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Forms and mappings. III. Regular m-applications

Any mapping obtained from a form of degree m satisfies two known relations: it is
homogeneous and its m-th defect is m-linear. The paper yields the third relation for such
mappings, which is independent from the choice of the base ring R. This gives us, for n < 1 and
n> m—1, a presentation by generators and relations of the modules I™"(R) defined in [3], or,
in the terminology of [5], a strong system of n-covering relations of the functor Hom™
constituted by mappings mentioned above.

Introduction. Let R be a commutative ring and let M and N be R-
modules. For any mapping f: M —>N define the n-th defect
A"f: Mx...xM—>N of f(n=0,1,...) by the formula

I —

AN s xd = X (D)7 ).

H <{1,n] ieH

This is, obviously, a symmetric function. Moreover, 4° f = f(0), 4* f =

f—=f(0) and
(') (A"+lf)(x0a LR X”)
=(Anf)(x0+xla X2y eeey xn)_(Anf)(XOa X2y oves xn)_(Anf)(xla cres xn)'

Consequently, 4" f can be defined inductively, and it is easy to see that
(4710, =) =0 for n> 0. The mapping f is called an m-application if it
satisfies the following conditions:

(A1) flrx)=r"f(x) for any reR and xeM,
(A2 A™ fis m-linear.

In the natural way we obtain the functor of m-applications Appl™:
R—Mod® x R—Mod - R—Mod. Any m-application on M factorizes by the
standard m-application 6™ M —A™(M) =R |6"(x); xeM!, and hence
Appl™ is represented by 4™ (see [3] or [1]). Since Appl® and Appl' are
well-known functors of constants and linear mappings, we will assume in the
sequel that m > 2. Consequently, f(0)=0 for any m-application f in
question.
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Let I'"(M) denote the m-th divided power of M. Consider the mapping
™ M —>T™(M):= R {x"; xeM) < I'"(M) defined by y"(x) = x"™. Observe
that ([3], (4.5)

(o @y (xy, onx)= Y XXM e (M),

my+..tmy=m
my,....m, >0

and hence y™ is an m-application. This gives us an epimorphism
" = hm(M): A™(M) = T™(M), ™6™ (%) = y"(x).

Any mapping f obtained from a form of degree m in the usual sense or (more
generally) in the sense of N. Roby (see [6]) factorizes by y™, and hence fis an
m-application. Consequently, in the notation of (3], Hom™(M, —)
c Hom™ (M, —) < Appl™(M, —), where Hom™(M, —) is the subfunctor
of Appl™(M, —) represented by I'™(M). The last inclusion is an equality iff
h™(M) is an isomorphism.

It follows from [3], Section 4, that the investigation of A™ on free
R-modules reduces to the study of restrictions h™": 4™"(R) - I'™"(R),
where

A™"(R) = R (4" 6™ (ri ey, ..., Tn€,); 1y ..., T,€ER} c A™(Rey @ ... ® Re,),
™"(R) = R YA"y™(ri ey, ..., TneD); F1y ..., T,€R) < T™(Re; ®... D Re,)

(see also Section 3). In the present paper we study A™™ *(R) and h™™"1,
Section 1 yields some relations in A™™~!(R) and a sufficient condition for
h™™=1 to be injective (Theorem 1.7). In Section 2 we introduce an additional
regularity condition (A) and its consequences (B}«(F) (Proposition 2.5). We
prove in Section 3 that (A) is the generating relation of Ker(h™™ 1)
(Theorem 3.11). Finally, in Section 4 we give examples of irregular m-
applications. In particular, Example 4.5 answers negatively the concluding
question of [2]: there is a 4-application over a field which is not obtained
from a form of degree 4.

1. Relations. For the study of m-applications, we need a number of
conditions following from the defining ones (see introduction).

LemMa 1.1. Any m-application f satisfies relations

0 S (=0 (7 )f Geiy) = mt £,
i=0 /

() f(—l)m-f('f)(mf)(ix, —-)=0 for n>1.
=0
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Proof. It follows from [6] or from Remark 14 of [1] that
4™ N, ..., y) = m! f(y). Moreover,

m—1 m—
@)y o= 3 (=0 (")) = f e+ ).
i=0 !
Consequently, .

ml f)=UA")y, ... ) =A"NHx+y,y, ..., p=4")(x, y, ..., y)
m-1 m—
=% = (" i = £ e+ G+ D)
i=0 !
o (" (7)) e

=0 () i,

i

Mz iD= 0

]

Using (i), we compute that
Y (=0 (")l ) ixi, xa, -y 3
i=0 L.

= 3 (S o (e 3 x,-))

1eH <[1,n) JjeH\!1}
b3 (i (T s)
1¢H <[1,n] i=0 t jeH
= Y (=)"Mmlfx)+ Y (=1)"Hm!f(0)
1eH <[1,n) 1¢H <[1,n}
=( T (=) mlf(x) =0
H' <{2,n] .

since [[2, n]l = n—1 > 0. This proves (ii).
Remark 1.2. Relation (i) for m =2 and x =z—y gives us the ‘law of
parallelogram’:

fE=+fz+y) =2f@@)+2f ().
Similarly, for m =4 and x =z—2y, we obtain the formula
fE+29)+f(z-2y) =4f+Y)+4f(z—y)—6f(2)+ 241 (y).
Substituting f(a+b) by (42 f)(a, b)+ f(a)+ f (b) we éet
(42 1)@, 2)+(8% )z, —29) = 4((4* 1)z, N+(42 ), ).
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A more general relation
(A2 )z, ry)+(A* )z, —ry) =12 (4% )z, ) +(4* )z, —y)), TER,

is fulfilled by y* (see {!!)) and hence by any f eHom* (M, N).
Let f be an m-application (for instance, let f = ™) and let (x,, ..., X,)
denote (4" f)(x4, ..., x,) for n > 1. Then condition (Al) gives us

LemMma 1.3.

(a) (—xla"'-9 _xn)=(_1)m(xl$"'9xn)’

(b) (xla LR ] xn)+(_xla X3y eeey xn) = _(_xl, X1y ey xn),
© (=D (=Xgs ey =X Xis veey Xp)
i=1

= (g ey X F (= D5 (= X1, eey = Xgy Xgs1s -0 Xu)s

" ) 2(xy5..-5 X)), m#* n(mod?2),
(d) i=zl(—1)‘(-x1,..., -—xi,xi,...,x,l)={0 ! m = n(mod ),
(e) .Z(—l)i"‘(xl, — X2y eees = Xiy Xiy eey Xp)

-
1]
N

Y (xgs s X) = (= X1, X, ..., X,),  m# n(mod 2),
Tl (%gs ooy X))+ (=X, X2, ens X)), M = n(mod 2).

