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Forms and mappings. III. Regular m-applications

Any mapping obtained from a form of degree m  satisfies two known relations: it is 
homogeneous and its m-th defect is m-linear. The paper yields the third relation for such 
mappings, which is independent from the choice of the base ring R . This gives us, for n <  1 and 
n ^ m  — 1, a presentation by generators and relations of the modules Г т," (К ) defined in [3], or, 
in the terminology of [5], a strong system of n-covering relations of the functor Homm 
constituted by mappings mentioned above.

Introduction. Let R be a commutative ring and let M and N be R- 
modules. For any mapping / :  M-+N  define the n-th defect 
An f  : M x ... x M -*N of /  (n = 0, 1, ...) by the formula

( a " / ) ( x „ . . . , * J =  I  ( - 1) " " |я |/ ( 1 х,).
«<=[!,„] ieH

This is, obviously, a symmetric function. Moreover, A0 f  = /(0), A1 f  = 
/ - / ( 0) and

(!) (An+1f) (x  0,...,x „ )

= (Anf ) ( x 0 + x u x2, xn) - ( A nf ) ( x o, x2, xn) - {A nf){xx, ..., x„).

Consequently, Anf  can be defined inductively, and it is easy to see that 
(Anf ) ( 0, — ) = 0 for n > 0. The mapping /  is called an m-application if it 
satisfies the following conditions:

(Al) f[rx) = rmf(x)  for any reR  and x eM ,

(A2) Amf  is m-linear.

In the natural way we obtain the functor of m-applications АррГ: 
Я —Mod0 хЯ — Mod -»Я — Mod. Any m-application on M factorizes by the 
standard m-application Sm: M -+Am(M) = R \ôm(x); x e M\, and hence 
АррГ is represented by Am (see [3] or [1]). Since Appl0 and Appl1 are 
well-known functors of constants and linear mappings, we will assume in the 
sequel that m ^  2. Consequently, /(0) = 0 for any m-application /  in 
question.
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Let Гт(М) denote the m-th divided power of M. Consider the mapping 
ym: M  -+Гт(М) : = R {x(w); хеМ]  с  Гт(M) defined by ym(x) = x(m). Observe 
that ([3], (4.5))

Any mapping /  obtained from a form of degree m in the usual sense or (more 
generally) in the sense of N. Roby (see [6]) factorizes by ym, and hence/is an 
m-application. Consequently, in the notation of [3], Hornm(M, — ) 
cH om m(M, - )  сАррГ(А/, - ) ,  where Homw(M, - )  is the subfunctor 
of АррГ(М, — ) represented by The last inclusion is an equality iff
hm(M) is an isomorphism.

It follows from [3], Section 4, that the investigation of hm on free 
R-modules reduces to the study of restrictions hm,n: Am,n(R) -+rm n{R), 
where

(see also Section 3). In the present paper we study Am,m~l (R) and 
Section 1 yields some relations in Am,m~i (R) and a sufficient condition for 
hm’m~1 to be injective (Theorem 1.7). In Section 2 we introduce an additional 
regularity condition (A) and its consequences (B)-(F) (Proposition 2.5). We 
prove in Section 3 that (A) is the generating relation of Ker(/im,m_1) 
(Theorem 3.11). Finally, in Section 4 we give examples of irregular in­
applications. In particular, Example 4.5 answers negatively the concluding 
question of [2]: there is a 4-application over a field which is not obtained 
from a form of degree 4.

1. Relations. For the study of m-applications, we need a number of 
conditions following from the defining ones (see introduction).

L em m a  1.1. Any m-application f  satisfies relations

and hence ym is an m-application. This gives us an epimorphism

hm = hm(M): Am(M) ->Гт(М), hm{ôm(x)) = ym(x).

(i)

i = O
for П > 1 .(ii)
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Proof. It follows from [6] or from Remark 1.4 of [1] that 
(Amf)(y,  ..., y) = m\f(y). Moreover,

{Amf)(x,  y, ..., y) =  E  ( — l ) m“ * ( ) ( / ( i» - / ( x  +  i» ) .
«•=o ' 1

Consequently,

m!/(y) = (z r/) (y , ..., у ) = ( Г / ) ( ^ + ) ',  У, •••, y)~(Amf)(x,  y, ..., y)

= ”l  Г "  ' ) ( /(*  +  ' » - / ( x +(‘ + *)>))
i = 0  1

m
= ) f (x+iy) .

i —0 1

Using (i), we compute that
m v

E (-l)'"-*7WI)(Jw/)( ix 1, x2, ..., x j
i= 0

= У (_1)«-I«I
1еЯс[1,и]

( f  (~ir ,'Г)/ох+ E 7))
•i= 0 '* *=Я\|1» /

1£Я c[l,n] v=0 j e H  /

= I  ( —i r |H|m !/(x ,)+  £  ( — 1)"_|H| m !/(0)
1еЯ<=[1,„] 1£Я <=[1,л]

= ( I  ( - l ) l”- 1)- |" 'l)m !/(*i) = 0
H’ <=l2,n]

since |[2, n]| = и—1 > 0. This proves (ii).
R em ark 1.2. Relation (i) for m = 2 and x = z —у gives us the ‘law of 

parallelogram’:

f { z - y )  + f ( z  + y) = 2/ (z)+ 2/(y).

Similarly, for m = 4 and x = z —2y, we obtain the formula

/  (z + 2y) + /  (z -  2y) = 4 /  (z + y) + 4 /  (z -  y) -  6/  (z) + 24/ (y). 

Substituting /(a  + b) by (d2/)(a , b) + /(a) + /(b) we get

(d2/) (z , 2y) + (d2/)(z , —2y) = 4((d2/) (z , y) + (A2 f){z, -y)).
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A more general relation

(A2f){z, ry) + (A2f)(z, -ry) = r2({A2f){z,y) + (A2f)(z,  -y)), reR,

is fulfilled by y4 (see (!!)) and hence by any /  g Н от4 (M, N).
Let /  be an m-application (for instance, let /  =  <5m) and let (x t , . . . ,  x„) 

denote (Anf ) ( x 1, ..., xn) for « ^  1. Then condition (Al) gives us

Lemma 1.3.

(a) ( - x l5 ... ,  -x„) == ( - l )"(xl f ... , X n) ,

(b) (*i, ..., XJ  + ( - x l5 x 2, .. -, x j  = - ( - x 1 , Xi , ... , xn),

(c) X  (—!)*( — ̂  1 ,
i= 1

. . . , X,-, X; , . . . , X„)

- (xj, ... ,  xn) T- ( - l ) s_1( -X i,  . • •, xs, X s + 1 •> • • • , X„) ,

n (2(xl5 . • -, xn), m ф «(mod 2),
(d) I  ( - D ‘( - % ,

i = 1
• • •, X{, X (,  ...,’Xj = |o m = «(mod 2),

(e)
i = 2

- x 2, . . . ,  -x,-, Xi, ... ,  x„)

_  J(Xi, ..., x„)-- ( - X i ,  x2, ..., x„), т ф п (  mod 2),
((Xj, ..., x„) + ( - x l5 x2, ..., x„), m = «( mod 2).

Proof, (a) and l(b) are obvious (see (!)), (c) follows from (b), because

i= 1
, X,-, X,-, ..., X,

s

- к -/= i
•, X( - i , Xj, .. -, *„)

.., - x i5 Xi + 1 » • • • > *„))

= (Xi, . ... JC„)+(-l)s- ‘ ( - x l5 ..., -X s > X s + i , ■..., x„).

