Commentationes Mathematicae
vol. 58, no. 1-2 (2018), 37-56

Non-smooth decomposition of homogeneous
Triebel-Lizorkin—-Morrey spaces

Keisuke Asami and Yoshihiro Sawano
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Summary. The aim of this paper is to develop a theory of non-smooth
decomposition in Triebel-Lizorkin-Morrey spaces. As a byproduct, we
obtain the non-smooth decomposition results for Hardy spaces and Mor-
rey spaces. The result extends what Frazier and Jawerth obtained in 1990
with the parameters subject to a condition. Unlike this foregoing work,
the result in this paper is valid for all admissible parameters for Triebel-
-Lizorkin-Morrey spaces. As an application, an improvement of the Olsen
inequality is obtained.
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1. Introduction

This paper is a follow-up to the paper [1]. We know that the Triebel-Lizorkin—-Morrey

space 5;’%,([&”) admits a smooth atomic decomposition if 0 < g < p < 00,0 < 7 < oo

and s € R (see [24,27,31]). The aim of this paper is to apply this decomposition and to study
the non-smooth decomposition of Sg)q,r(R”) for0<g<p<oo,0<r<ooandseR.
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Let us recall the definition of Morrey spaces. Let 0 < g < p < oo. Then the Morrey
(quasi-)norm || - | . is given by
1

1= sup 8- ( [ 17opas)
Mg~ 5 B >

where B runs over all open balls in R”. Using the monotone convergence theorem, we can
show that Mg (R™) = LP(R") with coincidence of norms.

L.1. Definition. For v € Z and m = (my, m,, ..., m,) € Z", we define
imj m;+1
Qv,m—gl:ZV) ZV )

Denote by D = D(R") the set of such cubes. The elements in D(R") are called dyadic
cubes.

When we are given a collection {1q }gep of complex coefficients, we adopt the defi-
nition of the function g} ({1q }qep;-) by Grafakos; see [3, Definition 2.3.5].

1.2. Definition. Let 0 < g < p < 00,0 < r < oo and s € R. We consider the set of sequences
A = {1q }qep such that the function

1

r

AQ|XQ(x))r), x e R,

-3
n

¢ (1) emsx) = ( 5 (2

QeD
is in M% (IR"™). For such sequences A = {1q }qep we set

My, = 18505 e

A sequence A = {Aq}qep is said to belong to €}, . (R") if [A[e; =< oo. Sometimes, we

identify A = {A, 1 }vez,mezn With A = {dq }gep Via Ay = Aq when Q = Q.

We define f;,r(R”) =&, ,,(R"), the sequence space for the homogeneous Triebel-

~Lizorkin space FIS,, 4(R") whose definition we recall later.

1.3. Definition. Let 0 < g < p < 00,0 < r < 0o and s € R. A sequence A = {1q }gep is said
to be an co-atom with a dyadic cube Qg or shortly an co-atom if g} (1;-) < xq,-

Our first theorem is as follows:

1.4. Theorem. Suppose that we are given parameters p, q, 1, s, u satisfying

0<g<p<oo, 0<r<oo, seR,0<u<min(lr).
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(i) Foranyteé, , (R") there exists a decomposition

t:

M8

-
]
un

. o . g B

in the sense of pointwise convergence, where each r; is an oo-atom for €, . .(R") with
. o

a cube Qj and {A;} 22, c C satisfies

. .
ep,q,r

(Zwm) H <
My

j=1

(ii) Let rj,j =12,..., be an co-atom for &, , .(R") with a cube Q;. If {1;}7, < C and
{Qj} 72 satisfy

o], -
=1 My
then the series t given by (1) belongs to &, . .(R").

When p = g, Theorem 1.4 is [1, Theorem 5].

The Morrey space MZ (R™) has many nontrivial proper closed subspaces. For exam-
ple, the tilde subspace Mg(R") is the closure of L& (R") in M5 (R"), and if 0 < ¢ <
p < oo, then we can show that /’\/lvs(]R") is a proper subset of M5 (R") [25]. In this
connection, we define E;,, o
sequences in &, . . (R"), so that any element r € &,  .(R") can be approximated by
rj = {rjq}aeep € &, (R") satisfying §{Q € D : rjq # 0} < oo. We note that the
following property holds.