Proof. (a) and (b) are obvious (see (!)), (c) follows from (b), because

(—l)i(—xl, veny = Xjy Xiy oo es x,,)
i=1

= Z (—l)i—l((—xla ceey T Xj—1s Xjy oe s xn)
i=1

+(—x1, veey = Xjs Xjg1s cens x"))

=(Xpy ooy X)F (=1 T (= X1, sy =Xy Xgg15 0005 Xn)-

Finally, (d) and (e) follow from (c) and (a).
Let now (x, —) =(4"7' f)(x, =) and (x, y, =) = (4" f)}(x, y, —). The
above lemma (for n = m—1) and condition (A2) give the following corollary.

CoroLLARY 14. For any reR

() (rx, —)+(=rx, =) =r3(x, x, =) = r2((x, =) +(=x, —)),
(2) (rx, ——)-—(—rx, _) =r((x9 —)'—(—X, —))9
3 20x, —)

=rr+1(x, =)+rr=D(=x, =) =2r(x, =)+rr—1(x, x, —),
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m-1
(4) 2(x1,---, xm—l)= Z (xla-”a Xis Xiy vy xm—l)
i=1

=('xl, cees Xm—1> x1+ "‘+xm-—1)’

(5) (—xlﬂ'”’ ~ Xs» xs+19"-’xm—1)

= (= s =D(xy, ..o x,,,_l)+‘;(x1, e =Xy ees X 1))

m-1
(6) . Z (x1,..., —xi,...,xm_1)+(m—3)(x1,..., xm_.l)=0.
i=1

Proof. (1) follows from (b), (2) follows from (e), (4) follows from (b) and
(e), and (3) follows from (1) and (2) or from (4). (5) follows from (c) and (1)
since

(Xl, [REY} xm—1)+(_l)s—l(_x15 ceey T Xgy Xgp1y oeey xm—l)

S
= Z (X1 ees Xis Xis oeny Xpn—1)
i=1

s
= 5(Xgs cens Xmo 1) F 0 (Xpy ooy = Xiy oy X q)-
i=1

Finally, (6) follows from (5) and (a).
Let f =6™ R™ ! > A™(R™" ). Write
5 = R !(ela ey em~l)7 (_ela €2, 000y em-l)s ey (e17 ey _em—l’ em—l)}

— Am,m—l (R)
The above formulas give the following proposition.

ProrosiTiON 1.5.

0y , 24™m=1(R) < §.

(2) 2Ker(h™™ 1) =24™m"1(R) nKer(h™™ ') = § nKer(h™™" 1) = 0.
Proof. It follows from conditions (4), (1) and (6) of Corollary 1.4 that

m-—1
2(ryey, coos o1 €mey) =TTy (Y Tiley, s €, €y ey €my))
i=1
m—1
=7 Tmor (Y rillrs -oos emo1)+eyg, ...r —e;, )]
i=1

=r et ((F o APy — (M=) )eys ..., o)+

m—2
+( Z (ri_rm_l)(el, ceey =€, ..., em_l))E6.
i=1
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This proves (1). It remains to check that 6 » Ker (k™™ ') = 0. By formula (!!),
m—1
h”'((xl, s X)) = (AT (X e Xeg) = Z Xy oo X Xy
i=1

Write g, =e¢;...6?...e,_, and o=a;+...+4a,_,. Then
hm™m-le,, ..., em—1) =0 and h™™ (e, ..., —e;, ..., €u_1) = 20;—0. Sup-
pose that :

m-—2
z=r(ey, ..., en-1)+ 3 riley, ..., —€, ..., e,_;) €Ker (k™" 1),
i=1

m=—2
Then ro+ Y r;(2a;—0)=0 and hence r=r +...+r,_, and 2r, =...
i=1
...=2r,_, =0, because o,a,,...,d,-, are linearly independent in
I'"(Re,®... D Re, ). Consequently, '
m—2

z= Z ri((el9 "-sem—l)+(e1’ ey —ei) ey em—l))=0

i=1
because of the following lemma:
Lemma 1.6. If 2r =0 then r(x, x, —) =r((x, =)+(—x, —))=0.
Proof. It follows from Corollary 1.4(2) that r((x, —)—(—x, —))
=(rx, —=)=(—rx, =) =0.
If 2 is invertible in R then Corollary 1.4(3) gives the following formula:

(rx, _)=r(r;-1)(x, _)+r(r2—1) r(rz—l)

We will prove that the same holds in the more general case when 2 divides
r(r—1) for r €R, that is, in the notation of [3] and [4], if I(R) = (r*—r;r€R)
is equal to 2R. Observe that r(r—1) =2a = 2b implies that a(x, x, —)
=b(x, x, —), by Lemma 1.6.

(=x, =) =r(x, =)+

(X, X, —)

THeEOREM 1.7. If m = 3 then the following conditions are equivalent:

(1 I(R) = 2R,

) 4™ 1(R) = 9,

3) TRy = (),
“4) R/2R  is a Boolean ring.

If the above are satisfied then

6 (x, =)=r(x, =)+alx, x, =) =(+a)(x, —)+a(—x, —)
Jor 2a=r(r—1)
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and
(6) Ker(h™™ 1) = 0.

Proof. (1) = (2), (5), (6). Because of [3] (Lemma 5.1 and Corollary 3.6)
we can assume that (R, M) is a local ring. It follows from Proposition 5.5 of
[3] that I(R) =M if R/M x~ Z, and I(R) = R otherwise. In the first case,
any reR is of the form 2b or 2b+1 for some beR. By Corollary 1.4(3),

(bx, —) = 2(bx, —)+(bx, bx, =) = 2b(x, =) +b(2b=1)(x, x, —),
and hence
((2b+1)x, =) =(2bx, —=)+(x, —)+(2bx, x, =)
= (2b+1)(x, =)+ b(2b+1)(x, X, —).

Consequently, (rx, —) =r(x, —)+a(x, x, =) =(r+a)(x, —=)+a(—x, —),
where 2a =r(r—1). The same formula holds, obviously, if 2R = I(R) =
Hence 4™™ ! (R) = by Corollary 1.4(5) (6), and finally, Ker (™™~ !) = 0, by
Proposition 1.5 (2).

(2) = (3) is evident.

(3) = (1). It follows from the proof of Proposition 1.5 (2) that

m-—2
hm=1(3) = Ro @ @ 2Ra,
i=1
where g, =¢,...¢{*...e,_; and 6 =a;+ ... +a,_,. On the other hand,

m~—2
rmm=1(R) = Ro ® @ I(R)q;

by [3], Theorem 5.9 (1). Since m > 3 it follows that I(R) = 2R.

(1) < (4). Since I(R/2R) = I(R)/2R (see [3], Lemma 5.1) it follows that
I(R) = 2R iff I(R/2R) = 0 iff R/2R is a Boolean ring.