Finally, (d) and (e) follow from (c) :and (a).
Let now (x, — ) = (J " -1/)(x , --) and (x, y, -- ) = (A mf )  (x, y, -)• The

above lemma (for « =- m — 1) and condition (A2) give the following corollary.

C o ro llary  1.4 . .For any reR

(1) (rx, - )  + ( - rx, - )  = r2(x, x, - )  = r2((x, - )  + ( -

(2) (rx, - ) - ( - r x ,  - ) = r ((x, - ) - ( - -x,  -)),
(3) 2(rx, - )

= r(r+ l)(x , - )  + r ( r - l ) ( - x, - )  = 2r(x, - )  + r(r 1)(x, x, - ) ,
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m- 1
(4) 2(xj, ..., xm_i) — E  (- î) •••» %i, X(, xm_j)

;= l
(xi, • • •, xm_ i , Xj 4~ ... 4" xm_ j),

(5) ( xl5 ..., xs, xs+j, xm_i)
$

= ( 1) ((s 1)(x^, ..., xm_ i) + E  (xj, •.., Xj, ..., xm_ j)),
i= 1

m- 1
(6) E ( x j , . . . ,  - X i ,  x m_ 1)4 - ( r n -3 ) (x 1, x m_j) =  0.

i= 1
Proof. (1) follows from (b), (2) follows from (e), (4) follows from (b) and

(e), and (3) follows from (1) and (2) or from (4). (5) follows from (c) and (1) 
since

(x i ,  x m_ 1)4"( 1 )4'— 1 ( x i x s, xs+1, xm_i)
S

= ^  (Xj, •••» î» •••5 l)
i = 1

s

— s ( x j , , x m_i)4~ ^  ( x j , .. •, X(, , x m_ |).
i= 1

Finally, (6) follows from (5) and (a).

Let /  = Sm: Яш_1 ^ A m(Rm~1). Write

^ i(^l> •••? ^m— l)> ( ^1 » •••> •••» (^1 > •••5 & m - 2 ’

c j  т’т~1 (Я).
The above formulas give the following proposition.

Proposition 1.5.

(1) 2zT’m~ 1 (K) c<5.

(2) 2 Ker(/7m,m_1) = 2dm,m~1 (R) n  Ker(/im,m~*) = ^ n K e r ^ ' 1) = 0. 

Proof. It follows from conditions (4), (1) and (6) of Corollary 1.4 that
m- 1

2 (r ! e±, . . . ,  rm- i e m- x) =  rt ( £  n(e  u  . . . ,  eh ei9 . . . ,  em- i))
i= 1

m — 1
1 • • • 1 ( E  ^i ((^1 » • • • ? ^ m — l) T" (^ i , • • •, € m ~ i)))

i= 1
=  r i .. .rm_ i  ((ri -h . . .  4-rra_ 2 - ( m - 4 ) r m_ 1)(e1, . . . ,  em- i ) +

m — 2

+  ( E (ri~ rm- i ){ex, . . . ,  - et , . . . ,  em_i))e<5.
f= i
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This proves (1). It remains to check that à n  Ker (hm,m *) = 0. By formula (!!),
m- 1

hm((xu =  {Am 1 Л ( х 1? xra_ i) =  £  X i . . . x P ) . . . x m_, .
i= 1

Write a{ = ex ...ef2)...em- 1 and <r = at + . . . +am-! .  Then 
hm’m_1 (ei, . . . ,e m_1) = «r and hm'm~1(e1, ..., - e (-, ..., em. i) = la . -o .  Sup­
pose that

m — 2

z = r(et , ..., cm_i)+  J  - e f, ..., em_ 1)eKer(/iw’m 1).
i = 1

m— 2
Then r<r+ £  ri(2ai — a) = 0 and hence r — rx + ... + rw_2 and 2 r1 =. . .

i = 1
. ..=  2rm_2 = 0, because a, au  . . am_ 2 are linearly independent in 
r m(Rei®...  © Я ^ -i). Consequently,

m — 2

Z  — ^  ((^ 1  ? • • • > l )  ? • • • ? ^ i?  • • • > ^ m — l ) )  ^
»= 1

because of the following lemma:

L em m a  1.6. I f  2r =  0 then r(x, x, — ) =  r((x, — ) +  ( — x, —)) =  0.

Proof. It follows from Corollary 1.4(2) that r((x, — ) —( —x, — )) 
= (rx, ) ( rx, - )  = 0.

If 2 is invertible in R then Corollary 1.4(3) gives the following formula: 

(rx, - )  = —r J"'-  (x, - )  + Г^ - - - ( - х ,  - )  = r(x, ) ~(x,  x, - ) .

We will prove that the same holds in the more general case when 2 divides 
r(r — 1) for r eR, that is, in the notation of [3] and [4], if I(R) = (r2 — r; r eR ) 
is equal to 2R. Observe that r ( r—l) = 2a = 2b implies that a(x, x, — ) 
= b(x, x, — ), by Lemma 1.6.

Theorem 1.7. I f  3 then the following conditions are equivalent:

(1) I(R) = 2R,

(2) Am'm- l (R) = S,

(3) f m’m~1 (K) = hm’m~l (S),

(4) R/2R is a Boolean ring

If  the above are satisfied then

(5) (rx, - )  = r(x, - )  + a(x, x, - )  = (r + tf)(x, - )  + a ( - x ,  - )

for 2a = r ( r— 1)
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(6)
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Ker(/Iw’m" 1) = 0.

Proof. (1) => (2), (5), (6). Because of [3] (Lemma 5.1 and Corollary 3.6) 
we can assume that (R , M) is a local ring. It follows from Proposition 5.5 of
[3] that I(R) — M if R/M ^ Z 2 and I(R) = R otherwise. In the first case, 
any reR  is of the form 2b or 2b+ l for some beR.  By Corollary 1.4(3),

(2bx, —) = 2 (bx, — ) + (bx, bx , —) = 2b(x, —) + b(2b—\){x, x, — ), 

and hence

((2b + l)x , — ) = (2bx, - )  + (*> — ) + (2bx, x, - )

= (2b + l)(x, — ) + b(2b+ l)(x , x, - ) .

Consequently, (rx, — )= r(x , - )  + a(x, x, - )  = (r + a)(x, - )  + a( —x, — ), 
where 2a = r(r— 1). The same formula holds, obviously, if 2R = I (R) = R. 
Hence Am’m'  i (R) = 3 by Corollary 1.4(5) (6), and finally, Ker(b'"’m- *) = 0, by 
Proposition 1.5 (2).

(2) => (3) is evident.
(3) => (1). It follows from the proof of Proposition 1.5 (2) that

m —  2

= R a ®  0  2Rdi,
i = 1

where a, = ex ... e\2) and a = ax + ... + am_ t . On the other hand,
_  w — 2
r m m-'(R) =  Ro ©  0  I(R)ai

i= 1
by [3], Theorem 5.9 (1). Since m ^  3 it follows that I(R) = 2R.

(1) <=>(4). Since I{R/2R) = I(R)/2R (see [3], Lemma 5.1) it follows that 
I(R) = 2R iff I(R/2R) = 0 iff R/2R is a Boolean ring.

It is proved in [4],-Proposition 2.7 (3), that I (R)Kzr l) — 0 for m 
= 3, and hence Ker(/j3,2) = 0 provided that I(R) = R. Example 4.5 below 
shows that this is not true in general. Namely, for R — Z 2(T) we have I(R) 
= R and Ker(/7m,w~1) #  0 for all m ^  4.