(R") to be the closure of the set of all finitely supported

1.5. Proposition. Suppose that we are given parameters p, q, 1, s, u satisfying
0<gg<p<oo, 0<rgoo, selR.

Let Dy c D, c --- be an exhaustion of D, that is, |f Dy is finite for all N and

(G

D= Dy.

Z
Il

1

Define Qn({rq}qep) = {xpn(Q)rq}qen. Then a sequence t € &, , (R") belongs to
z;,q)r(R“) ifand only if Qn(t) > tasN —» oo iné, , (R").

We do not prove Proposition 1.5, since it is clear from the uniform boundedness

of QN.

Having set down the definition of Morrey spaces and their sequence spaces, now

we move on to the (homogeneous) Triebel-Lizorkin-Morrey space 5‘; (R™). Here and

Sqsr
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below we write y(D)f = F [y - Ff] for y € S(R") and f € S'(R"). Let ¢ € S(R")
satisfy xp(4)«B(2) < ¢ < XB(s)~B(1) and write ¢; = @(277) for j € Z, where B(r) = {x €
R" :|x| < r}forr > 0.Let0 < g < p < 00,0 <r < ooands € R. We define the
(homogeneous) Triebel-Lizorkin-Morrey norm | - || £, b

(izmmmﬁfk

j:—oo

for f € S'(R")/P(R"), where the symbol P(R") stands for the subspace of all poly-
nomials. The space Ep 4,-(R"™) is made up of all f e S'(R")/P(R") for which the (qu-
&, is finite. We have FS L(R") =&, , (R"), the homogeneous Triebel-
-Lizorkin space. As a special case of p = ¢, Triebel-Lizorkin-Morrey spaces cover Triebel-

asi-)norm | f

-Lizorkin spaces. One of the fundamental facts in the theory of Triebel-Lizorkin-Morrey
spaces is the Morrey type Sobolev embedding

E; g.0o(R") > BLMP(RT), )

where B;,M(R”), a € R stands for the homogeneous Besov spaces consisting of all ele-
ments f € S'(R")/P(R") for which

£l = 502" 9D .
IS

is finite. See [20], for example. We also note that Triebel-Lizorkin-Morrey spaces inherit
the nesting structure from the underlying sequence space ¢":

pqr(R")Qfsqw(R") 3)

when 0 < g < p<00,0<r<ooands eR. Tohandle bt
(R™). It is simpler to handle sequences

(R™), it may be convenient to
work on the corresponding sequence space €, , .
than to handle distributions. We now transform the results to the one of the sequences.
Let L € Ngu {-1} = {-1,0,1,...}. The set P;(R")* denotes the set of all measurable

functions f for which
f (1+ [x])E[f(x)] dx < oo
Rﬂ

and [p, x*f(x)dx = 0 for all @ € R” with |a| < L. Such a function f is said to satisfy
the moment condition of order L. If ¢ € S(R") satisfies the moment condition of order
Lforany L € N, ¢ € S(R") is said to satisfy the moment condition of order co. Denote
by S (R") the set of all such functions. The space S., (R") is the topological dual space
Soo (R™). It is known that S. (R") » S'(R")/P(R") isometrically; see [28, Propositions
35.4 and 35.5] and in [7, Theorem 24.0.4] as well as [21] and [14, §6].

1.6. Definition (Smooth atoms for Triebel-Lizorkin-Morrey spaces). Let v € Z and m ¢
Z". Suppose that the integers K, L € Z satisfy K > 0 and L > —1. A function a € CX(R") n
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PL(R™)* is said to be a smooth L-atom with a cube Q, ,, if it is supported on 3 Q,,;,, the
triple of Q, ., and if it satisfies | 0%al| = < 2" for |a| < K.

To state our main result, we present the following definition:

1.7. Definition (Non-smooth atoms for Triebel-Lizorkin-Morrey spaces). Assume K >
[1+ 5], and L > max(-1,[oy,, — s]), where [-] denotes the Gauss sign. One says that A
is a non-smooth atom for &, , .(R") if A = ¥4 rQaq, where r = {rq}qep is an atom

with the dyadic cube Q for €, ,.-(R") and each aq is a smooth L-atom with a cube Q.