It is proved in [4],- Proposition 2.7 (3), that I(R)Ker(h™™ 1) = 0 for m
=3, and hence Ker(h*?) =0 provided that I(R) = R. Example 4.5 below
shows that this is not true in general. Namely, for R = Z,(T) we have I(R)
=R and Ker(M™™ 1) %0 for all m>4

2. Regular m-applications. Let us assume in the rest of the paper that m
= 3. An m-application f: M — N over R will be called regular 1f( y=A4""1f
satisfies the following condition
(A)  (rx, sy, =)—r(x, sy, =)—slrx, y, =)+rs(x,y, =) =0

for r,seR and x, yeM.
In the natural way, we obtain the functor Appl™ R-— Mod® x R—Mod

—R—Mod of regular m-applications, which is an equationally definable
functor in the sense of [5]. Then [5] gives us the following corollary.
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CoroLLARY 2.1. (1) Appl™ is represented by the functor A™: R—Mod
— R —Mod defined by

A™(M) = A™(M)/A™(M) = R {5"(x); xeM}, A"(f)(E"(0) = 6" (f (x)),
where
A™(M) = R \(rx, sy, —)—r(x, sy, =)=s(rx, y, —=)+rs(x, y, —);
r,seR, x, y,...e M},

()=A4""16" and 8™(x) denotes the class of 8™(x) in A™(M).
(2) A™ preserves direct limits and Grothendieck sequences.

Moreover, formula (!!) gives us the following corollary.

CoroLLARY 2.2. (1) Hom™ < Hom™ < Appl™ < Appl™.
Q) b A qgm S pm ohere ™ (8™(x)) = y™(x) = x™.
Proof. It suffices to check that Hom™ < Appl™, or, equivalently, that

y™: M —TI'™(M) is a regular m-application for every R-module M. This can
be proved directly using the formula

m—1
@A™ ™) Xy oy X)) = D, Xpo X2 Xy
i=1

We prove in Section 3 that A™™~1: gmm~1(R) > [™™~1(R) is an iso-
morphism, or, in the terminology of [5], that Appl™ is an (m— 1)-covering
functor of Hom™. In particular, 4° and I'® coincide on the category of flat R-
modules (cf. [4], Section 3). It follows from [5] that (Al), (A2) and (A) are
the only covering relations of Hom™ which are strong (i.e., independent from
the choice of R) for any m > 3. This explains the expression ‘regular’.

It follows from [3], Proposition 3.5, that any m-application f: M >N
can be localized to an m-application over Rg

Js: Mg —Ns,  fs(x/s) =f(x)/s"
for any multiplicative subset S of R. We prove the following result.
LEmma 2.3. Any localization of a 'regular m-application is also regular.
Proof. Relation (A) allows us to compute that
s?(ax, by, —)—as(sx, by, —)—bs(ax, sy, —)+ab(sx, sy, —) = 0.

Hence
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= sz(st)"'(SZ(axl’ bXsy X3, «eey Xy 1)—as(sXy, bX3, X3, ety Xpe 1)

—bs(axy, $X3, X35 -y Xm—1)+ab(sxy, $X5, X3, ...) Xp_1)) =0,
as desired.
As in [3], Section 3, we obtain the following corollary.

CoROLLARY 24.

E
(1) AR (M)s =~ A (Mg), - A O
2 A™"(R)s =~ 4™"(Ry),
(3) Ker (hg")s = Ker (hgy),
“4) Ker(hg") =0 iff Ker(hk,)=0

for any prime (maximal) ideal P in R.

For the study of regular m-applications f: M — N we need another
relations, mentioned in the proposition below, which are satisfied by ()
= 4™ ! f. Each of these relations gives us a strong equationally definable
functor contained in Appl™.

ProrosiTiON 2.5. Any regular m-application satisfies the following rela-
tions (r;, r, s€ER, x;, xe M)

B) (r1x1, s Fe1 Xm—1)

= Z PpeeeFioe Pt (Xqs ooy Xim gy Fi Xy Xit g ooy Xim—1)
i=1
—(M=2)ry .l (Xgy ey Xy )y
m—1
(C) C(r):= Z (xly"-’ xi*larxi’xi-i-la"-’xm—l)
i=1
—(FPP+m=21)(xy, ..., Xm—1) =0,
(D) D(r, s):=(rsx, —)—r?(sx, —)—s(rx, —)+rts(x, =) =0,
(E) E@):=(*x, =)=(r+r))(rx, =)+ (x, =) =0,

(F)  F(r,s):=(—r?)(sx, =)=(s—=s)(rx, —)—(rs*~r?s)(x, =) =0.
More precisely, for any m-application,

(A) <>(B) = (D) = (E) = (F)
4
©
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Proof. (A) < (B). It is easy to see that (B) = (A). Assuming (A), we

prove by induction on k that
k
(rlxl, coes Fi Xis _)= Z rl...r,-...rk(xl,..., xi-l,r,-x;, xi+1, ey xk, —)
i=1
—(k_l)rl...rk(xl, cesy xk, _).

The formula holds evidently for k = 1, 2. If it is true for some k < m—1 then

=)

o Fer 1 Xk+ 1

(rlxl,..
k
= Z FpoeaFiee B Xy ooy 1 Xiy ovns Xpy Tkt Xt 15 =)
i=1
—(k=1ry...r(xg, oo X Tt 1 Xack s —)
k
= Z PyooiBioe Mg (X0, ooy FiXis ovvs X Xit 15 -)
i=1
k
+ 3 e (X e X Tt 1 Xar 15 )
i=1
k
—Zrl'-~rk+l(x19---’xk+1, )
i=1
-)

—(k=1)ry .o (X, ooes X Pt 1t X+ 15

P Pt (X s T Xy ey Xkt <)

i=1
—krl ...rk+1(x1, .o

Ii
™
~
-

o]

oy Xp+1> _)7

as desired.
(B)=(C). It follows from (B) that

P01 caey Xpeq) = (FXq,y oeey TXpp— 1)

m—1
=172 Y (Xyy eees PXiy eny Xog) —(M=2)r" 71Xy, ooty Xpyey)s
i=1

and hence r"~2C(r) = 0. Observe that

m=—1
eey xm_1)+(x1, cees SXi, oy xm_l)

Cr+s)= Y, ((xg, ..., rx;, .

i=1
+rs(xy, .. s Xp—1))

ey Xjo Xjy ves

—(rP+2rs+s2+(m—=2)r+(m—2)8)(xy, ..., Xpp—1)

=CM)+C()+rs((xgs - or Xpy—1> X3+ o + X q)
’ xm—l)) = C(r)+C(S),

_‘2(xl, cee
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by Corollary 1.4 (4). Since C(1) =0, it follows that C(r) = C(r+1), and
hence r™~2, (r+1)"~ 2 €Ann(C(r)). Consequently, no maximal ideal contains
Ann(C(r)), that is, C(r) = 0.