2. Regular m-applications. Let us assume in the rest of the paper that m  

^  3. An w-application f : M - * N  over JR will be called regular if ( ) = Am~l f  
satisfies the following condition

(A) (rx, sy, ) r (x, sy, ) s(rx, y, - )  + rs(x, y, - )  = 0

for r , s e R  and x , y e M .

In the natural way, we obtain the functor Applw: R — Mod°xR — Mod 
-+R — Mod of regular m-applications, which is an equationally definable 
functor in the sense of [5]. Then [5] gives us the following corollary.
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C o ro llary  2.1. (1) Applm is represented by the functor Am: R — Mod 
->R — Mod defined by

J m(M) = Am(M)/Am(M) = R (Jm(x); x eM}, Âm(f)(Sm(x)) = <5M(/(x)), 
where

Am(M) = R !(rx, sy, - ) - r ( x ,  sy, - ) - s { r x ,  y, - )  + rs(x, y, - ) ;

r, seR, x, y, . . .eM},

( ) = Am~1 Sm, and <5m(x) denotes the class of <5m(x) in Am(M).
(2) Am preserves direct limits and Grothendieck sequences.

Moreover, formula (!!) gives us the following corollary.

C o ro llary  2.2. (1) Horn"1 a  Horn"1 c  Applw c= AppP.
cm - _

(2) hm: Amj^ A m ~^Гт, where hm(ôm(x)) = ym(x) = x(m).

Proof. It suffices to check that Horn"1 c  Applw, or, equivalently, that 
ym: M is a regular ш-application for every /^-module M. This can
be proved directly using the formula

m— 1
(d m_1ym) ( x 1, ..., Xm_ i)  =  X  Xi . . . x\2) .. . X m_  I .

i— 1
We prove in Section 3 that hm,m~1: Am,m~ 1 (R) -> f m,m~1 (R) is an iso­

morphism, or, in the terminology of [5], that Applm is an (m — l)-covering 
functor of Homm. In particular, A3 and Г3 coincide on the category of flat R- 
modules (cf. [4], Section 3). It follows from [5] that (Al), (A2) and (A) are 
the only covering relations of Homw which are strong (i.e., independent from 
the choice of R) for any m ^  3. This explains the expression ‘regular’.

It follows from [3], Proposition 3.5, that any m-application f : M - * N  
can be localized to an m-application over Rs

fs- MS ^ N S, f s (x/s)=f(x)/sm

for any multiplicative subset S of R. We prove the following result.

Lem m a  2 .3 . Any localization of a 'regular m-application is also regular. 

Proof. Relation (A) allows us to compute that 

s2(ax, by, —) — as(sx, by, —) — bs(ax, sy, —) + ab(sx, sy, — ) = 0 .

Hence

fa x i b x 2 X3 хш_ Л  а / х 1 b x^ *з *m-i \
\s t ’ S t ’ St’ ’ ’ St )  s \ t ’ s t ’ St’ St J

_ Ь /а  x^ X2 X3 хм_ Л  [ a b / х { x^ X3 xm_ t \
S \S t ’ t ’ St ’ St J s s \ t  ’ t ’ St’ St J
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-bs{axlt sx2, x3, xm- 1) + ab{sxl , sx2, x3, ..., xm_i)) = 0,

as desired.

As in [3], Section 3, we obtain the following corollary. 

Corollary 2.4.

(1) A%(M)S ^  A%S(MS), ,

Am n{R)s ^  Am’n(Rs),

Ker(h%,n)s ^  K e r (^ ) ,  

Кег(/1Г )  = 0 iff Ker(/^") = 0

(2)

(3)

(4)

for any prime (maximal) ideal P in R.

For the study of regular m-applications / :  M -*N we need another 
relations, mentioned in the proposition below, which are satisfied by ( ) 
= Am~l f  Each of these relations gives us a strong equationally definable 
functor contained in Applm.

Proposition 2.5. Any regular m-application satisfies the following rela­
tions (r, , r, seR,  xf, xeM )

(B) (rj x1? ..., rm_ 1 xm_ 1)

- ( r 2 + (m -2)r)(x1, ..., xm_ t) = 0, 

(D) D(r, s) : = (rsx, —) — r2(sx, —) — s(rx, — ) + r2s(x, — ) = 0,

(F) F(r, s) : = (r — r2)(sx, —) — (s — s2)(rx, —) — (rs2 — r2s)(x, —) = 0. 

More precisely, for any m-application,

m- 1
— ^  Г l  • Г,- .. . Гт — i (x j , .. ., X,- _ i , Г,- X [, X( + i , . . . ,  Xm _ i )

i =  1

- ( m - 2)r1...rm- l (xl , ..., xm_j),
m- 1

(C) C(r):=  £  (xl5 ..., X i - U  rxt, xi + i , ..., xm_j)

(E) E(r): = (r2 x, - ) - { r  + r2)(rx, - )  + r3(x, - )  = 0,

(A) ^(B ) => (D) => (E) => (F)

(C)



314 Andrzej Prôszynski

Proof. (А) о  (В). It is easy to see that (B) => (A). Assuming (A), we 
prove by induction on к that

к

(f 1 Xj у ■ • • » ?к к̂ •> ) =  X  Г1 . . .  Я,-. . .  f"k (Xj , . . . ,  Х( _ J , Г,- X,-, X,- + J , . . . ,  Хк, )
i = 1

- ( f e - l ) r j  . . . r k ( x u  ..., хк, - ) .

The formula holds evidently for к = 1, 2. If it is true for some к < m — 1 then
( r i X i , . . . , r k+1xk+i,  —) 

к
— X  T j . . .  Г,- . . .  vk (x ̂ , . . . ,  Гi X,-, • ■ • , x k , f k + 1  Xfc + i , )

i= 1

( к  I) 1” 1  ■ • • Y k (Xj , . . . ,  x k , r k+1  X k )

— X Ti .. • rj- •.. Tk f"k + 1 (Xj, • • • ? Pj X,-, ..., Xk, X* + i , )
i= 1

к

+  X  • • • rk ( X l >  • • • »  Xt , r fc+1 X * + 1 , — )
i= 1 

к

-  X  r l . . rk+ ! (Xi, xk+1, - )
i= 1

— (/c — 1 ) ...rk{xu  ..., Xk, rk + l Xk+l, - )
k +1

=  X  У1 • • • . . . Гк + 1 (Xj , . • • j Г; Xf, • • • » Xk -f 1 , )
i=  1

krj •. • rk + 1 ( X j , . . . ,  xk + 1 , ),

as desired.
(B)=>(C). It follows from (B) that 

rm(xi, ..., xm_i) = (rxl5 ..., TXm- i)
m- 1

= rm~2 X (xl5 ..., rxf, ..., xm_1) - ( m - 2)rra-1 (x1, ..., xm_!),
i = 1

and hence rm~2C(r) — 0. Observe that
m — 1

C (r -t- s) =  X  ((Xi » • • • > , . . . ,  Xm— i) "h (Xj , . . . ,  sx,-, , Xm— j)
i = 1

+  rs (x 1? . . . ,  X,-, X,-, . . . ,  Xm_!)) 

- ( r 2 +  2rs +  s 2 +  ( m - 2 ) r  +  (m - 2 ) s ) ( x l5 . . . ,  xm_!) 

=  C(r) +  C(s) +  rs((xl5 . . . ,  Xw_ j , X, +  . . .  + X m_i)

- 2 (x1? ..., хм_!)) = C(r) + C(s),
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by Corollary 1.4 (4). Since C(1) = 0, it follows that C(r) = C (r+ l), and 
hence rm~2, ( r + l)w~2 e Ann(C(r)). Consequently, no maximal ideal contains 
Ann (C(r)), that is, C(r) = 0.