Define g, = ﬁ - nand oy, = max(oy, 0y).

The following theorem extends [3, Corollary 2.3.9] and is the main result in this paper.

1.8. Theorem. Let s € R, 0 < g < p< 00,0 <7 <o0oand K,L € Z. Assume K > [1+5s],
and L > max(-1, [ag,, - 5]).

(i) Let 0 < u < min(1,r). Suppose that each A is a smooth L-atom with a cube Q; with
the following structure:

— For each j there exists an co-atom rj = {r o } gep With the cube Q;.

- There exists a complex sequence {1;} 7, satisfying

- For each Q € D there exists a smooth L-atom aq with a cube Q such that

u
< 00,
My

(z |Aj|“ij)
j=1

Aj= ) riQaq= ), ( > Vj,an)
QeD y=—00 \QeD,
in S'(R")/P(R"), where D, ={Q € D:|Q| =2"""}.

Then by letting f = Y72 AjAj, the sum defining f converges in S'(R")/P(R") and
satisfies

u

If

S

(zwm)
i1

(ii) Let f € g;,q,,(]R”). Then there exists {A;}72, c C, a collection {A;}7, of non-smooth
atoms and a collection {Q;} 72, of dyadic cubes such that each A is a non-smooth atom
with the cube Q; and

gs
P-q>r
P
My

f= i AjA; (4)
=1
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in S'(R")/P(R"), where for each u > 0

with the implicit constant depending on p,q, 1, s, u.

s
gP‘I"

(X xQ,) H <If

j=1

Thecaseofs € R,0< p=g=u<1land0 < p < r < oo recaptures [2, Theorem 7.4 (ii)].
Thecaseof s € R,0< p=g=u<1land 0 < p < r < oo recaptures [2, Theorem 7.2], while
the case of 0 < p = g, u < min(1, ) goes back to the result in [1]. The case when p > g > 1
and r = 2 is especially interesting. As we will see, this, together with /\/l‘q7 (R") ~ 5’2’ 22 (R")
established by Mazzucato [11], will yield and reinforce the non-smooth decomposition for
ME(R") [8]

Theorems 1.4 and 1.8 are the main theorems in this paper. Theorem 1.8 is a corollary
of Theorem 1.4. We make a brief remark on the method of the proof of Theorem 1.4. The
proof of Theorem 1.4 is essentially made up of two tools. The first one is a method to
decompose sequences and the second tool serves to describe the condition on coefficients.

n [2, Section 6], Frazier and Jarwerth employed the é median and the stopping time
argument together with L°, the set of all measurable functions f for which {f # 0} has
finite measure. Grafakos refined this method in [3, §6.6.4]. Since our proof hinges on the
decomposition in [3, §6.6.4], we essentially use the technique of the paper [2] and the
textbook [3]. What is different from these sources is the second tool, which comes from
the main idea in the paper [13]. As described in (74) of [2] and in (7.7) of [2], we have

1A +)t2||§;)q < Hf; + A2 Hfs Ay e f  (R™) (5)

and
[fi+ £l <IAlE +15IE o fofoeFp (R (6)
for0<p<LO<p<g<oo and s € R. Frazier and Jawerth used (5) and (6) to decompose

the sum into small unlts. One of the important facts on the decomposition of Frazier and
Jawerth is that the condition on the position of the cubes Q; does not come into play
when 0 < p<r<ooand0 < p = g = u < 1. Since (5) and (6) are no longer available
for the general case, we need a trick. To accommodate all admissible parameters, we take
into account the position of the cubes Q;. This is just like we moved from €7 to a special
sequence norm in [13].
In addition to the new technique employed in [1], we need to take care of some pro-
blems in convergence arising from Morrey spaces. As is seen from the difference between
€pqr(R")and ¢,
So we go back to the definition of the convergence of the sequence in S’(R") as we do
in (13).

(R™), the argument in [1] does not carry over to our current setting.
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Our results carry over to the non-homogeneous spaces.

