¢ is archimedean and (bfa, p)
= (c¢/a, p) for all pe U,, then b= c.

Proof. We suppose that ¢ is archimedean. Then by (5.4) there is
an open set 4 < U, such that A~ = U, and (¢/a, p) is finite in A. Thus
(b—cfa,p) = 0for pe A by (4.6). Since ((b—¢)/a, p) is continuous by (5.3),
we have ((b—c)/a,p)> 0 for pe U,, and we obtain b—¢>= 0 by (5.2).
(5.6) For any pair of archimedean elemenis a and b of L, if (b/a, p)

= (¢/a,p) for all pe U, and b, ce{a}'t, then b = c.

Proof. By (3.9), (3.10), and (4.10) we obtain immediately that

(6*/lal, p) = (¢*/la|, p). The desired conclusion follows from (5.5).

(5.7) For a positive, archimedean acL, Upa y+., = {p:(bja, p)
< ﬂ}_ and U(Aa—b)“*a = {p (b/a’ p) > '1}—'
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Proof. If (b/a, p) < 4, then since a > 0, we have pe U, and (Aa—b, p)
= (a,p) = 4oo. Thus pe Upspy+NUs = Upg_py+.a by (2.3). This
proves {p:(bja,p) <A}” = Upa_pyt ~a- Next suppose pe Upg py+.q-
We evidently have (la—b,p) = 4+ =(a,p). By (4.1) (b/a,p)< A
In other words for any real 2 we have Uge_g+., < {p:(bja,p) <A}
Now '

o0

p:@fa,p) <2t =U {v F(Bja, p) < 1—%} > U Yl6- Yot e’

v=1 v=1

oo 1 +
Since @ is archimedean by assumption we have \/[(l ——)a—b] Aa=
v

p=1

= (Aa—b)*T A a. Therefore by (2.6)

Ua—tyt na = (L_J1 Ul (s 1)(,_,,]-44,1) c{p:(dla,p)< i .
Clearly we also have
Uiga—vy=na = UCsartyta = P (=bla,p) < =4} = {p:(bla,p) > 4}~
by (4.5).
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