(B) = (D). Using (B) and its consequence (C), we compute

FM(SX1y Xy ovvy Xpue1) = (FSX1, FXgy cvvy FXppe 1)

=1"T2(rsxy, Xgy ooy Xpe1)
m— 1
FPT2S Y Xy ees Py ey X )= (M=) 7™ 15Xy, ooty X 1)
i=2

=r"T2(rsX,, Xay ey Xpe 1)

=T 25(FX gy X2y eees Xme 1) FPS (X1, ooty Xme 1)-

This means that r™~2D(r, s) = 0. Moreover, by Corollary 1.4 (3),
D(r+r,s)=D(r, s)+D(, s)+rr's?(x, x, —)—2rr'(sx, —)
—srr’(x, x, =)+ 2rr's(x, —)
=D(r, s)+D(r, s). ‘

Since D(1,s) =0 it follows that D(r+1,s)=D(r,s), and hence r™ 2,
(r+1)""2eAnn(D(r, s)). As above, we obtain D(r, s) = 0.

(D) = (E). Observe that E(r) = D(r, r) = 0 by (D). (The more general
formula

(Fx, =)=r"YA4+r+ ...+ Yx, =) =r 1 A+r+ ...+ H(x, —)

can be also proved by induction on k with the aid of (D).

(E) = (F). Observe.that F(r,s) = D(r, s)—D(s, r) = D(r, s)+ D(s, r) since
2D(s, r) = 0 by Corollary 1.4 (3) or Proposition 1.5 (2). Moreover, D is biad-
ditive, as follows from above and from the symmetric consideration. Conse-
quently, F(r,s) =D(r+s,r+s)—D(r,r)—D(s,s) = E(r+s)—E(r)—E(s) = 0.

Remark 2.6. If m=3 then (A) < (B) < (D) and the remaining
relations hold for any 3-application (see [4]). Section 4 shows that for m > 4
the implications in Proposition 2.5 are proper in general. Moreover, (C) &
(D) # (A), (C) & (E) # (D), and (C) & (F) > (E). However, it follows from
(F) that I(R)D(r, s) = 0, and hence (D) <> (E) <> (F) in the case of I(R) = R.
(This is satisfied, for example, if R is a field with more than two elements.)

3. Determination of Ker(h™™™!). As follows from [3], Section 4,

k
"M ®...0M)= D @  am(M;

n=11<jy <...<j,<k

M;,),

ERERE

k
A"M, ®..OM)= @ ®  AmM;, .., M),
n=11

€jy <o <jp<$k

10 ~ Commentationes Math, 28.2
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"M, ®...OM,) = é @ amn(M;,, ..., M;),
n=11%jy <...<j,<k
where
A™"(M,, ..., M,) ~R (Xys ooy X); X, €M) cA™M, @ ... M,),
A" My, oo, M) =A™ (M, ..., M) A" (M, ®...® M,),
Am(My, ..., M,) = A" My, .y MYJA™ (M, ..., M,).

Since h™m: gmm 5 Fmm (see [3], Corollary 4.2) it follows that A™™ =0 and
Zm,m = Amm

Lemma 3.1. A™" " "(M,, ..., M,,_,) is generated by elements
(X1 ey PXiy ooy 8Xjy veey Xgpe 1) =1 (Xg5 ey SXjy ovey X y)
=S (Xgs aaey FXiy aeey Xy ) HIS(X1, ooy Xppo1)s
I<i<j<m-1,r,seR, x,eM,.

Proof. Let us denote the above element by A(xy,..., X,,—(). Then
A"‘(M, ®.. @M,,, 1) is generated by all eclements of the form

(Z Xijs e Z Xm-1,) Where x;eM;. Since A™" =0 it follows
that A is multladdmve (this can be also computed directly). Then the
generator is of the form ,mzl A(Xyjys oovs Xmo1,j,_,)- It follows
from () that all summands V\’Jl';hl;:—], (for some s #1t) belong to
A"‘"(M,l,.. M;) for some k <m-1 and some 1<z1 o< <m-1.

The remaining summands belong to A™™ " '(M,, ..., M,,_,) and have the
desired form. ' _

As in introduction, we restrict our consideration to the case of M,
=...=M,_, =R, and we denote the base elements by e;,..., e,-1,
respectively. In the preceding notation, A™™ !(R, ..., R) = 4™™ !(R),
A™m~ (R, ..., R) = A™™ 1(R), etc. Then Lemma 3.1 gives us the following
corollary.

COROLLARY 3.2. A™™~1(R) is generated by elements
Aij(rys s ) =(r1€1, ooy T 1 €m_1)
—ri(ri€1y ces €y ooy P11 €p—1)
—ri(rieg, ..., €, s F_1€n_1)
+riri(rier, oo €y s €y iy Ty 1 € 1)

for 1 < j<m—1and ry,...,r,-1 €ER.
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Proof. It suffices to compute that
(rieg, ..., i€, ..o, STi€js ooy Ty € 1)
—r(ryey, ..., STi€jy ey Tyt € 1)
—S(ry€y, s 1€y s P 1€ ) HTS(Fi €y, ooy P 1 € 1)
=Aij(ryy oy Ty oy STy oy P ) =T A (T, o STy oy P y)
—=SA;j(ry, o Ty o T ) FTSA (P, oy T y).

_ We will prove that the kernel of the homomorphism pmm=1. gmm=1(R)
—-I™m~1(R) is equal to A™™ '(R), or, equivalently, that A™™ !(R)
~ [™m=1(R) by k™™ ! For this goal some auxiliary constructions will be
needed.

m-—

_ 2
Recall that ™™ ' (R)=Ro ® @ I(R)a;, where g, =e,...e?...ep_,
i=1

and 6 =a,+ ... +a,-,. Let p;: ™™ Y (R)>I(R) (i=1, ..., m—2) denote
the projections. Consider the compositions

p;: gmm=1(R)EML Fmm-t(R)BLI(R), i=1,..., m=2.

It follows from (!!) that

hm'm_l("lela coos Tm=1€m=1)

m—1 m—1
=Y (rie)...(rie)® . . (rmermar) = ) Pt P
.oi=1 i=1

m—2
=Y (rye PP =A@ T O

i=1

and hence

_ 2
Pi(riey, . ...;rmey@meq) =Fy .ol = . FA_ .

Let us consider also the submodules

f . ; —
Ai =R |(€1, ey €1, 7€, €141, ...,em_l), rER}, 1= 1, ey m—2

of A"hm—l(R), Note that Pi(ey, ..., re;, ..., ep_y) = r2—r and P,'lAj -0 for
i #j.

ProposiTioN 3.3. (1) 4™ Y(R) = A, 4 ... + A,y , + A™™ 1 (R).