Lety, ¢ € 'S(Rn) satisfy xp(s) < ¥ < xp(s) and xp(a)<B(2) < ¢ < XB(3)<(1) and
write ¢; = ¢(27/-) for j € Z. Let 0 < g < p < 00,0 < r < o0 and s € R. We define the
(non-homogeneous) Triebel-Lizorkin-Morrey norm || - | by

Wl = D)1 (200t ) |
Jj=0 M

for f € S'(R"). The (non-homogeneous) Triebel-Lizorkin-Morrey space &, , .(R") is
made up of all f € S'(R") for which the (quasi-)norm | f|g;  is finite.

Denote by D, = D, (R") the set of all dyadic cubes with volume less than or equal
tol.

Let0< g < p<o0,0<r<ooands e R. Given a sequence A = {1q }qep, we define
AT = {Ah} aep by Af, = Mg if Q € D, and Af, = 0 otherwise. For A = {1q}qep,, we
define gS(1;-) = g5(A%;-) and ||A s = ng()t;-)HMg. A sequence A = {Aq }qep, is said
g (R") if [Ales < oo. In this way, via A — A", we have an embedding
€y qr(R") = &, (R"). Using this embedding, we define co-atoms in e}, , .(R") and
the subspace &, , .(R"). A sequence A = {1q}qep is said to be an co-atom with a cube
Qo if AT = {A},} gep is an co-atom with a cube Qp. We define €, , (R") = z;)q,r(R“) N
€pq.r(R").

Similar to Proposition 1.5, we have the following characterization.

es

to belong to e

1.9. Proposition. Suppose that we are given parameters p, q,7, s, u satisfying
0<g<p<oo, 0<rgoo, selR.

Let Dy c D, c --- be an exhaustion of D,, that is, § Dy is finite for all N and

(@

D, = _J Dn.

b4
I

1

Define Qn({rq}qep,) = {xpx(Q)rq}tqep,. Then a sequence t € e, , . (R") belongs to

(R") ifand only if Qn(t) > tasN — oo ine; , (R").

=S
eP>‘N Pqr

In analogy to Theorem 1.4 and Theorem 1.8 we can prove the following theorems
whose proofs we omit due to similarity.

1.10. Theorem. Suppose that we are given parameters p, q, 1, s, u satisfying

0<g<p<oo, 0<r<goo, seR, 0<u<min(lr).
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(i) Foranytee, , (R") there exists a decomposition

j=1

. o . s N Lo

in the sense of pointwise convergence, where each r; is an oo-atom for e, . .(R") with
- -

acube Q; € D, and {1} %, c C satisfies

S .
€p.ar

1
(Ewtxe) | e
j=1 M}

(i) Let rj,j = 1,2,... be an co-atom for e;)q’r(R”) with a cube Q; € D,. If {Q; s
and {A;}%2, c C satisfy

< 00,
P
Mg

(Zhta)
i1
then the series t given by (7) belongs to e}, , .(R").

We can transplant Theorem 1.8 to non-homogeneous Triebel-Lizorkin—Morrey spa-
ces via the embedding e}, . ,(R") < &, . . (R") after we modify slightly the definition of
non-smooth atoms for Triebel-Lizorkin-Morrey spaces. In Definitions 1.6 and 1.7, we do

not assume

/Rxﬁa()m(x)dxzo, (IBI<L, meZ").

After this modification, we can state the counterpart of Theorem 1.8 for non-homogeneous
Triebel-Lizorkin-Morrey spaces, whose proof we omit again due to similarity.

L11. Theorem. Let s e R, 0 < g < p < 00,0 < r < o0 and K, L € Z. Assume K > [1+ 5],
and L > max(-1, [0, — s]). Then we have the following.

(i) Let 0 <u < min(l,r). Suppose that A; is a smooth L-atom with a cube Q; € D, with
the following structure:

— For each j there exists an oo-atom rj = {r} o } ep With the cube Q;.

— There exists a complex sequence {A j}]?‘zl satisfying

‘ (zwm)
j=1

- For each Q € D, there exists a smooth L-atom aq with a cube Q such that in
S'(R")

u
< 00,
My

Aj= i( 2, fj,oao)~

v=0\QeD,
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Then by letting f = Y72 AjAj, the sum defining f converges in S'(R") and satisfies

u

Ifle;,, <

Mg

( $ |Aj|“xQ,.)
j=1
(ii) Let f € £

p.q.r (R™). Then there exists {1}, c C, a collection {A;}2, of non-smooth
atoms and a collection {Q]-}]?Z1 c D, such that each Aj is a non-smooth atom with the
cube Qj, that

f=2 24,
j=1

in §'(R") and that for all 0 < u < co

(Z |A,~|“XQ,.)
j=1

Here the implicit constant depends on p, q,71, s, u.