(B)=>(D). Using (B) and its consequence (C), we compute 

rm(sxl5 x2, ..., xw_i) = (rsxu  rx2, ..., rxm_j)

= rm~2(rsx1, X2, xm_i)
m- 1

+ rm~2s £  (Xl, ..., rxh ..., xm_ 1) - ( r n - 2)rm-1 s(x1, ..., x*,^)
i =  2

= rm~2(rSXu  X2, ..., Xm_!)

- r m_2s(rx1, x2, ..., xw_1) + rws(x1, ..., Xm_j).

This means that rm~2D(r, s) = 0. Moreover, by Corollary 1.4 (3),

D{r + r', s) = D(r, s) + D(r', s) + rrfs2(x, x, —) —2rr'(sx, — )

— srr’(x, x, — ) + 2rr's(x, — )

= D{r, s) + D(r', s).

Since D (l,s) = 0 it follows that D(r+1, s) = D(r, s), and hence rm~2, 
(r+ l )m-2 eAnn(Z)(r, s)). As above, we obtain D(r,s) = 0.

(D) => (E). Observe that E(r) = D(r,r) = 0 by (D). (The more general 
formula

(r*x, - )  = r * '1 ( l + r + . . . + r fc- 1)(rx, - ) - r *  + 1 ( l+ r +  ... + rfc- 2)(x, - )

can be also proved by induction on к with the aid of (D).)
(E) => (F). Observe.that F(r, s) = D{r, s) — D(s, r) = D{r, s) + D(s, r) since 

2D(s, r) = 0 by Corollary 1.4 (3) or Proposition 1.5 (2). Moreover, D is biad­
ditive, as follows from above and from the symmetric consideration. Conse­
quently, F(r, s) — D (r + s, r + s) — D (r, r) — D(s, s) = E(r + s) — E(r) — E{s) = 0.

R em ark 2.6. If m = 3 then (A) <=> (B) <=> (D) and the remaining 
relations hold for any 3-application (see [4]). Section 4 shows that for m ^  4 
the implications in Proposition 2.5 are proper in general. Moreover, (C) & 
(D) 4> (A), (C) & (E) 4> (D), and (C) & (F) 4> (E). However, it follows from
(F) that I(R)D(r, s) = 0, and hence (D) о  (E) <=> (F) in the case of I(R) = R. 
(This is satisfied, for example, if R is a field with more than two elements.)

3. Determination of Ker(hm,m~i). As follows from [3], Section 4, 

Am(Ml ® ... ® M k) = 0 © Am,n(Mj , ..., M j\
» = i  i i  < — < j n ^ k

Am(Mj ® ... © M h) = 0 0 Am,n(Mj , ..., Mj ) ,
n = l  < . . . < j „ ^ k  ”

10 — Commentationes Math. 28.2
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zT(M1® ...® M * )=  ©  ©  Am,n(Mj , ..., Mj),
" = 1 l$jx

where

Лт п{Мi, Mn) = R \ (xx, c  Am(Mx ® ... ® M„),
Am’n(Mu  ..., M„) = ZT’',(M1, ® ...® M „),

Mn) — Am,n(Mx, ..., M„)/Am’n(Mx, ..., M„).

Since hm,m: Am,m -> Tm,m (see [3], Corollary 4.2) it follows that Am,m = 0 and

L em m a 3.1. Am,m 1 (Mx, ..., Mm_ x) is generated by elements

(*1 , ..., rXif ..., SXj, ..., ..., SXj, ..., xm_i)

- s ( x l5 ..., ГХ{, ..., Xm- X) + rs{xx, ..., Xm-i),

1 ^  i <j  < m — 1, r, s e R, xk eMk.

Proof. Let us denote the above element by A(xx, . xm_i). Then 
Am(Mx ® ... ® Mm_t) is generated by all elements of the form

m — 1 m—1
A( £  xXj, ..., xm_ i j ,  where х0 еМу. Since Лт,т = 0 it follows

j= i ./= 1
that /4 is multiadditive (this can be also computed directly). Then the

m- 1
generator is of the form £  A{xXJl, ..., xm_1Jm l). It follows

from (!) that all summands with js — j t (for some s Ф t) belong to 
Am,k(Mil , ..., Mifc) for some к < m — 1 and some 1 < ix < ... < ik ^  m— 1. 
The remaining summands belong to Am,m_1 (Af1, ..., Mm- X) and have the 
desired form.

As in introduction, we restrict our consideration to the case of Mx 
= ... = Mm_ x = R, and we denote the base elements by ex, em-.x, 
respectively. In the preceding notation, Am,m~1 (R, ..., R) = Am,m~1 (R), 
^ m’m_i(jR, ..., R) = Am,m~1(R), etc. Then Lemma 3.1 gives us the following 
corollary.

C orollary 3.2. Лт’т - 1 (Я) is generated by elements

Aij{ri, rm- 1) = {rxex, . . . , r mi - 1 - i)
- r i(rxex, .. ., é?;, .. • ? Ym— 1 — l)
- r ^ r i  elt .. • ’ ej’ •• • » ^m - 1 ^m— l)
+ ПП(г! ex, .  .  . , . . . , , . .., rm _ j é?m _ J )

^  i <j  < m — 1 and 7*1, •••, 1 eR.
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Proof. It suffices to compute that 
(rielt ..., r r ^ ,  ..., srjej, ..., rm-.xem- Z  

- r { r xex, ..., srjej, ..., rm_1 effl_ 1)

- s ( r i  eu  ..., rr,- , ..., rm_ x ew_ J  + r s ^  elt ..., rm„i em- 1)

= Aij(r1, ..., rrf, sr,-, ..., sr,, rm_i)

•••, rrif ..., rm̂ l) + rsAij(rl , ..., rm_i).

We will prove that the kernel of the homomorphism hm,m~l : Am,m~l (R) 
-+ rm’m_i(JR) is equal to Am,m~1(R), or, equivalently, that Am,m~1(R) 
^  Гт’т~1 (R) by hm,m~ L For this goal some auxiliary constructions will be 
needed.

_ m— 2
Recall that Гт’т~1 (Я) = Ro ® ®  7(Я)а„ where a,; = ex ...ej2) ...em- 1

_ i = 1
and a = al + . . .  + am_ x. Let p{: Гтт~1 ( R ) 1 (R) (i = 1, ..., m — 2) denote 
the projections. Consider the compositions

Pt: Am’m~l (R)j!? ^ ^ r m’m' l (R)lL+I(R), i = l , . . . ,m - 2 .

It follows from (!!) that

/lm'm" 1 (r1 e1, ..., rm_ !«„,_!)
m- 1 m -1

= I  (rie i)...(ri e/)(2)...(rlll_ iem_1) = £  ^ . . . ^ . . . r ^ a , -
/=1 i~ 1
m— 2

and hence

pd ri eu  ..., rm. xem. x) = r 1 . . . r f . . . r M_ 1 - r 1 ...r i_  i- 

Let us consider also the submodules

4  = Я !(el5 ..., £?,_!, re,-, ei + 1, ..., em_i); reR],  i = 1, ..., m -2  

of dm,m_1 (R). Note that P /e j, ..., rei5 ..., em_t) = r2 — r and P,-|̂ . = 0 for
г ^  j-

Proposition 3.3. (1) Am,m~1(R) — Ax + ... + d m_ 2 + y4m,w~ 1 (Я).
(2) The formula К =(Ai n K )+  ... + (dm_2 n  1 (Я) holds for К

= Ker(P1) n ... n  Ker(Pm_2) and /or К = Ker(hm,m~*).
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Proof. Let Ai denote the image of At in Am,m~1(R) for i — 1, m — 1. 
Since ôm is regular, it satisfies relations (B) and (C) of Proposition 2.5. 
Consequently, Am,m~l (R) = Ax + ... + I m_i and 4 - ц с  Л +  . . .+ d m_2-This 
gives us (1). The formula in (2) holds for К = Ker(P1) n . . .  nK er(Pm_2) 
because Am,m~1 (R) cz Ker(hm,m~ ^  К and At c= p) Ker (Pj). Since

I j * i
Ker {Pl) n . f. piKer(pm_2) = = Rhm,m l (elf ..., em- 1) and a is linearly in­
dependent, it follows that К = R{e1, ..., em_ J  ® Ker(hw’m~ 1). Hence the 
second version of the formula can be easily deduced from the first one.

