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Newton’s method for first-order stochastic
functional partial differential equations

Abstract.We apply Newton’s method to hyperbolic stochastic functional partial dif-
ferential equations of the first order driven by a multidimensional Brownian motion.
We prove a first-order convergence and a second-order convergence in a probabilistic
sense.
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1. Introduction. First-order functional partial differential equations are widely
studied in numerous papers. Problems being discussed include existence theory of
solutions (e.g. classical solutions [4], semiclassical solutions [11], generalized solu-
tions in the Carathéodory sense [19] and Cinquini Cibrario solutions [13]), functional
differential inequalities and their applications [20], numerical methods for initial and
mixed problems. Applications of Chaplygin’s and Newton’s methods or in general
quasilinearization methods can be found in [3, 5].

Random transport equations in nonfunctional setting are considered in [7, 8, 17].
The article [18] focuses on the use of difference methods in order to approximate
the solutions of SPDE of Itô-type, in particular hyperbolic equations. The Cauchy
problem for SPDE is considered in [15]. In [10] the authors present a Wiener chaos
approach to solve hyperbolic stochastic partial differential equations.

Newton’s methods for stochastic differential equations are studied by Kawabata
and Yamada in [12] and Amano in [1]. In [2] Amano develops techniques to prove
a probabilistic second-order convergence of Newton’s methods. In [21] we derive
further nontrivial generalizations to the case of stochastic functional differential
equations with Hale functionals. However, our approach is different from Amano’s
∗Supported by grant BW-UG 538-5100-B151-13 from the University of Gdańsk
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as it is not possible to construct explicit solutions of linear stochastic functional
differential equations using his methods. Instead, we define suitable chains of sets,
formulate Itô isometry-type lemma (see Lemma 4.1 [21]), utilize the Gronwall-type
inequality and the Chebyshev inequality [9]. It is worth mentioning that existence
and uniqueness results in the stochastic functional case are known in the litera-
ture [16]. Appropriate assumptions on the given functions imply the existence and
uniqueness of solutions and convergence of Newton’s sequence.

Our goal is to extend existing results to the case of partial functional differential
equations of the first order. Consider any transport equation [6]

∂u

∂t
+ c

∂u

∂x
= f, u(0, x) = v(x).

If c, f depends on t, x and unknown function u, the quasilinearization method is
easy to apply. In the same way one can approximate solutions of initial-boundary
value problems for generalized McKendrick’s equation [14]

∂u

∂t
+
∂u

∂x
= λu,

u(0, x) = v(x) for x ∈ R+

u(t, 0) = ṽ(t) for t ∈ [0, T ].

By adding white noise to this problem with intensity dependent on some functionals
operating on the unknown function u (e.g. weighted average with respect to x) we
arrive at the stochastic functional differential equation

∂

∂t
u(t, x) +

∂

∂x
u(t, x) = λu(t, x) + σ(t)û(t)Ḃt,

where

û(t) =
∫
R
G(x)u(t, x)dx,

∫
R
G(x)dx = 1.

The Cauchy problem for this equation is easy to solve. However, with λ additionaly
dependent on t, x or u(t, x)), it turns out to be nontrivial. Moreover, σ(t)û(t) can
be replaced by a function dependent on t and û up to time t, e.g.

S

(
t,

∫ t

0
û(s)ds

)
.

Observe that white noise coefficient σû (or g in model ()) is independent on x.
Additional spatial dependence (g = g(t, x, u(t,x))) may lead to nontrivial problems
with estimating the Itô integral with respect to the norm:

(1) ||v||2Dt = E

[
sup

t̃¬t,x∈Rm
|v(t̃, x)|2

]
.

