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Finite difference inequalities
Abstract. Discrete inequalities of Gronwall type are considered in vector lattices.

In this note we wish to establish the discrete analogues of the Gronwall’s
differential inequality [2]. Discrete inequalities of this type but in other form were
considered by many authors, see for example Pachpatte [3}-[6], Popenda and
Werbowski [8], Willett and Wong [9]. Gronwall’s type inequalities play an
important role in the qualitative theory of differential, difference, integral and
summary equations.

Before giving the main results, we first recollect a few of the basic definitions
and notions (see [ 1]). Throughout the paper E denotes any vector lattice, E, — a
subset of nonnegative elements of E, N — the set of positive integers. Denote by

/\ x;the greatest lower bound and by \/ x;the least upper bound for the system
1 j=1

\X;j}j=1....n of elements of the lattice E. For any two elements we shall always
denote these two bounds by x A y and x v y; they exist by the definition of a
lattice. The symbol “<” is used for order relation. For xeE, (x), :=x v 0.

Furthermore we define
0
j=X A /\Xj=x, ZXI'=O, “aj=l.
; jm1

The order relation in a vector lattice has the following properties:

n n
(i) x<\Vx, NAx<x forany x, k=1,...,n, x€eE;
i=1 j=1
n n n n n n
(1) Ax< Ay VsV YLx<Yy
i=1 j=1 i=1 j=1 j=1 j=1

for any x;, y;eE such that x;<y;, j=1,...,n;
(i) Vgt < Vxg+ Vo V=V x+ Vy
j=1 j=1 i=1 izi j=1 i=1

for any x;, yyeE, j,k=1,...,n;
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(iv) if x <y then ax < ay for any ae {0, ®), x, yeE;
if xeE, and a < b, a, be(— o0, o) then ax < bx;
(v) xviyv+z)<xvy+(z), forany x,y,:zeE.

LEMMA. Let y,z: N—E, a: N - (0, ). If

(1) yn+1 < anyn+zm neN,
then
n—1 n—1 k
) w< [Taln+ X (J1a7a],  neN.
j=1 k=1 j=1
Proof. Taking into account property (iv), we have from (1)
k k—1 k
(IT & DYyies 1 =TT a7 Yy < (1T 057 )2
ji=1 j=1 ji=1
Hence, by (ii),
n—1 n—1 k
([T a7 Y ym=yi < X ([T a7 ")z
j=1 k=1 j=1

Estimation (2) follows now from the above inequality and (iv).
THEOREM 1. Let x,w: N—E,, v: N> E, b: N> (0, «). If

(3) Xn+1 < v,,"‘ Z Wj \" bij-, nEN,
i=1
then
n-1 k+1
(4) Xp4q SU,+ n (1+b)[W1 v by x+ Z (H (1+b)~ )(Wk+1 v bk+1vk)],
k=1 j=

neN.

Proof. By putting
(5) Pn= 3 Wwjvbix;, neN,
=1

we have from (3) obviously

(6) Xpt1 S Up+ Dy

Applying (iv), (ii) together with (6) we get from (5)
Prt1 S PutWar1 V byry (04 Pa)-

Observe that p, > 0; therefore by (v) we obtain

Prni1 S +byy )Pt Woi1 V by Uy
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Hence, by lemma, we obtain the following estimation:

n-1 k+1

(7 H (1+b)[wy vbyxi+ Y ( H(l-f—bj)")(wk+1 V b1 vd)].
i= k=1 j=

Estimation (7) together with (6) and (ii) imply (4).
THEOREM 2. Let x, v, w: N> E, b: N (0, o0). If

n
(8) Xnvy SU+ Y Wj Ab;x;, neN,
j=1
then

9 Xerr Sy Abixy+ Y w) A [T A+b)[wy Abyx +

k=2 j=2
n—1 k+1
+ 2 (H (1+hj)~1)bk+lvk]+vm neN.
k=1 j=
Proof. Writing
(10) Pa= ) Wi A bix;,
j=t

we obtain inequalities

Pas1 S PatWasy Abyyy Xpiq S Pat Wiy,

from which we get, by the lemma,
(11) p,,ng /\b1x1+ Z Wy 1= Cy.
k=2

On the other hand, applying (i) and (iv) we get from (10)
Dn+1 S pn+bn+1xn+l < pn+bn+1(un+pn) = (l +bn+l)pn+bn+1 Up.