(2) The formula K = (4, N K)+ ... +(4,—, 0 K)+A™" ! (R) holds for K
=Ker(P,) n...nKer(P,_,) and for K = Ker(h™™™ 1),
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Proof. Let 4, denote the image of 4; in A™™ '(R)for i=1, ..., m—1.
Since 6™ is regular, it satisfies relations (B) and (C) of Proposition. 2.5.
Consequently, A™™ '(R) =4, + ... +4,,_,and 4,,_ < 4, + ...+'4,,—>.This
gives us (1). The formula in (2) holds for K = Ker(P,)n...nKer(P,_,)
because A™™ !'(R) cKer(h™™ ') =K and 4, (\Ker(P;). Since

! j #i
Ker(p,)n...nKer(p,-,) = Ro = Rh™™ (e, ..., €,_1) ejlnd o is linearly in-
dependent, it follows that K = R(ey, ..., e,—;) ® Ker(h™™"!). Hence the
second version of the formula can be easily deduced from the first one.

The above proposition reduces our consideration to the study of restric-

tions h™™~ 1| 4- By symmetry, we can consider one of them only, say, for i
= 1. Let us denote A(R) = 4,, ['(R) = R ®I(R)a,, h = h(R) = hm'm—lhl, p
= —"pllftR), P == _PllAl’ € =g and (x’ —) =(x’ eZa cees em_l)’ SO that
A(R) = R(re, —); reR} = 4™™ (R),
P: A(R)MELT(R) BI(R),  (re, =) oro+(r?—r)a;—r—r?.

Moreover, let us denote by D(R) the submodule of 4(R) generated by
elements

D(r, s) = (rse, —)—r*(se, —)~—s(re, —)+r*s(e, —), r,seR.
It follows from Proposition 2.5 that

D(R) = A™™ Y (R) n 4(R) < Ker(h™™ ') n 4(R) = Ker (h(R)).
We prove that in fact D(R) = Ker(h(R)), and the arguments are similar to
those of [4], Section 3.

Lemma 34. (1) Ker(P) = R(e, —) ®Ker(h), Im(P) = I(R).

(2Q) Pwv—P(@wuecR(e, —)+D(R) for any u, ved(R).

(3) PIM)N+R(e, —)+D(R) = P(NNM+R(e, —)+D(R) for any sub-
modules M, N of A(R). .

' 4) I(R)Ker(P) = R(e, —)+D(R), I(R)Ker(h) = D(R).

Proof. To prove (1), it suffices to observe that Ker(p) = Re = Rh(e, —)
and that ¢ is linearly independent. In the proof of (2), we can assume that u
=(re, —) and v = (se, —) for some r, seR. In this case,

Pwv—P(w)u = (r—r?(se, —=)—(s—s?)(re, —)
= (rs>—r2s)(e, =)+ D(r, s)—=D(s, 1),

as desired. Finally, (3) follows directly from (2), and (4) follows from (3)
and (1).

Lemma 3.5. For any ueAd(R),
u =(P(ue, —)mod(I(R)A(R)+R(e, —)+D(R)).
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Proof. First observe that (re, —) = ((r—r?e, —)+(r*e, —)+(r—r?) x
xr2(e, e, =) =(r—r?e, —), because (r’e, —) = (r+r)(re, —)—r’(e, —)+
+D(r, r) and (e, e, —) €4 (R). Consequently,

s(re, =) =s(r—rde, =) =s(r—re, =)+ —r?*(se, —)
—s(r—r??*(e, =)+ D(r—r2,s)

=(s(r—r?e, —).

Finally, let u =) s;(r;e, —). The above computation gives us

“EZ(Si(’”i""iz)ea _)E(Zsi(ri_riz)e: —)=(P(u)e, -),

since 4™6™ is m-linear and the coefficients belong to I(R).

CoOROLLARY 3.6. Let N be a submodule of A(R). The following conditions
are equivalent:

(1) A(R)= N+R(e, —)+D(R),

(2) A(R) = N+Ker (P),

(3) P(N) =I(R). '

Proof. Obviously, (1) = (2) = (3). Let us assume (3) and suppose that
u€A(R). Since P(u) = P(v) for some veN it follows that u =(P(u)e, —)
=(P(v)e, —) =vmod(I(R)4(R)+R(e, —)+D(R)), by Lemma 3.5. More-
over,

I(R)4(R) = P(N)4(R) = N+R(e, =)+D(R),

by Lemma 3.4 (3). Hence ue N+ R(e, —)+ D(R), as required in (1).

Lemma 3.7. Suppose that N is a submodule of A(R), uq, ..., u,€A4(R) and
P(uy), ..., P(u,) form a regular sequence on R/P(N). Then

(N+Ruy, ...,u,)nKer(P) c N+R(e, —)+D(R).
Proof. Induction on n. Let n =1 and u; = u. Suppose that veN, r eR
and v—rueKer(P). Then rP(u) = P(v)eP(N) and hence, by the regularity
assumption, r = P(w) for some weN. Consequently,

ru=P(w)u = P(u)w mod(R(e, —)+D(R)),

and finally v—rue N+R(e, —)+ D(R). Let now n > 1. Since P(u,) is regular
on R/P(N'), where N’ =N+R{u;,"..., u,_,}, the preceding case and the
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inductive assumption show that
(N+R{uy, ..., u,}) nKer(P) = (N'+ Ru,) nKer (P)
< (N'+R(e, =)+ D(R)) nKer(P)
=(N'nKer(P))+R(e, —)+D(R)
c N+R(e, —)+D(R).

Lemma 38. Let S =R[T;; jeJ]. Then

(1) In the natural way A(R) is contained in A(S) as a direct summand
(over R) and h(R) is the restriction of h(S).

QIf N is a submodule of A(R) then SN nKer(h{S)=
S(N nKer(h(R))).

Proof. (1) It suffices to observe that R is a retract of S and that h: 4
— T is a natural transformation of functors on the category of commutative
rings (cf. [3], Section 3).

(2) Let u =) fiu; eKer (h(S)) for some f; €S and u;eN < A(R), and let r;

be the coefficient of f; at a fixed monomial. Since Y fih(u)=0 in
ST(R)cT(S) it follows that Y r;h(u)=0 in T (R). Consequently,
Y r;u;eN nKer(h(R)) and hence Y fiu; €S(N nKer(h(R))). The second in-

]
clusion is obvious.

CoRroLLARY 39. Let S =R[T;;jeJ].

(1) If A(R) = N+Ker(h(R)) and (e, —)€N, then A(S)=N(S)+D(S),
where N(S) =SN+S{(Tie, —);jeJ}.

(2) If Ker(h(R)) = D(R), then Ker (h(S)) = D(S).

Proof. (1) Observe that

P(N(S)) = SP(N)+S {T,—T?; jeJ) = S(I(R), T,—T7;jeJ) = 1(5)

(cf. Lemma 1.4 of [4]). Hence 4(S) = N(S)+ D(S), by Corollary 3.6.

(2) Let N be as in (1) (e.g. N = 4(R)). Observe that any finite sequence
of different elements T,— T? = P(T;e, —) is regular on S/P(SN) = S/SI(R)
~(R/I(R)[T;;jeJ]. Then Lemma 3.7 shows that N(S)nKer(P)
< SN+ D(S). Consequently, by Lemma 3.8 (2),

N(S) nKer (h(S)) = SN nKer (h(S))+D(S)
= S(N Ker (h(R)))+D(S) = SD(R)+ D (S) = D(S).
By (1), Ker(h(S)) = N(S) nKer(h(S))+D(S) = D(S), as required.
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Lemma 3.10. If Ker (h(R)) = D(R), then Ker(h(S)) = D(S) for S = R/J.