For instance, we cannot use the Doob inequality in the same way as in the proof
of Gronwall-type inequality (see Lemma 3.1). The Doob inequality does not relate
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to the spatial parameter x, but bounds with respect to the time variable t of the
stochastic process:

E

[
sup
t̃¬t
|Xt̃|2

]
¬ 4E

[
|Xt|2

]
for a martingale or a nonnegative submartingale X. One may ask if the following
modification of norm (1):

||v||2 = sup
x∈Rm

E

[
sup
t̃¬t
|v(t̃, x)|2

]

could solve the problem. However, in this case it is not obvious (or nontrivial to
show) if

Yt =
∫ t

0
g
(
s, yt,x(s), u(s,yt,x(s))

)
dBs

is a martingale or a nonnegative submartingale.

The paper is organized as follows. In Section 2 we introduce basic notations and
formulate the hyperbolic problem. We prove the existence of solutions by means of
successive approximations (Section 4). Next we establish a first-order convergence
(Section 5) and a probabilistic second-order convergence (Section 6) of Newton’s
method. The results in Section 4 and 5 base on the Gronwall-type inequality pre-
sented in Section 3.

2. Formulation of the problem. Let (Ω,F , P ) be a complete probability
space, (Bt)t∈[0,T ] the standard Brownian motion and (Ft)t∈[0,T ] its natural filtration.
We recall that L2(Ω) is the space of all random variables Y : Ω → R such that
‖Y ‖2 = E[Y 2] <∞. By C([0, T ], L2(Ω)) we denote the space of all continuous and
Ft-adapted processes y : [0, T ]→ L2(Ω) with the norm

||y||2t = E

[
sup
t̃¬t
|y(t̃)|2

]
.

Let 0 ¬ r <∞ and T > 0. For DT = [−r, T ]×Rm let CDT denote the space of these
continuous and Ft-adapted processes v : DT → L2(Ω) which have the bounded
norm

||v||2Dt = E

[
sup

(t̃,x)∈Dt
|v(t̃, x)|2

]
<∞.

Set Ft = F0 for −r ¬ t ¬ 0. For any process u ∈ CDT and any point (t, x) ∈
[0, T ]× Rm, the Hale-type operator u(t,x) is defined by

u(t,x)(τ, θ) = u(t+ τ, x+ θ) for (τ, θ) ∈ D0 := [−r, 0]× Rm .

We consider the following initial value problem for a first-order stochastic functional
partial differential equation
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(2){
∂u
∂t (t, x) + a(t, x) · ∇u(t, x) = f

(
t, x, u(t,x)

)
+ g

(
t, u(t,0)

)
Ḃt for (t, x) ∈ [0, T ]× Rm,

u(t, x) = ϕ(t, x) for (t, x) ∈ D0,

where

a : [0, T ]× Rm → Rm,
ϕ : [−r, 0]× Rm → R,
f : [0, T ]× Rm×C(D0,R)→ R,
g : [0, T ]× C(D0,R)→ Rp,

Ḃt is the formal derivative of a p-dimensional Brownian motion Bt and

∇u =
(
∂u

∂x1
, . . . ,

∂u

∂xm

)
.

The characteristic equation takes the form

y(s) = x−
∫ t

s

a(τ, y(τ))dτ.

Let yt,x(s) denote its solution. By the differentation chain rule

d (u (s, y(s))) =
(
∂u

∂s
(s, y(s)) + a(s, y(s)) · ∇u (s, y(s))

)
ds.

Hence we get

(3) u(t, x) = ϕ(0, yt,x(0)) +
∫ t

0
f
(
s, yt,x(s), u(s,yt,x(s))

)
ds+

∫ t

0
g
(
s, u(s,0)

)
dBs,

for 0 ¬ s ¬ t ¬ T .

3. Gronwall-type inequality. By (C(D0,R))∗ we denote the space of all
linear and bounded functionals on C(D0,R). Let L (C(D0,R),Rp) be the space of
all linear and bounded maps from C(D0,R) to Rp with the norm

||A||L(C(D0,R),Rp) := sup
sup(s,x)∈D0 |v(s,x)|¬1

|Av|

for A ∈ L (C(D0,R),Rp). The main supremum is taken over all v ∈ C(D0,R),
whose uniform norms do not exceed 1. Denote Dt = [−r, t]× Rm for t ∈ [0, T ].