Sfle;,,-

My

As an application, we refine the Olsen inequality obtained in [22]. Let 0 < « < n. Let
I, be a fractional maximal operator given by

f(»)

x = ylre

Iocf(x) = dy

Rn

as long as I, f makes sense. Another definition of I, f is to use the Fourier transform:

“Luf]=ClE" " Ff,

where C is chosen so that the two definitions of I, f above concide when f ¢ S(R").
Concerning the second definition of I, we remark that I, '5 o (R") — S”“r(R”) isan
isomorphism [20, Theorem 1.1]. Thus, if0 < « < n,1< g < p < ocoand1 < t < s < oo satisfy

thenwe getI,: £ . . (R") > M;(R") using the embedding £8, ., (R") = &2, | (R") —

M (R™). Concerning this operator, we obtain the following inequality.

1.12. Theorem. Let 1 < q < p < oo, and let 0 < & < n. Assume in addition that u satisfies

g<uc<

QIS

Then
lg-Leflage 5 Il ygpel Fles,
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forall f € Suo(R") = Nren(S(R™) n PL(R™)) and g € M (R™).

In view of the embedding
MER") = &) (R > &) (R") (1<g<p<oo),

Theorem 1.12 refines the following result:
1.13. Theorem ([8,22]). Let 0 < ¢ < n, 0 < u < 0o and 1 < g < p < oo satisfy

>

g<ux

ST
\%
QR

-

Then

lg- T T pag < Cliglyqare - 1] ez

where the constant C is independent of f € Soo(R") and g € MZ/“(]R").

This type of estimates goes back to [16]. We will see in Section 5 that in general
M‘Z(R”) is not embedded into the closure V of So (R") in 52’%00(]1%") aslongas1 <
q<p<oo.

We are dealing with one of the amalgam function spaces, Triebel-Lizorkin spaces.
This is a huge recent branch of harmonic analysis. It goes back to Netrusov, who defined
Besov-Morrey spaces [15]. Kozono and Yamazaki shed some light on Besov—-Morrey spa-
ces while investigating the Cauchy problem for the Navier-Stokes equation [10]. Later on,
Najafov considered Besov—Morrey spaces of the mixed derivative in [12]. Motivated by
this, Tang and Xu [27] defined non-homogeneous Triebel-Lizorkin-Morrey spaces. The
wavelet characterization of Triebel-Lizorkin-Morrey spaces can be found in [17,18]. This
means that in this paper we can replace atoms by wavelets. According to [19, Theorem 4.2],
Triebel-Lizorkin—-Morrey spaces cover Hardy—-Morrey spaces defined by Jia and Wang [9],
so that our results contain the non-smooth decomposition of Hardy—-Morrey spaces. We
refer to [4-6,20,24,27] for embedding relations of these function spaces.

Although we are considering Triebel-Lizorkin-Morrey spaces, in view of [26] a simi-
lar decomposition seems available for Triebel-Lizorkin-type spaces introduced by Yang
and Yuan. See [21, 30, 32-34] for a systematic treatment of these function spaces. This is
left as a future work.

The proofs of Theorems 1.4, 1.8 and 1.12 are given in Sections 2, 3 and 4, respectively.
Section 5 considers the relation between V and 6"3, g0 (R") with1< g < p < oo,
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2. Proof of Theorem 1.4

We recall the following facts from [3, § 2.3.4] (see also [21]). Let v € Z. The set of dyadic
cubes of the v-th generation is given by

D,=D,(R") ={Qu : keZ"} ={QeD: £(Q)=2"}.