Hence, by lemma, we obtain the following estimation of p,:

n—1 k+1
(12) Pn < n(l-{-bj)[wl Abyxy+ Z I_[(l—!-bj) 1)I),:Hv,‘[] =d,.
j=2 k=1 j=

Comparing (11), (12) we have, by (ii),
Pu < Cp Ady.

Hence follows the desired estimation (9).
Remark. Let us consider inequality (8), where w, > b, x,for all ne N; then
of course w, A b,x, =b,x, and (8) reduces to

n
(13) Xps1 S Unt D bjx;, neN.
j=1
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It is easily verified by using the method of Theorem 2 that then

n—1 k+1
(14) X,y S v,+ ﬂ(1+b,)[b,x,+ Y (JT (1+b) ' besrv], neN.
k= 1) 2
THEOREM 3. Let x: N— E,, v, w: N> E, b: N—(0, o). If
(15) Xpey SV, Vv 3 Wj+bjx;, neN,
j=1
then
(16)
n n n—1 k+1 k
Xur1 SV v Y Wi+ [T (1+b)[byx; + Z(H(1+b) Yhisr (o v ) Wi,
j=1 ji=2 k=1 j= t=1
neN.
Proof. Let us observe that by (v)

j*

,,H\(vvz i)+ 12::1 ‘X

The above inequality is of the form (13). Hence, by remark, we obtain (16
THEOREM 4. Let x: N— Egy, v, w: N - E, b: N—(0, o0). If

(17) Xp+1 S \/ j+bix,, neN,
iz
then
(18)  Xx,+1 S0, 4+ \/ w;+ H max [1, b;][by x; +
i=2
n—1 k+1 k
+ Y (T max (1, b]) " (besy (ve+ \/ w)),], neN.
k=1 j=2 t=1
Proof. In virtue of property (iii), inequality (17) is equivalent to
(19) x,,+,<v,,+ \/Wj+ \/bjxj
j=1 j=1
By putting
Pa=\ bjxj, zZ,=v,+ \/w
ji=1 ji=1
and applying (iv), (ii), (v) we have

Pn+1 =Pn VvV bn+1 Xn+1 < Pn vV (bn+lz +bn+1 Pn)
pn Vv bn+1 pn+(bn+1 Zn)+ max[l bn+l]pn+(bn+lzn)+
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Hence, by lemma we obtain an estimation of p,, which together with (19) give us
(18).

Rema}rk. Let us observe that estimation (18) holds if x: N - E,, v, w: N
— E, b: N— (0, o) but instead of (17) the following assumption is satisfied:

n
Xp41 SV, + \/Wj+bjx_;, neN.
21

It is evident since by (iii), inequality (19) remains true.
THEOREM 5. Let x, v, w: N—>E, b: N> (—x,x). If for ne N

(20) (a) Xpr1 S0, v N\ wj+b;x;,
j=1
n
(b) xn+1 S Un A /\ wj+bjxj’
j=1
n
() Xpry SO+ N\ Wi+b;x;,
j=1
(d) Xpe1 S Out N\ Wy A byx;,
,_i:[
(e) Xpr1 S U+ A\ WiV b;x;.
j=1
Then
(21) (a) Xn+1 S Uy V (Wl +b1 x1)3
(b) Xpr1 S Uy AWy +byxy),
(C) xn+1 S U,,+(W1 +bl xl)’
(d) Xn+1 S vn+(wl N bl xl)’
(e) xn+1 < vn+(wl \4 bl xl)a

respectively, for all ne N.

Proof. Estimations (21) can easily be checked from (20) using properties (i)
and (ii).
Remark. Estimations (21) are not the best possible. If for instance b, x, < 0

for all ne N, then w,+b,x, <w,, neN. From this we infer that A w;+
i=1

w;; hence for functions satisfying (20a) we obtain the estimation

~.

+b;x; <

i=1

Xp+1 <0, v /\ w;, ne N, may be, better than (21a).
j=i

We shall prove the theorem given by Pachpatte [4] in the real domain. The
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presented proof shows us that many theorems considered for real sequences hold
in vector lattices. For the function y: N — E we denote 4y: N — E by 4y,
= Yp+1—Yn for neN.