Proof. Consider 4'(R) = A4(R)/(R(e, —)@® D(R)) and P'(R): 4'(R)
— I(R) induced by P(R). In virtue of Lemma 3.4 (1) it should be proved that
P'(S) is an isomorphism provided that so is P'(R). Let us consider

f: HRBERZLA(R) » 4'(S), r—r*—[(re, =) [(Fe, —)].

If reJ nI(R) then f(r) = f(r—r?)+rf(r) = [(Fe, —)]+7f (r) = 0. Hence f in-
duces a homomorphism g: I(S) = I(R)/J nI(R) — 4'(S), which is evidently
inverse to P'(S).

We are ready to prove the following theorem.

TueoreM 3.11. For any commutative ring R,
(1) Ker(h™™~'(R)) n4(R) = Ker (h(R)) = D(R),
(2) Ker(h™™ " 1(R)) = A™™ ' (R).

Proof. (1) It follows from Theorem 1.7 that Ker(h™™~'(Z)) =0, and
hence the equality holds for R = Z. Then Corollary 3.9 (2) and Lemma 3.10
give us the result for any commutative ring R.

(2) By Proposition 2.5, D(R) is contained in A™™ !(R), and hence the
result follows from (1) and Proposition 3.3.

CoroLLARY 3.12. (1) A™"~'(R) ~ A(R) = D(R).

(2) A™m~Y(R) ~ ™™~ Y(R) and hence ([5]) Appl™ is an (m—1)-covering
Sfunctor of Hom™.

(3) Ker(h™™ 1 (R)) = Ker (k™™ ' (R/I)) is an epimorphism. (Cf. also [5],
the Main Theorem 6.2.)

4. Irregularity in examples. In this section we show that there is in
general (for all m > 4) no implication between conditions (A}F) except of
those indicated in Proposition 2.5 (cf. Remark 2.6). Examples 4.1 and 4.3
show also that in general A, + ... +4,_, E4;+ ... + 4y 4™ (R) (cf.
Proposition 3.3). Moreover, Example 4.5 shows that Hom* and Appl* are
different over fields k(T) with char(k) = 2, what answers negatively the
concluding question of [2].

In all the following examples we consider m-applications f: R™™! =N
satisfying the following property:

f(ries+ ...+rme1em_y) =0 if some r; = 0.
Consequently,
flriei+ ... +rpien ) =A™ N)rier, ., 1 m-1)

=f7("191a ciis Tm—18m—1),
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where f: A™™1(R) » N is the induced homomorphism. Moreover,

A" f) (e, o) =0 i iy, ey i} £ 11, m—11

Except of Example 44, we have also A" f =0. In this case, 4™ ! f is
multiadditive, and hence it is completely determined by the values
(rieg, ooy rme1€m—1) =A""1f) (riey, ..., "m—1€n-y). This allows us to
check formulas (C)HF) for x; €eRe; only. It can be proved, however, that the
left-hand sides of those relations are multiadditive (in variables x,, ..., X,,_ ),
and hence in fact the condition 4™ f = 0 is not needed. This remark is used
for relation (C) in Example 4.4.

The last useful remark is following: a product of an m-application and
an n-application (with values in some R-algebra) is an (m+ n)-application.
This follows from the formula

(A1 (x15 s x) = 2 (A ) (Xifs oo Xi)(A 9 (X555 X)),

where the sum runs over all systems (iy, ..., i, ji, ..., Jj;) satisfying the
following conditions: k, [ >0, 1 <i; <...<i <s, 1 <j; <...<j;<s, and
{ivy eeor ity j1roesii} = {1, ..., s}. In our case, s =m+n implies, obviously,
k =m and [ = n, because the remaining summands are zero.

ExampLe 4.1. (C) & (D) # (A) and 4,+ ... +4,-; 4™ (R) for
m=4. Let R=S[T,...,T,-,], where I(S)#S, and let N=
R/(I(S)’ T"Za [ERE] Tm—l) = S/I(S)

Define f: R™™! - N as follows:

f(Al e, +... +Am_1 em_l) = det(a,,)modI(S),

where A, =ay+a, T+ ... 4+a,-1 T+ ..., i=1,...,m—1. (This con-
vention is also assumed in the sequel) The mapping f satisfies (A1) since
f(A(Byey+ ... +Bp_1€pn-1)) = f(AByes+ ...+ AB,_, €,_)
=det((AB;);) = det(ay by, a3 bya+asbyss ..y Ay by 1+ 8y 1 byy)
=a,det(b,y, aybyzs -.s a1 bym_1)=a7  f(Biey+ ... +Bp_y€m-1)
=A"f(Byey+...+B,_1e,_)mod(I(S), T, ..., T,,-y).
Moreove;, observe that f is obtained fromtzf lformnsof degree m—1 over S, and

hence 4™ f = 0. This proves that f is an m-application such that Am" 1 fis
multiadditive, and the induced homomorphism f: 4™™~1(R) — N is given by

]_(Al el, ey Am—l em_l) = det(a,J)mOdl(S).
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The above value is zero if 4, = A4, for some k # [. Consequently, since m—1
>3, f vanishes on A,+...+4,_,, although f(e,, Tre,, ..., Ti_1€n_1)
=1+0. This proves that 4,+ ... +4,,_; & 4™ (R). Moreover, in nota-
tion of Corollary 3.2,

f-(Aij(l’ ’TZ’ LR ] Tm—l))=f(ela Be21 (AR Tm—lem—l) = 1 #0

for 2 <i <j< m-1, since the remaining summands have coefficients 1 at
both e, and ¢ or e;. This proves that f is irregular.
It remains to prove that ( ) = 4™~ ! f satisfies conditions

m—1

(C) Z (Ble19~--s ABiei,--"Bm-lem—l)

i=1

=(A*+(m—2)A)(By ey, ..., By-1€mn_1)
and (because of the skew-symmetry of f)
(D) (ABC,e,, Cye;,...,Cp_1,-1)—A*(BCye,, Cye2, ..., Cuy €p_y)
—B(AC e, Cyep, ..., Cp_1€p-1)+A*B(Cy ey, ..., Cp_1€p-1) = 0.