2.1. Lemma. Let t = {tq } gep be a sequence. Let R € D. Define

1

r
-5
n

>

x eR"

¢ n({t0) oems) ( T (e

QeD, RcQ

tele(X))r)

(i) If Ry c Ry and x € R", then g; , (t;x) < g », (£X).
(ii) Forany x e R",

lim > xo(x)g;,o(tx) =0.
QeD,

(iii) For any x € R”,

lim > xo(x)gq(t:x) = g(£x).

y—>—o00 QeD,

2.2. Lemma. Let t = {tq } qep be a sequence. Let k € 7. We set
Ag = {R €D : g p(tx)> 2k, forx e R}.

(i) [3,p-116] If Q € D does not belong to any Ay, k € Z, then tg = 0.
(ii) [3, p. 115] Ak € Ay
(iii) [3, p. 115 (2.3.16)]

{XER” c g (tx) >2k} =J R
Re Ay

(iv) [3,p. 115 (2.3.17)] For almost every x € R",

5
n

tQ|xQ<x>)f) <

(Z(IQ

QeDN Ay

2.3.Lemma. Let k € Z, and let t = {tq }gep be a sequence. Define Ay as in Lemma 2.2.
(i) Letv = {vq}qep be a sequence indexed by Q € D. Assume

g (v;x) < o0
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fora.e. x e R". We set
By = {] € D : Jis a maximal dyadic cube in Aj \ Ak+1}.
For ] € By, we define

t(k,J) = {t(k,])o}w = {VQXAk\Ak+1(Q)X{SEDISCI}(Q)}er’
r(k,J) =275t (k, ).

(ii) [3, p. 116 (2.3.18)] and [3, p. 116 (2.3.21)] We have

v=> S tk])= Y > 2%(k]) €)
k=—o00 JeBy k=—o00 JeBy
in the sense of pointwise convergence.

(i) [3, p. 116 (2.3.19)] For all ] € By, g5 (t(k, J);-) < 2K+,

Now we prove Theorem 1.4.

(i) Lett € e, .(R") be given so that g;(#-) < oo almost everywhere. By (8), we can

t=> > 2M(k,)).

keZ JeBy

write

As we did in [1], we enumerate this sum as follows:

where each 7; is an co-atom.
We observe that

Z X7 s XUgea, Q < X{gs(85)>2k} -
JeBy

We calculate

u

N

Z Z (2k+lX])u

1
[eo) u
M;’ k=—o00 JeBj ) H/\/t{;
1

(5
j=1

= k
St 2 2 MX{gﬁ(t;-)>2"}) H
k=—o00 ,
[llog, gi(t)]  \ %
< zku) .
k=—o00 Mg
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Recall that u > 0. If we calculate the geometric series, then we obtain

1
(Z;MjluXQj) HMP < ”2[1+10g28i(f;')]HM5 S Hgi(t,)”MZ = Ht“e;)q’,.
7= q

(ii) Conversely suppose we are given a sequence r; = {r; «p of co-atoms. Denote b
y supp 8 q j j,QsQ Y
Qj the cube for r; in the definition of atoms. Then, setting

we have

oo u u
e, < ((Z0m)) | L) <
A ey

Here we have used u < min(1, ) to obtain the last inequality.

S A
j=1

1
p/v} '
Mq/u

If we use g;(7j;+) < xq,» then we obtain

1
u
. < =
€hqr { }
MO
q/u

Thus, the proof is complete.

It

(Snra)] <
Mg

J=

> il xo,
=1

3. Proof of Theorem 1.8
We use the following decomposition result for SIS,, q.r(R™) from [24,27,34].

3.1. Theorem. Let 0 < ¢ < p < 00, 0 < 7 < oo and s € R. Let K be an integer satisfying
K > [1+ 5]y = max(0, [1+ s]). Furthermore, let L € 7 satisfy

L > max(-1, [0y, - s]).