THEOREM 6. Let x, Ax: N> E,, a, b: N> <0, «). If

n—-1 n—1 ji—-1
(22) Ax, < x,+ Y aj(x;+4x)+ Y a; Y bdx;, neN,
i=1 j=t =1
then
n—1 j—1
(23) AX”<[1+2Z ajn(2+a,-+b,~)]x1, neN.
j=1 i=1

Proof. Putting

n—1 n—-1 j~1
(24) Pa=X1+ Y a;(x;+4x)+ Y a; Y bAx,,
J j=1 i=1

=1

we obviously have

(25) Ax, < p,.
From (24), (25) conditions (ii) and (iv) we have

n—1 n—1
(26) Apn = (l,,(.\’,,-f-AX,,)'f'(l,, Z bfof < a"(x"+p"+ Z bj pj)
j=1 j=1

J J=
Again from (25) and (ii) we obtain

n—1

(27 ' X, < X1+ Y Py
j=1

Using (27) in (26) in virtue of (i) and (iv) we get

n—1 n—1
(28) Apy < an(x;+ Y pj+pat 2 bip)).
i=t j=1
We denote
n—1 n—1
(29) qn = X1+ Z pi+pat Y b; p;.
j= j=1

Observe that p, is nonnegative for all ne N; hence p, < g, for ne N. Therefore, it
follows from (28), (29), (ii) and (iv) that

Aqn = Apn+pn+bnpn < anqn+qn+bnqm
whence

qn+1 S (2+an+bn)qw
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Since q; = 2x,, applying lemma to the above inequality, we have the following
estimation

n—1

(30) 4. <2 [] 2+a;+b)x,.

j=1

Estimation (30) together with (28) and (29) give us by (ii), (iv)

n—1
(31) ap, < a,[2 [] 2+a;+b)] x,.
j=1

Applying (ii) to (31) and the fact that p, = x; we obtain

n—1 ji-1
(32) Pas<[142 ) a; [ 2+a+b)] x,.
ji=1 =1

Estimation (23) follows now from (32) and (25).

In concluding this paper we note that theorems presented here can be used to
study boundedness, stability, asymptotic equivalence and other properties of
summary difference equations for instance in real domain.

Consider the sequence given by recurrence formula

(33) Xu+1 =Up+ ), Wy v bjX;,  neN,

i=1

where w: N> E,, v: N> E,, b: N—(0, w), x,€E,. Let furthermore

G4 (a) W,'en i bounded,
(b) - Y b; converges,
ji=1
© { Z Wit1 V bj+1 Uj},,eN is bounded;
j=1

then the set |x,],.n is bounded.
Since x, € E, so by assumptions on w, v, b we have x,e E, for all ne N.
Therefore applying Theorem 1 we get

n n-1 n
(35) Xpo1 S v+ [J(M+b)wy v byx)+ X ([T (14+5))Wiss v bisyy).
j=2 k=1 j=k+2

It follows from (34b) that there exists a constant b such that [ (1 +b;) < bfor all
ji=k

k, ne N. Boundedness of {x,!,.y follows now by (ii) and (iv) from (34a), (34c) and

(35).



96 J. Popenda

The definition of an (0)-convergent series of elements in an ordered vector
space is the usual

(0)— Z x, = (0)— lim Z X;
n j=1

if the right-hand side limit does exist.

The lattice E is said to be a relatively o-complete lattice if any countable,
bounded subset of E admits the greatest lower bound and the least upper bound.

Consider recurrence equation (33) in the relatively o-complete lattice under
the same conditions as previously. Since the set {x,},.y is bounded, there exists
\/ x,. Therefore, by (ii) and (iv),

neN
Y byxy< Y b \/ =\ x, Z b,, neN.

k=1 k= neN neN k=1

Hence, from the above inequality and (34b) follows boundedness of the set

n
'Y b xi lnen- Taking into account the definition of a relatively o-complete lattice
k=1
we have that this set admits its least upper bound. Since the sequence

n a0
U Y. by X, }nen is increasing, it has the limit. Therefore the series ) b x; is
k=1 k=1
(0)-convergent.
We obtain (0)-summability with the wedge b of the solution of equation (33)

in a relatively o-complete vector lattice.
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