The i-th summand in (C) is a determinant with i-th row

(AB), = (a1 biy, a1 bip+az by, ..., a1 b; 1+ ay_1 biy) = ay by, +a, by,

where a, = (0, a,, ..., a,- ). Changing rows to columns we obtain that the
left-hand side of (C) is equal to

m—1

det(byy, ..or @y by +ay by, ooy by yy)
=

= (m—l)(ll det(bl*, ey bm—l*)

m-1

+ Z bildet(bl*s LEREY bi—l*, 6*1 bi+l*) (EREY bm—l*)
i=1

1

=(m—1)al(Blel, EEE) Bm—lem—l)+ Z

m-—1
bil
1 J

2. 4 M,
=
where M;; denote respective cofactors of the matrix (b;;). It suffices to observe
that
m—1
ZbilMij=0 fOl‘j?Z
i=1

and

(m—1)a, = A>*+(m~2)Amod(I(S), T, ..., T, ).



34 Andrzej Prészyhski
To prove (D), observe that the left-hand side is a determinant with the
first row equal to
(ABCl)*—AZ(BCI)*-—B(ACI)*+AZB(C1)*
=(a, by c1y, aybycra+(ayby+azbi)cyy, ..., aybycy ey
+(ay by—1 +am-1 b1 cy14)

—ay(bycyy, bieratbrcyy, ooy byCymo gt by c1y)

=by(arery, a1+ a6, -, A1 Cp 1+ -1 C11)

+a;by(c1y, €125 ooes C1m-1) =(0, ..., 0).

This completes the proof.

ExampLE 4.2. (C) & (E) # (D) for m> 3 (cf. [4], Theorem 2.10).
Let R=S[X, Y], where I(S)# S. Define f: R""! - R/I(R) by the
formula

&2 (F\ Fy)

F ...+F, _ _4{) =
f(Fyes+ ... +F,_ie,-1) aan

Fy...Fp_1+1(R),

and observe that

f(G(Fyes+ ...+ Fp_y1€y_1) =(G*FF)xyG" *F5...F,_1 +1(R)
=G*(F,F)xyG™" *F;3...F,_1+1(R)
= Gmf(Fl el+ e +Fm_1em_.1),
since (G)y = 2GGy€I(R), (GY)y =2GGyel(R) and G™ ! = G"mod I(R).
Moreover, f is obtained from a form of degree m—1 over S, and hence 4™ f
= 0. This proves that fis an m-application such that A™~! f is multiadditive.
Since f(Fyeq, ..., Fpo1€m_1) =(FyFy)xy F3...F,,_y+I(R), it follows that

f(D(X, Y))= f(XYey, e, ..., e,—y) =1 0 and hence (D) is not satisfied by
f. It remains to prove that ( ) = 4™ ! f satisfies conditions

m—1
(C) Z(Flelav--aGFieia-"7Fm—1em-1)
i=1

=(G*+(m—2)G)(Fyey, ..., Fp_y 1)
and
(E) (Fyey,...,G*Fiesy ..., Fog€m_1)
—(G+G)(Fyey, ..., GFes, ..., Foy €n_1)
+G3(Fie,.... Fporen_1) =0, i=1,...,m—1.
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The left-hand side of (C) equals to

2(GF F))xyF3...Fpy_1+(m—=3)(F{ F)yyGF5...F,_;+1(R)
=(m—-3)G(F ey, ..., Fri_y€m—y)
=(G*+(m—2)G)(F,ey, ..., Fp_1€m_1)

since G2+ G €l (R). To prove (E), it suffices to consider the cases i = 1 and
i =m—1 only. Since G+G?*€I(R) and G* = —G?*mod I (R), we must prove
that

(GzFlel, F2e2, ceey Fm_lem_l) =G2(F1e1, csey Fm_.lem_l)
=(Fiey, ..., G*Fp_ €,_1),

but these equalities follow directly from definition of f.

ExampLE 4.3. (D) # (C) and 4,,_, £ 4.+ ... +4,,_, for m> 4.

Let R=S[T]/(T*—d) =S[t], where I(S)# S and d = 1 mod I(S) (eg.
S =2Z and d is odd). Note that R[T}, ..., T,]=S[T, ..., T,][t] is also of
this kind, and hence we can take the same ring in Examples 4.1 and 4.3.
Since I(R) = (I(S), t—t*) =(I(S), t—1) it follows that R/I(R) = S/I(S)# 0.
Let us define f: R™~! - R/I(R) by the formula

f(Ajes+ ... +A_1e,-1) =(a,asa5+aia,a3) Ay ... A +1(R),
where A; denotes (in the standard convention) a;+a;t for a;, a;€S. Since d
=1 =tmod I (R) we compute that
f(B(Aye;+ ...+ A,_1e,-1)=f(BAje;+...+BA,_,e,_,)
= ((ba; + b’ a, d)(bd +b’ a,)(bas + b’ a3)
+(bdy +b'ay)(bay+b'ayd)(bas+b asd))B" * Ay... Ap-y +1(R)
=((b>b'+bb'* (aya,as;+a, ayas+a, asas
+aja,ay+a) a,ay+ayayal)
+(b3>+b7)(ay ayay+dyasa3))B" 4 Ay Ay +1(R)
=(b+b)B™" *(a,aras+a\a,a3)As... Ay +1(R)
=B"flAje;+ ... +Ap-1€m_1).
Since f is obtained from a form of degree m—1 over S, it follows that

4™ f = 0. Consequently, f is an m-application and 4™~ ! f is multiadditive.
Observe that

flAre, ..., Ap_1e,_y) =(ayara3+aaa3)Ay... A, +1(R) =0
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for A = A, =1 (since d} = a3, =0), and similarly for 4, = A; = 1. There-
fore f vanishes on 4,, ..., 4,,._,, although f(de,, e5, ..., €u_1) =a' +I(R)
proves that f is nonzero on 4,. Consequently, 4, is not contained in
Ay, + ... +A4,_,. By symmetry, combining with Example 4.1, we obtain that
A+ ...+ dp-r E A1+ ...+ 41 E A™™ 1(R). Moreover, f does not satisfy
(C), eg. for r =t. It remains to prove that ( ) = 4™ ! f satisfies (D), i..,

(Al €15 .40y BCAiei’ LR Am—l em—l)_BZ(AI €15 --0s CAieia ARRS Am—lem—l)
_C(Al.e15 tres BAiei’ Ty Am—lem—1)+BZC(Alel, cees Am—l em—l) =0.
The formula holds for i > 4. For i =1, 2, 3, it suffices to prove that the
analogous formula is satisfied by mappings g and ¢  carrying
(A ey, ..., Ap—1€m-1) to a;+I1(R) and d+I(R), respectively. In the first

case:

g(BCA ey, —=)—B*g(CA e;, —)—Cyg(BA e, —)+B*Cg(A, e, —)

= (bc+b'c)a, +(bc'+ b ¢)ay —(b+b)(ca, + ¢ a})
—(c+c)(bay+ba)+(b+b)(c+c)a, +I(R)
=2b'c'(a;—ay)+I1(R) =0,
and the second computation is similar.

ExampLE 44. (C) & (F) # (E) for m > 4.