Lemma 3.1 Suppose that α(1) : [0, T ]×Rm → CDT , α(2) : [0, T ]→ CDT are contin-
uous, A(1) ∈ (C(D0,R))∗, A(2) ∈ L (C(D0,R),Rp) and there exists a nonnegative
constant M such that

||A(1)(t, x)||(C(D0,R))∗ ¬M for (t, x) ∈ [0, T ]× Rm,(4)

||A(2)(t)||L(C(D0,R),Rp) ¬M for t ∈ [0, T ].
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If u ∈ CDT satisfies the following stochastic functional integral equation

u(t, x) =
∫ t

0

{
α(1)(s, x) +A(1)(s, x)u(s,x)

}
ds

+
∫ t

0

{
α(2)(s) +A(2)(s)u(s,0)

}
dBs for (t, x) ∈ [0, T ]× Rm

u(t, x) = 0 for (t, x) ∈ D0,

then

||u||2Dt ¬ 4e4M2(t+4)t
∫ t

0

(
t||α(1)||2Ds + 4||α(2)||2s

)
ds for t ∈ [0, T ].

Proof By the fact that (x+ y)2 ¬ 2(x2 + y2) we have

||u||2Dt ¬ 2E

 sup
(t̃,x)∈Dt

∣∣∣∣∣
∫ t̃

0

{
α(1)(s, x) +A(1)(s, x)u(s,x)

}
ds

∣∣∣∣∣
2


+ 2E

sup
t̃¬t

∣∣∣∣∣
∫ t̃

0

{
α(2)(s) +A(2)(s)u(s,0)

}
dBs

∣∣∣∣∣
2


= 2I1 + 2I2.

Using the Schwarz inequality and (4) we obtain

I1 ¬ tE

[
sup

(t̃,x)∈Dt

∫ t̃

0

∣∣∣α(1)(s, x) +A(1)(s, x)u(s,x)

∣∣∣2 ds]

¬ 2tE
[∫ t

0
sup
x∈Rm

∣∣∣α(1)(s, x)
∣∣∣2 ds]+ 2tE

[∫ t

0
sup
x∈Rm

∣∣∣A(1)(s, x)u(s,x)

∣∣∣2 ds]
¬ 2t

∫ t

0
E

[
sup

(s̃,x)∈Ds

∣∣∣α(1)(s̃, x)
∣∣∣2] ds+ 2M2t

∫ t

0
E

[
sup

(s̃,x)∈Ds
|u(s̃, x)|2

]
ds

¬ 2t
∫ t

0
||α(1)||2Dsds+ 2M2t

∫ t

0
||u||2Dsds

By the Doob martingale inequality and the Itô isometry:

I2 ¬ 4E

[∣∣∣∣∫ t

0

{
α(2)(s) +A(2)(s)u(s,0)

}
dBs

∣∣∣∣2
]

= 4E
[∫ t

0

∣∣∣α(2)(s) +A(2)(s)u(s,0)

∣∣∣2 ds]
¬ 8

∫ t

0
E
[
sup
s̃¬s

∣∣∣α(2)(s̃)
∣∣∣2] ds+ 8M2

∫ t

0
E

[
sup

(s̃,x)∈Ds
|u(s̃, x)|2

]
ds

= 8
∫ t

0
||α(2)||2sds+ 8M2

∫ t

0
||u||2Dsds
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Hence

||u||2Dt ¬ 4
∫ t

0

(
t||α(1)||2Ds + 4||α(2)||2s

)
ds+ 4M2(t+ 4)

∫ t

0
||u||2Dsds.

For a fixed t0 such that 0 ¬ t0 ¬ T we have

||u||2Dt ¬ 4
∫ t0

0

(
t0||α(1)||2Ds + 4||α(2)||2s

)
ds+ 4M2(t0 + 4)

∫ t

0
||u||2Dsds.

for 0 ¬ t ¬ t0. We apply the Gronwall inequality and obtain

||u||2Dt ¬ 4e4M2(t0+4)t
∫ t0

0

(
t0||α(1)||2Ds + 4||α(2)||2s

)
ds, 0 ¬ t ¬ t0.