The above proposition reduces our consideration to the study of restric­
tions hm,m~1\A.. By symmetry, we can consider one of them only, say, for i 
= 1. Let us denote A (R) = Au F(R) = R a ® l(R )a x, h = h(R) = hm’m_1 \Av p 
= - P i \ r \ R ) ’  p  = ~ р \ \ л х ь e = ei and (x, - )  = (x, e2, . . . ,  em_j), so that 

A(R) = R{(re, - ) ;  reR)  c  A ^ - ^ R ) ,

P: A(R)MÊ r ( R ) I*I(R), (re, - ) ^ r e  + (r2- r ) a i ^ r - r 2.

Moreover, let us denote by D (R) the submodule of A (R) generated by 
elements

D(r, s) = (rse, ~) — r2(se, — ) — s(re, — ) + r2s(e, —), r , s e R .

It follows from Proposition 2.5 that
D(R) c  Am,m~ 1 (R) n  A (R) a  Ker(hM’m~1) n A  (R) = Ker (h(R)).

We prove that in fact D(R) = Ker(/i(P)), and the arguments are similar to 
those of [4], Section 3.

Lemma 3.4. (1) Кег(Р) = Я(е, -)© Кег(Л), Im(P) = I(R).
(2) P(u)v — P(v)u eR(e, —) + D(R)for any u,veA(R).
(3) P(M)N + R(e, - )  + D(R) = P(N)M + R(e, - )  + D(R) for any sub- 

modules M, N of A (R).
(4) I (R) Ker (P) c= R (e, - )  + D(R), I (R) Ker (h) c  D (R).

Proof. To prove (1), it suffices to observe that Ker(p) = Ro = Rh(e, — ) 
and that <r is linearly independent. In the proof of (2), we can assume that и 
= (re, — ) and v = (se, —) for some r, seR.  In this case,

P(u)v — P(v)u = (r — r2)(se, —) — (s — s2)(re, —)

= (rs2- r 2s)(e, - )  + D(r, s)-D(s, r),

as desired. Finally, (3) follows directly from (2), and (4) follows from (3) 
and (1).

Lemma 3.5. For any ueA(R),

u=(P(u)e,  - )m o d {I(R)A(R) +R(e, - )  + D(R)).



Forms and mappings. I l l 3 1 9

Proof. First observe that {re, — )= ((r  — r2)e, — ) + {r2e, — ) + (r —r2)x 
xr2{e,e, - )  = ({r-r2)e, - ) ,  because (r2e, - )  = (r + r2)(re, - ) - r 3(e, - )  + 
+ D(r,r) and (e, e, -)eA(R).  Consequently,

s{re, - )  = s((r — r2)e, - )  = s( (r -r2)e, - )  + ( r - r 2)2(se, - )

— s(r — r2)2(e, — ) + D(r — r2, s)

= (s(r — r2)e, - ) .

Finally, let и = £s;(r,e, — ). The above computation gives us
i

, w = Z (s«(r{ — rf)e, - )  - ( X ( r f- rf)e, - )  = (P(u)e, - ) ,
I i

since Ambm is m-linear and the coefficients belong to I(R).

Corollary 3.6. Let N be a submodule of A(R). The following conditions 
are equivalent:

(1) A(R) = N + R(e, —) + D(R),
(2) A(R) — N + Ker (P),
(3) P(N) = I(R).

Proof. Obviously, (1) => (2) => (3). Let us assume (3) and suppose that 
ueA(R). Since P{u) = P(v) for some v e N  it follows that u=(P(u)e,  — ) 
= (P{v)e, — ) s  vmod(l(R)A(R) + R(e, — ) + D(R)), by Lemma 3.5. More­
over,

I{R)A(R) = P{N)A(R) c  N + R(e, - )  + D{R),

by Lemma 3.4 (3). Hence u e N  + R(e, —) + D(R), as required in (1).

Lemma 3.7. Suppose that N is a submodule of A(R), iq, ..., u„eA(R) and 
PiuJ, ..., P(un) form a regular sequence on R/P(N). Then

{N + R \uu  ..., kh}) nKer(P) c  N + R(e, - )  + D{R).

Proof. Induction on n. Let n — 1 and tq = u. Suppose that veN, reR  
and v — ru e Ker (P). Then rP(u) = P(v)eP(N) and hence, by the regularity 
assumption, r — P(w) for some weN.  Consequently,

ru = P{w)u = P(u)w mod(i?(c, — ) + D(R)),

and finally v — rueN + R(e, —) + D(R). Let now n > 1. Since P(un) is regular 
on R/P(N'), where N’ = N + R{ui, ' . . .,  the preceding case and the
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inductive assumption show that

(N + R{ui, . . . , u n})n  Ker (F) = (ЛГ + Run) n  Ker (F)

a(N ' + R{e, - )  + D(R)) n  Ker(F)

= (N 'nKer(F)) + F(e, - )  + D(F)

C- N  + R(e, —) + D (R).

Lemma 3.8. Let S '= F [7}; ye./]. Then
(1) In the natural way A (R) is contained in d(S) as a direct summand 

(over R) and h(R) is the restriction of h(S).
(2) I f  N is a submodule of A(R) then SN nKer(h(S)) — 

S(N n  Ker (h(R))).

Proof. (1) It suffices to observe that F is a retract of S and that h: A 
-* f  is a natural transformation of functors on the category of commutative 
rings (cf. [3], Section 3).

(2) Let u = Y Jf  Щ g Ker (h(S)) for some^ eS and щ eN  <= A (R), and let rf
i

be the coefficient of f  at a fixed monomial. Since = ^
i

ST(R)c^r(S)  it follows that £ г ; /1(и,) = 0 in f(R). Consequently,
I

Y ^ L U i  eN n  Ker(h(R)) and hence eS(iV nKer(/î(F))). The second in-
I i

elusion is obvious.
C o ro lla ry  3.9. Let S = F [7 ] ;je J ] .
(1) I f  A (R) = N + Ker (h (F)) and (e, - ) e N ,  then A (S) = N (S) + D (S), 

where N(S) -  SN + S {(Tje,
(2) I f  Ker (/i (F)) = D (F), then Ker (h(S)) = D(S).

Proof. (1) Observe that

P(N(S)) = SP(N) + S \T j -T ? -JeJ]  =S(I(R), T j - T / ; j  eJ) = I (S)

(cf. Lemma 1.4 of [4]). Hence A (S) = N(S) + D(S), by Corollary 3.6.
(2) Let N  be as in (1) (e.g. N — d(F)). Observe that any finite sequence 

of different elements 7J— 7}2 = F(7}c, — ) is regular on S/P(SN) = S/SI (R) 
i  (R/I(R))\_Tj J еУ]. Then Lemma 3.7 shows that N(S)nKer(P) 
a  SN + D(S). Consequently, by Lemma 3.8 (2),

N (S) n  Ker (h (S)) c  S N n  Ker (h (S)) + D (S)

= S(N n  Ker (h (F))) + D (S) c  SD (F) + D(S) = D (S).