(i) Let k = {Kky,m}vez, mezn € é;,,q’,(R”) and each a, , is a smooth L-atom centered at
Qy,m for each v, m. Then

oo
B

v=—00 meZ"

converges in S'(R")/P(R") and

| f]

S e
g;,q,r ~ €poar
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(ii)
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Any fe&, . (R") admits a decomposition:

f: i Z Ky,mQv,m- (9)

v=—00 meZ"

Here, the convergence takes place in S'(R") /P(R") and each a,,, is a smooth L-atom
with a cube Q,,,, and the coefficient k = {Ky,m } veN,, mezn Satisfies

Il 5 11, - (10)

We prove Theorem 1.8. First we start with the first half of Theorem 1.8.
Let f € S'(R") be such that f = Y77, 1;A; in S'(R") for some A; described in

Theorem 1.8. We set

M~

T
TAEDIWIVIED

e o]
> A
j=1 j=l1v=—00

( > ’j,oao) - % (i%’f}ao)aa

QeD, v=—00 QeD, \ j=1

Il
—_

for T € N. We know that fT — f as T — oco. We set

T
KTZ{ZAJ'YJ',Q} , T € N.
j=1

QeD

Then we have

T T u L
T
Ixle;.,. = gi({zlﬂj,o} )H =(‘gi({2)tﬂ’j,o} ) )
j=1 QeD M j=1 QeD Mm
If we use u < min(1, r), then we have
T u
W, <(|se({ime) )] )
j=1 QeD MP/"
q/u
T +
u
=X Mil*gi({ri.a}ems) )
j=1 MP/M
q/u
T %
<12 Ml xe, m)
j=1 Mo
T 1
:H ZI/\;'I“XQ,-) ;
Jj=1 M}
ie.,
. T ;
I es,,, < (ZIMI“XQ,-) (1)
=1 Mb
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Thus, by Theorem 3.1, we have

1 e, s I

s
SP;qJ

&40 S

T M
(Z|M|"XQ,~) ” :
j=1 M?

From the Fatou property of 5;, o.r(R") or from the classical Fatou lemma, we conclude

(Z|M|"XQ,-) H :
1 M?

Next we prove the latter half of Theorem 1.8. Let f € S;)q),(R”). Decompose f ac-
cording to Theorem 3.1, so that (9) and (10) hold. If Q = Q,,,,, we write Aq = «,,, and
aq = aym- Welet B = {(k,]) : k € Z,] € Bi}. Let N:j € N (kj,];) € Bbeits
enumeration. Let = {Aq}qep. Since g;(A;x) < oo for almost all x € R” and for all

If

. <
Epgr ~

R € D, we have a decomposition:

A= S Y Rk ) = 325k ),

k=—o00 ]EBk j=1

where each r(k, J) is an co-atom with a cube J. According to Theorem 1.4,

If we combine (10) and (12), then we obtain

(Z 2(kj+1)uX]j) H i}
My

j=1

( Z Z 2(k+1)uXI) H < HA,“é;,q)’. (12)
My

k=—o00 JeBy

oo el u
Hf”g;q’y Z (22( it )MX]j) H .
j=1 M§
We claim that
>0 2 2 (ki T)aae = Y 2 229 (kT )aq (13)
j=1v=-00 QeD, v=—00 QeD, j=1

in the topology of S._ (R"). To this end, it suffices to check that

> > 25 (kjy Jj)olaqs @) < oo

j=1v=—00 QeD,

for all ¢ € Soo (R"). Let J € N be fixed. Then letting

(kj,J;) = {r(kj, J;)osign({aq, ¢)) }qep>
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we have
T oo k ) T =) ol
> > Y 29 r(kj T alaqs ) =Z Y > 29Ky Tj)olaqs 9)
j=1v=-00 QeD, j=1v=—00 QeD,
={X X szj+lf(kj>fj)eaa>9")'
v==00 QeD, j=1
Meanwhile, from (2) and (3), we deduce &£ par(RY) = & 0 o(R") = B "/P(R") -

S’ (R"). Thus, there exists a seminorm p: Soo (R") — [0, 00) such that

(e o]

IPIDIERELCIAIS

v=—o00 QeD, j=1

> ¥ ¥ 2k alac. ) 5 p(9)

j=1v=—00 QeD,

s
gp,q,r

Note that [7(kj, J;)| = [r(kj, ;) q|. Thus, if we go through the same argument as (11), then

we obtain
T T i
‘gi({(Zz j“f(kj’]j)a)} ) (ZM;‘VXQ]-)
j=1 QeD

M} j=1 M}

1
j=1 M?P
q

Using Theorem 3.1, we obtain
oo T ksl oo u
> 2 227" #(kj T )qaq (ZIMI“X@)

v=—00 QeD, j=1 & ar j=1 Mi

Hence,

ST 5k o

j=1v=-00 QeD,

(Siraa) |

The right-hand side being independent of T, we obtain (13).
Thus, we conclude from (13) that

oo

f=2 2 Aot
v=—00 QeD,

(oo}

> > 228 r(kj T )eaq

v=—00 QeD, j=1

oo

> > X 25 (ky ) qaq

j=1v=—00 QeD,
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If we define
AjE Z Z r(kj,]j)QaQ (]GN),
v=—o00 QeD,

then we have (4). Thus, we obtain the desired decomposition.