Let R = Z[TIAT?~d) = Z[1], where d = 3(mod 4). For any A = a+a't
€R write A=a+a'eZ. It is easy to see that A+B = A+B, AB =A4-B
+(d—1)a’b'=A-B(mod2) and A = AmodI(R). Consider mappings g, h:
R?=Rx@® Ry - R/I(R) = Z, defined by
A-B-(A+B)

2
h(Ax+ By) = ab’+a’ b+ I(R) = (the coefficient of AB at t)+I(R).

We prove that f: R® = Rx ® Ry ® Rz = R/I(R) = Z, given by the formula

g(Ax+ By) = +I1(R),

d—1
f(Ax+By+Cz)=g(Ax+By)C+—2—h(Ax+By)c’ .

A'B-(A+B) . d-1
- (2+ )+ S—(ab'+a'b)¢ +1(R)

is a 4-application. Observe that
g(P(Ax+ By))— P*>g(Ax+ By)
" PA-PB-(PA+PB)—P-4-P-B-(P-A+P-B)

+I(R)

(3%
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T o
=dTp’Pz(a’B(A+B)+b’A(A+B)+(a’+b’)A-B)+I(R)

d—1 _ -
=—2—p'P2(a’B+b’A)+I(R)

d—1
=——2-p’P2(ab’+a’b)+I(R)
“and
h(P(Ax+ By)) = (the coefficient of P2 AB at t)+I(R)
= (p*+p'*d) h(Ax+ By) = P> h(Ax+By).
Consequently,

f(P(Ax+By+Cz))— P* f(Ax+ By +Cz)
= (9(P(Ax+ By))— P g(Ax+ By))) PC
+(~i%l(h(P(Ax+ By))(pc’+p' ¢)— P* h(Ax+ By)c')

d—1
=»2—P3(ab’+a’b)(p’C+pc’+p’c—Pc’)+I(R) =0,

and hence f satisfies (Al—)T To prove (A2), observe that 43¢ is 3-linear since
(4*g)(A; x+B,y, A, x+B,y, A3 x+B3 )
=A; A,B3+A B, A3+B, A, Ay +B,B,A,+B, A, B4
. +A4,B,B3+I1(R)
=A;A;B3+ A, B, A3+B, A, A3+B, B, A3+ B, A, B3
+A, B, B;+1(R).

Let /' and f” denote the summands in the definition of f. Then A*f’
is 4-linear and A4*f” =0 since f” is obtained from a form of degree 3

over Z. This proves that f satisfies (A2).
Consequently, for any m > 4 we obtain an m-application

Jm: R"™V > R/I(R) = Z,,
fm(A; e1+ “ee +Am—1 em_l) = f(Al X+A2y+A3Z)A4...Am-1.
Since
f_m(Al €15 ey Am—1€m—1)

A A+ A d-1
- (Aedathirdy g 4 (ala'2+a'la2)a'3>A4...Am_1+I(R),
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it follows that
T (E®)) =Fu((t® ey, €5, ..., €py)
—(t+13)(tey, €5, ...y €m_)+t3(er, ...y €m-1))
= f.(dey, ez, ..., em-1)+t3 fuley, ...y €moy)
_dd+1)
2

+1+I(R) =1+I(R) #0,

because d = 3(mod 4). Therefore, f,, does not satisfy (E). On the other hand,

f.. satisfies (F) in the trivial way since all coefficients in (F) belong to I(R). It
remains to prove that f,, satisfies (C). Although 4™~ ! fis not multiadditive, it
can easily be proved that so is the left-hand side of (C). Consequently, we can
check (C), as before, for multiples of the base elements e;. Moreover, it

follows from the form of 4™~ ! f,, that the case m = 4 is sufficient. Therefore
we must prove that

f(PAx+By+Cz)+ f(Ax+ PBy+Cz)+ f (Ax+ By + PCz2)
= (P?4+2P) f(Ax+By+Cz).
A direct computation shows that the left-hand side is equal to

g(Ax+ By) PC +(g(PAx+ By)+g(Ax+ PBy))C

d—1 d—1
+T(h(PAx+By)+h(Ax+ PBy)) c'+—~2~h(Ax+By)(pc’+p’ )

d—1
(ab’+a' b)(pc’+p'c)+1(R)

d—1 _
=g(Ax+By)PC+-—2——(ab’+a’b)p’C+ 3

d—1
= P(g(Ax+By)C+T(ab’+a’b)c’+I(R)) = (P?4-2P) f (Ax+ By + Cz),
as desired.

ExampLE 4.5. (C) # (F) for m > 4.
Let R=k[T] and K =k(T)=Ry, where k is .a field of
characteristic two. For any F =) a; T'eR define F* =) a,, T*€R and

F~ =Yay,; T* "' €R so that F=F*+F~. Since F? = (F%* and (FG)*

=F*G*+F~ G, it follows that (F?G)* = F2G"*. Therefore, we can
extend ( )* to a k-endomorphism of K defined by

e

and preserving square multiples.
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Let us define f: K™ ! - K by the formula
S(Fie;+...+Fp_1€n_1)=(F Fy)" F3F4...F,_,.
It is an m-application. In fact, f satisfies (A1) since
f(G(Fyey+ ... +F,_1en_y)) =(G*F, F;)* (GF3)*(GF,)...(GF,_,)
=G"(F,F,)* F3F,...F,_,
=G"f(Frei+ ... +Fp_ye,-1).

To prove (A2) observe that f'is obtained from a form of degree m over &, and
hence 4™ f is m-linear over k. We show that in fact 4™ f = 0. Because of m-

additivity it suffices to prove that (4™ f)}(Fye;,, ..., Fne, )=0. It is so if

Mgy oo il € !1, ..., m—1), by the definition of f. It remains to check that
(A" f)(Fyeq, ..., Fie, Fiey, ..., Fp_y€y_1) =0,
or, equivalently, that

(A"‘-lf)(Flel,...,(F,-+F,f)ei,...,Fm_lem_l)
=(Am~1f)(Flel,...,F,-e,-,...,Fm_le,,,_l)
+(A’"_1f)_(F1e1,...,F,fe,-,...,F,,,_le,,,_l)‘
This is obvious, since
(Am_lf)(Flela ey Fm—lem—l) =(F1F2)+ F§F4...Fm_1

and ()%, ()* are additive.
Observe that f satisfies (C) since ( ) = 4™~ ! f is multiadditive and

m—1
Z (Fiey, ..., GF;e, ..., Fp_1p_1)
i=1

=2(GF,F,)* F3F,...F,_+(F,F3)" (GF3)*F,...F,_;
+(m—4)G(F, F,)* F3F,...F,_,
=(G?+(m—4G)(F, F)* F3F,...F,_,
=(G*+(m—2)G)(Fyey, ..., Fp_yen_,).
On the other hand, (F) is not satisfied by f since
F(T, T =(T—-T}(T?ey, €3, ..., €y_1)
—(T*=TH(Tey, ey, ..., em_ 1) —(T°—=T*(ey, ..., €m—1)
=(T-T)T*—(T°-TH=T>-T> #0.
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