By (1), Ker (h(S)) = N(S) Ker (h(S)) + D(S) = D(S), as required.
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L em m a  3.10. I f  Ker (h(R)) = D(R), then Ker(h(S)) = D(S) for S = R/J.

Proof. Consider A'(R) = A (R)/(R(e, - )  © D(R)) and P'(R): zT(P) 
-+I{R) induced by P{R). In virtue of Lemma 3.4 (1) it should be proved that 
P'(S) is an isomorphism provided that so is P'(R). Let us consider

/ :  i(R) г м - К ацщ  -+A'(S), r - r 2^[(re,  -)]i-*[(r*>, - ) ] .

If reJ  n i (R) then f  (r) = f ( r - r 2) + rf (r) = [(re, - ) ] 4 -rf (r) = 0. Hence / in­
duces a homomorphism g: I(S) = I(R)fJ n  I(R) ->d'(S), which is evidently 
inverse to P'(S).

We are ready to prove the following theorem.

T heorem  3.11. For any commutative ring R,
( 1) Ker (hm’m~1 (Я)) n  A (R) = Ker (h (R)) = D (R),
(2) Ker(hm’m- l (R)) = Am’m~l (R).

Proof. (1) It follows from Theorem 1.7 that Ker(/7m,m_ 1 (Z)) = 0, and 
hence the equality holds for R = Z. Then Corollary 3.9 (2) and Lemma 3.10 
give us the result for any commutative ring R.

(2) By Proposition 2.5, D(R) is contained in Am,m~1(R), and hence the 
result follows from (1) and Proposition 3.3.

C oro llary  3.12. (1) Am’m~ 1(R)nA (R) = D(R).
(2) Am'm~1(R) Fm’m~l (R) and hence ([5]) АррГ is an (m-\)-covering 

functor of  Homm.
(3) Ker(lim,m_ 1 (Я)) -+Ker(hm,m~1 (R/I)) is an epimorphism. (Cf. also [5], 

the Main Theorem 6.2.)

4. Irregularity in examples. In this section we show that there is in 
general (for all m ^  4) no implication between conditions (A)-(F) except of 
those indicated in Proposition 2.5 (cf. Remark 2.6). Examples 4.1 and 4.3 
show also that in general Ax + ... + d m_2 £  A1 + ... + d m_ l £  Am,m~1 (R) (cf. 
Proposition 3.3). Moreover, Example 4.5 shows that Horn4 and Appl4 are 
different over fields k(T) with char (к) = 2, what answers negatively the 
concluding question of [2].

In all the following examples we consider m-applications / :  Rm~l -* N 
satisfying the following property:

f i n e i+  ... + rm_!«„,_!) = 0 if some rt = 0 .

Consequently,

f ( r xex+ . . .+ rm_1em- l) = (Am 1 f ) ( r1e1, ..., rm- l em- 1)

f ( r 1 ex, ..., rm_ j em_ j),
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where / :  Am,m l (R)-+N is the induced homomorphism. Moreover, 

(Anf) ( r l eil , ..., гпех)  = 0 if {ix, ..., in\ £  jl, m -1}.

Except of Example 4.4, we have also Amf  = 0. In this case, Am~l f  is 
multiadditive, and hence it is completely determined by the values 
К  ex, ..., rm_i em_i) = (Am~1f )  (rxex, rm_xem- x). This allows us to 
check formulas '(C)-(F) for xt eRei only. It can be proved, however, that the 
left-hand sides of those relations are multiadditive (in variables x x, ..., 
and hence in fact the condition Am f  = 0 is not needed. This remark is used 
for relation (C) in Example 4.4.

The last useful remark is following: a product of an m-application and 
an n-application (with values in some Я-algebra) is an (m + ^-application. 
This follows from the formula

(Asfg)(xi, ..., xs) = X (dk/)(x«v •••> xik)(Alg)(Xjl , ..., Xj),

where the sum runs over all systems (ii, ..., ik, j i ,  ■■■Ji) satisfying the 
following conditions: к, l ^  0, 1 ^  ix < ... < ik ^  s, 1 < /  < • <j i  < s, and 
{i'i , ..., ik, j x, . . . , /}  = {1, ..., s}. In our case, s = m + n implies, obviously, 
к = m and / = n, because the remaining summands are zero.

E xam ple  4.1. (C) & (D) 4> (A) and Ax+ . . . + d ra_ 1 £ A m’m~l (R) for 
m ^  4. Let R = S[T2, ..., Tm-i],  where I(S) Ф S, and let N = 
R/(I(S), T-2, ..., Tm_1) = S//(5).

Define / : Rm~1 -*N  as follows:

f ( A 1el + = А&(аи) modi {S),

where At = aiX+ai2T2 + ... +aUm̂ x Tm- x+ / = 1, ..., m— 1. (This con­
vention is also assumed in the sequel.) The mapping /  satisfies (Al) since

/ (A(Bi ex + ... + Bm_ x em_x)) = / (ABi ej + ... + ABm̂ x em_г)

= det((AB/,) = det(a1 bs(!l, ax b^2 + a2b^x, ..., a! b*m_i + a m_j h#1)

= ai det(b*ls ax fc*2, ..., ^  b*m_ J  = a1? ' 1 f ( B x ex + ... +Bm_ 1 em_1)

= Am/(B iC i+  ... +B m_iCm_i)rnod(/(S), T2, ..., r ^ ) .
; I

Moreover, observe that / i s  obtained from a form of degree m—1 over S, and 
hence Amf  = 0. This proves that /  is an m-application such that Am~l f  is 
multiadditive, and the induced homomorphism/ :  Am,m~1 (R) -+ N is given by

f { A xex, ..., Am_xem_x) = det(ay)m od/ (S).
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The above value is zero if Ak = Ax for some к Ф 1. Consequently, since m — 1 
^  3, /  vanishes on Al + . . . + A m- 1, although f { e u T2e2, ..., Tm_j em- t) 
= 1 ^ 0 . This proves that Ax+ ... +Am_1 £  Am,m~1 (R). Moreover, in nota­
tion of Corollary 3.2,

/И у (1 , Tm_1)) = / ( e 1, T2e2, ..., Tm_ 1 em_1) = 1 * 0

for 2 < /  < j ^ m — 1 , since the remaining summands have coefficients 1 at 
both ex and ex or ey  This proves that /  is irregular.

It remains to prove that ( ) = d m_1/  satisfies conditions
m -  1

(C) ^  é?i , ..., AB{ 6X, ..., Bm— j £m — i)
i = 1

= (A2 + (m-2)A){Bi e1, ..., Bw_ 1 era_1) 

and (because of the skew-symmetry of / )

(D) {ABCt elt C2e2, ..., Ст _!ет _ 1) - Л 2(ВС1 elt C2e2, ..., Cm_ 1 em_1)

— B(AC1 elf C2e2, ..., Cm_! ет _1) + Л2В(С1 et , ..., Cm_! ет _!) = 0.