4. Proof of Theorem 1.12

We will need the following lemma:

4.1. Lemma ([8, Theorem 1.1]). Suppose that the parameters p, q, s, t satisfy

l<g<p<oo, l<t<s<oo, g<t, p<s.

Assume that {Q;}72, c D(R"), {a;}72, c M{(R") and {A;} 22, c [0, c0) fulfill

lajlae <1QI™, supp(a;) € Qi |2 dixe,

j=1

< 00,

Mg
Then f = .21 Aja; converges in S'(R") n Ll

loc (R™) and satisfies

Hf”/v(g < Cp,q,s,t

> Aixe;
=

Mg

a’

We prove Theorem 1.12. Let K, L > 1 be fixed. Then we have a decomposition (4)
Since f € LY(R") with v < 2

our proof of Theorem 1.11 with p = g also shows that the
convergence in (4) takes place in L*(R") and we have

T (x) = 3 ML ()
j=1

almost everywhere. We observe
18 Laf ()] € 2 IAj] - 18(x) LA j ()]
j=1

= 2 Il lg(x) xsg () La A () + 30 Al - g (x) xrnssg, (3)Ia A (x)].
j=1 j=1
As for the first term, if g < @ < u, we observe

1 . 3
(|3Qj| fan |g(x)X3Qj(X)IaAj(x)| dx) SngHMﬁ/“
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In fact, according to [29, Theorem 6.1.1] we have the Sobolev embedding
Fppeo(R") = Fp  (R)

for 0 < po < p1 < 00,0 < g <000 <a<ooandseRsatisfying .- = .- — %. Thus,

LAje N Fio(R)c N FL,(R)c () LR,
u>=%

u>0 u>max(l,§)

since Aj € MNyso FB)OO (R™). Hence we are in a position to use the Holder inequality and
Lemma 4.1 to control the first term.
As for the second term, we need

e(Qj)n+L+1
(2(Q)) + |x — c(Q))|)r+l+i-«

|xri3q; (2) I Aj(x)] S

(see [8, Lemma 4.2]). From this estimate, we see that

> 1] lge)aosse, (9 ()] % 35 1 £0Q)° ()l Mg, ()5

Jj=1 j=1

Recall that L is at our disposal. If we use Lemma 4.1 and the Fefferman-Stein vector-valued
inequality for Morrey spaces obtained in [23,27], we arrive at the desired result.

5. Appendix: M¥(R") and the closure of Soo (R") in £}, . (R")

Let1< g < p < oo. Unfortunately, in general M/ (IR") is not embedded into the closure
V of Seo (R") in c‘fg’q’oo(R”). To see this, welet E = {y+ (R-1)(a1+ Ray +-):{a;} 3, €
{0,13"n¢Y(N), y € [0,1]"} and Eg = {(R~1)(a1 + Ras +--) : {a;}2, € {0,1}" n&!(N)},

where R > 2 solves R?"1214 = 1. According to [22], XE € M‘f;(R”). We claim

[ % F gl - e e MYED Y.

ecEy

By the boundedness of the Hardy-Littlewood maximal operator we have

f1s 2 (Mye)™
ecE
for any N € N. Thus, by the Fefferman-Stein vector-valued inequality for Morrey spa-
ces [23,27], f € /\/lf;(]R”). Meanwhile, there exists a constant ¢y > 0 such that for any
9o € Seo (R),
lo(D)(f - 900)”/\/1‘; 2 Cos
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because F g + F'¢(0) > 0 and

(D) =cn Y, Flo=Flo(-—e),

e€E,

sof¢vV.
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