The i-th summand in (C) is a determinant with i-th row

= (ax bn , ax bi2 + a2 bn , ..., ax bUm_ j + aM_ j bn) = ax bislt + â* bfl,

where â* = (0, a2, •••, ûm- i). Changing rows to columns we obtain that the 
left-hand side of (C) is equal to

m -  1
У, tiet (bi ̂ , ..., cii b^  + üx Ьд, ..., bm _ j jjj)
i= 1

= (m—l)al det(hlî(!, ..., bm_ l4t)
m- 1

T- У bXi det (b i ̂ , ..., bx _ i j|j , ûjjj, bx +1 jjj, ..., bm — i sjs)
i = l

m- 1 m—1
=  . . . ,  B m _ 1 e m _ 1) +  X  b n  X  a j M i j ,

i= l  j=2
where M(j denote respective cofactors of the matrix (bfJ). It suffices to observe 
that

l b,i M„ = о for 7 ^ 2

and

(m—l)al = Л2 + (т  — 2) A mod(/(S), T2, ...,
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To prove (D), observe that the left-hand side is a determinant with the 
first row equal to

(ABC,)* -  A2(BC,)* -  В (A C f  + А2 В (C,)*

=  («1 bi c n , aj bt c12 +  (a1 b2 + a2 b1) c11, ci! b!

+  (ai  bw_ 1+ am_ 1b1)c11)

— ai (£>! Сц, b1 cl2 + b2 cl l f  . . . ,  b1c1>m- 1+ bm- 1c11)

- b1 (at cn , at с12 +  а2С ц , . . . ,  ax cUm- 1 +  am_ i  c n )

+ bi(cll9 c12, c1>m_ x) = (0, 0).

This completes the proof.
E xample 4.2. (C) & (E) 4> (D) for m ^  3 (cf. [4], Theorem 2.10).
Let R = S I X , T], where I ( S ) ^ S .  Define / :  F w-1 -*F //(F ) by the 

formula
c*2 (F F  )

/ ( F ,  e .  +  . . .  +  Fm. , .) =  F, . . . ,  +  /  (Я),

and observe that

/ (G (Fx ^  + ... + Fm_ j cM_ ,)) = (G2 F 1 F2)*y G " ' 3 F3 ... Fm_ t + /  (F)

= G2(Fj F2)*y Gm" 3 F3... Fm_ ! + /  (F) 

= Gm f  (Fl el + ... +Fm_1 em_i),

since (G2)* = 2GG*e/(F), (G2)y = 2GGye/(F) and Gm_1 = Gmmod7(F). 
Moreover,/is obtained from a form of degree m—1 over S, and hence Am f  
= 0. This proves that / i s  an m-application such that Am~1 f i s  multiadditive. 
Since / ( F ^ ! ,^ . . ,  Fm_ 1 cw_1) = (F 1 F 2)AryF3 . . .F m_ 1 +/(F), it follows that 
f ( D { X , У)) = /(XTcr, c2, ..., = 1 #  0 and hence (D) is not satisfied by
/. It remains to prove that ( ) = Am~x f  satisfies conditions

m- 1
( С )  X  ( F l e l ’ • • • .  G F i e i> • ••> F m - l t m - l )  

i= 1

= (G2 + (m —2)G)(Fj cl5 ..., Fm. 1em̂ 1)

and

(E) (F1el , ..., G2Fiei, ..., Fm_! cm_i)

— (G-bG2)(Fj ..., GF. c,-, ..., Fm_1cm_1)

+ G3(F1 c1, ..., Fm_ 1 cm_1) = 0, i = 1, ..., m— 1.
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The left-hand side of (C) equals to 

2 (G Fx F 2)Xy F3 ... Fm _ j + (m -  3) (Fx F2)XY GF3.. .Fm- x+I{R)

( w  3) G (F i €x, . . . ,  Fm _ j €m _ j)

= (G2 + (m-2)G)(Fxex, . . . ,  F m_ 1 em_ 1)

since G2 + Ge/(F). To prove (E), it suffices to consider the cases i = 1 and 
i = m— 1 only. Since G + G2eI(R ) and G3 = — G2mod/(R), we must prove 
that

{G2Fxex, F2c2, Fm_1em_1) = G2{Fxex, Fm_1em_1)

— (F! G2Fm_1cw_1),

but these equalities follow directly from definition of /.

Example 4.3. (D) 4> (C) and Am_ x /  A x +  . . .  + d m_ 2 for m ^  4.
Let R = S [T]/(T2 — d) = S[r], where I(S) Ф S and d = 1 mod I(S) (e.g. 

S = Z  and d is odd). Note that F [7 i, ..., T„] = S[TX, / ,] [ /]  is also of 
this kind, and hence we can take the same ring in Examples 4.1 and 4.3. 
Since 1{R) = (I(S), t - t 2) = (I(S), t - 1 )  it follows that R/I(R) = S/I(S) Ф 0. 
Let us define/: Fm_1 -+R/I(R) by the formula

f ( A xex + ... + Am_ x cm_ J  = (al a,2a3 + a\a2a3)A4 . . .Am_1+I(R),

where /^denotes (in the standard convention) a, + a-f for ah a-eS. Since d 
= 1 = t mod /  (R) we compute that

f  (B(A1 ei + ... +Am_ x em- x)) = / Cj + ... +BAm_ xem_x)

= ((baj + b' ai d) (ba'2 + b' a2) (bai + b' a3)

+ (ba\ 4- b' ax)(ba2 + b' a'2 d) (ba3 + b' a3d))Bm~4' A4 . . .Am- x+I (R)

= ((b2 b' + bb'2) (a! a2 a3 + a! a2 ai + ax a'2 a3 

+ ai a2 a3 + ai a’2 a3 -f ai a'2 ai)

+ (b3 + b'3) (a, a'2 ai + ai a2 a3)) Bm - 4 ... Am_, + /  ( Д)

= (b + b')Fm-4(a1 a'2a '3 + ai а2а3)Л4 . . .Лт_ 1 + /(F)

= Fm/ {Ax ex + ... + Лт _ j J .

Since /  is obtained from a form of degree m—1 over S, it follows that 
Am f  = 0. Consequently, /  is an m-application and dm_1/ i s  multiadditive. 
Observe that

f { A xex, ..., Am_xem- x) = {al a'2a'3 + a\a2a3)AA. . .Am̂ x+I{R) = 0
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for Ax — Â2 = 1 (since a\ — a2 = 0), and similarly for A1 = A3 = 1. There­
fore /  vanishes on A2, . . . , A m- 1, although f ( A e 1, e 2, . . . , e m-.1) = a' + I(R) 
proves that /  is nonzero on Ax. Consequently, A1 is not contained in 
A2 + ... +Am- 1. By symmetry, combining with Example 4.1, we obtain that 
A1 + ... +zlm_2 £  Ax+ ... +Am- X £  Am’m~l (R). Moreover,/does not satisfy
(C), e.g. for r = t. It remains to prove that ( ) = Am~l f  satisfies (D), i.e.,

(Ax €x, ..., BCAi с,-, ..., Am— j cm_ i) В (Ax ex, ..., CAf ê , ..., 4̂m— i em— j)

С (Л i 6 1 , ..., B/lj с,-, •.., Am_ j — i) В C {A i 6 1 , ..., A.IA  ̂cm_ 0.

The formula holds for i ^  4. For / = 1,2,3,  it suffices to prove that the 
analogous formula is satisfied by mappings g and g' carrying 
(A1ex, ..., Am- xem- l) to al +I(R) and a\+I(R), respectively. In the first 
case:

= 2b' c,{a1 — ai)+ /(/?) = 0, 

and the second computation is similar.

Example 4.4. (C) & (F) 4> (E) for m ^ 4.
Let R = Z [T ]/(T 2 — d) = Z[f], where d = 3(mod4). For any A = a + a't 

eR write Â = a + a' eZ.  It is easy to see that A + B = Â  + Ë, AB = Â  B 
+ (d—l ) a ' b ' = Â B (  mod 2) and A = À  mod I (R). Consider mappings g, h: 
R2 = R x ®  Ry -> R/I (R) = Z 2 defined by

h(Ax + By) = ab' + a' b + I(R) = (the coefficient of AB at t) + I(R).

We prove that f :  R3 = Rx  © Ry © Rz -*R/I(R) — Z 2 given by the formula

g(BCAxeu - ) - B 2g(CAxeu  - ) -Cg(BAi el , - )  + B2 Cg(Axex, - )  

= (be + b' c') ax + (be' + b' c) a[ —(b + b') (cax -I- c' a\)

—(c + c')(bal +b'a'l) + (b + b')(c + c')al +I(R)

g (Ax + By) =

(ab' + a'b)c' + /  (R)

is a 4-application. Observe that 

g (P (Ax + By)) - P 3 g (Ax + By)

PA PB (P A + P B ) -P  A P B (P A + P B) 
2 + I(R)
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= d- ^ - p ' P 2(a'B(Â+B) + b'Â(Â+B) + (a' + b’)Â-B) + I(R) 

= P' P2 (a> B + b' Â) + 1 (R)

= <̂ - p ’P2{ab’ + a'b) + I{R)

and
h(P{Ax + By)) = (the coefficient of P2 AB at t) + I{R)

Consequently,
= (p2 + p’2d)h(Ax + By) = P3 h{Ax + By).

f  (P(Ax + By + Cz)) — P4 f  {Ax + By + Cz)

= (g(P{Ax + By)) -  P3 g {Ax + By))) PC

+ (h(P{Ax + By)) {pc' + p'c)-P*h{Ax + By) c')

d - 1 .
= ——  РЪ + a' b) {p' C + pc' + p'c — Pc') + / {R) = 0,

and hence /  satisfies (Al). To prove (A2), observe that A3g is 3-linear since 
{A3g){At x + Bt y, A2x + B2y, A3x + B3y)

— A i A 2 В 3 A i В 2 A3 В i A2A3A~Bi B2A3~\~Bi A2 B3

+ À1Ë2B3 + I{R)

= A i A2 B3 + A i B2 A3 + В i A2 A3A Bi B2 A3 + Pi A2 B3

+ A i B2B3 + I{R).
Let / '  and / "  denote the summands in the definition of /. Then A4 f  
is 4-linear and A4/ "  = 0 since / "  is obtained from a form of degree 3 
over Z. This proves that /  satisfies (A2).

Consequently, for any m ^ 4  we obtain an m-application

fm- R”1' 1 - R/I{R) = Z 2,

/mMi<?i+ ... +Am- l em- 1) = f ( A 1x + A2y + A3z)A4.. . .Am- i .

Since

f m { A i @ i ,  • • • »  A m —i  6 m —i )

Al + д ъ + (at a'2 + a'ia2)a3 1 A4 . . .Am_i+I{R),
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it follows that

f m(E(t)) = f m((t2eu e2, ..., em-i)

~(t + t2)(teu e2, ..., em. 1) + t3(e1, ..., em_j))

f m  ( d C \  , C 2 , • • • » &m — l)  “h  ̂ f m  ( ^ 1  > • • • ’ ^ m — l)

= ^ ± ! * + 1 +/(/?) = i +i{R) ф 0,

because d = 3(mod4). Therefore, f m does not satisfy (E). On the other hand, 
f m satisfies (F) in the trivial way since all coefficients in (F) belong to I(R). It 
remains to prove that f m satisfies (C). Although Am~l f  is not multiadditive, it 
can easily be proved that so is the left-hand side of (C). Consequently, we can 
check (C), as before, for multiples of the base elements ef. Moreover, it 
follows from the form of Am~l f m that the case m = 4 is sufficient. Therefore 
we must prove that

/  (PAx + By + Cz) + f  (Ax + PBy + Cz) + /  (Ax + By + PCz)

= (P2 A- 2P) f  (Ax A -By A- Cz).

A direct computation shows that the left-hand side is equal to 

g (Ax + By) PC + (g (PAx + By) + g (Ax A- PBy)) C

-I- ( P A x  A- By) A- h (Ax A- PBy)) c' -I— —  h (Ax -f By) (pc' + p' c)

d - 1 _ d - 1
= g (Ax + By) PC H— —  (ab’ + a' b) p' C A— —  (ab' + a' b) (pc' A-p'c)A-I (R)

— P I/g(Ax + By)C + ̂ —̂ L(ab' + a'b)c' + I (R ) )j = (P2jr2P)f  (Ax + By A- Cz), 

as desired.

Example 4.5. (C) f > (F) for m ^  4.
Let Æ = /c[T] and К = k(T) = R(0), where к is . a field of 

characteristic two. For any F = £ a f T‘ eR  define F+ = £ a 2i T2i eR and
i i

F~ = £ a 2i + 1 T 2i+ieR  so that F = F +A-F~. Since F2 = (F2)+ and (FG)+

= F +G+A-F~G~, it follows that (F2G)* = F2G +. Therefore, we can 
extend ( )+ to a к-endomorphism of К  defined by

f F V  _(FG)+
\ g J ~  G2

and preserving square multiples.
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Let us define /  : Km 1 -> К by the formula

f ( F i e 1+ . . . + F m_1em_1) = (Fj F2) + FjF4 .. .Fm- 1.

It is an w-application. In fact, /  satisfies (Al) since

/(G  (F, e, + ... + Fm_, ,)) = (G2 F, F2) + (GF3)2 (CF4) ■ • ■ (GF„-,)

= G"(F, F 2)+F lF 4 ...F „_ ,

= G " /(F , e ,+  . . .+ F „ _ ,e m_1).

To prove (A2) observe th a t/is  obtained from a form of degree m over k, and 
hence d m/ i s  w-linear over k. We show that in fact Amf  = 0. Because of m- 
additivity it suffices to prove that (Amf) (F l , ..., Fmeim) = 0. It is so if 
! / ,  ..., im] £  ! l , . . . ,m —1], by the definition of/. It remains to check that

(Amf) (F 1 eu  ..., F{eb F\eh ..., Fm_1em_1) = 0,

or, equivalently, that

(Am~1 / ) (Fi , ..., (Ff + F;)elf ..., Fw_, еи_ t)

= {Am~1 f ){Fl el , ..., F,*?,-, ..., Fm_1em_1)

+ (dm~1/)(^i<?i, ..., f ;^-, ..., Fm_1^m_1).
This is obvious, since

(Am- i f ) (F l e1, . . . , F m- 1em- 1) = (Ft F 2)+ F32 F4 ... Fm_, 

and ( )+, ( )2 are additive.
Observe that /  satisfies (C) since ( ) = Am~l f  is multiadditive and

m- 1
У! (Fj , • • •, GF, €(, ..., Fm _ j i )
i = 1

= 2(GFj F 2)+ F 32 F4 ... Fm_ ! + (Fi F2)+ (GF3)2 F4 ... Fw_ ,

+ (m -4)G (F1F 2)+F 32F4 ...F m_1 

= (G2 +(m —4)G)(Ft F 2)+ F2 F4 . . .Fm_ x 

= (G2 + (m -2)G)(F1e1, ..., Fm_1em_1).

On the other hand, (F) is not satisfied by /  since 

F(T, F2) = (T — T2){T2eu  e2, ...,

- ( F 2-  F4)(Fel5 e2f ..., em-i)  —(F5 — TA)(ex, ...,

= ( F -  F2) F 2 — (F5 — F4) = F3- F 5 #  0.
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