Since t0 is fixed arbitrarily, we get

||u||2Dt ¬ 4e4M2(t+4)t
∫ t

0

(
t||α(1)||2Ds + 4||α(2)||2s

)
ds, t ∈ [0, T ].

This completes the proof. �

4. Existence of solutions. We formulate an iterative scheme for problem (3).
Let

u(0) ∈ CDT , u(0)(t, x) = ϕ(t, x) for t ∈ [−r, 0), x ∈ Rm

and

u(k+1)(t, x) = ϕ(0, yt,x(0)) +
∫ t

0
f
(
s, yt,x(s), u(k)

(s,yt,x(s))

)
ds

+
∫ t

0
g
(
s, u

(k)
(s,0)

)
dBs, (t, x) ∈ [0, T ]× Rm(5)

u(k+1)(t, x) = ϕ(t, x), (t, x) ∈ [−r, 0]× Rm .

Since Ft := F0 for t ∈ [−r, 0), the process ϕ is deterministic, thus independent of
the Brownian motion on [0, T ]. If we denote

∆u(k)(t, x) = u(k+1)(t, x)− u(k)(t, x)

then we have

∆u(k+1)(t, x) =
∫ t

0

{
f
(
s, yt,x(s), u(k+1)

(s,yt,x(s))

)
− f

(
s, yt,x(s), u(k)

(s,yt,x(s))

)}
ds

+
∫ t

0

{
g
(
s, u

(k+1)
(s,0)

)
− g

(
s, u

(k)
(s,0)

)}
dBs.
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Theorem 4.1 Suppose that the functions

f : [0, T ]× Rm×Cb(D0,R)→ R,
g : [0, T ]× Cb(D0,R)→ Rp,

are continuous and satisfy the Lipschitz condition with respect to the functional
variable

|f(t, x, v)− f(t, x, v̄)| ¬ L |v − v̄| , |g(t, v)− g(t, v̄)| ¬ L |v − v̄|

for v, v̄ ∈ C(D0,R). Then the sequence u(k) = (u(k))k∈N defined by (5) converges
to the unique solution u of equation (2) in the following sense

lim
k→∞

∥∥∥u(k) − u
∥∥∥
DT

= 0.

Proof We show that (u(k))k∈N satisfies the Cauchy condition with respect to the
norm || · ||DT . By the Lipschitz condition we have∣∣∣f (s, yt,x(s), u(k+1)

(s,yt,x(s))

)
− f

(
s, yt,x(s), u(k)

(s,yt,x(s))

)∣∣∣ ¬ L
∣∣∣u(k+1)

(s,yt,x(s)) − u
(k)
(s,yt,x(s))

∣∣∣
¬ L sup

(s̃,x̃)∈Ds

∣∣∣∆u(k)(s̃, x̃)
∣∣∣ .

Similarly∣∣∣g (s, u(k+1)
(s,0)

)
− g

(
s, u

(k)
(s,0)

)∣∣∣ ¬ L ∣∣∣u(k+1)
(s,0) − u

(k)
(s,0)

∣∣∣ ¬ L sup
(s̃,x̃)∈Ds

∣∣∣∆u(k)(s̃, x̃)
∣∣∣ .

Applying Lemma 3.1 with

α(1)(s, x) = f
(
s, yt,x(s), u(k+1)

(s,yt,x(s))

)
− f

(
s, yt,x(s), u(k)

(s,yt,x(s))

)
,

α(2)(s) = g
(
s, u

(k+1)
(s,0)

)
− g

(
s, u

(k)
(s,0)

)
,

A(1)(s, x) ≡ 0, A(2)(s) ≡ 0

we obtain ∥∥∥∆u(k+1)
∥∥∥2

Dt
¬ 2L2(T + 4)

∫ t

0

∥∥∥∆u(k)
∥∥∥2

Ds
ds.

We have the recurrence inequality

(6)
∥∥∥∆u(k+1)

∥∥∥2

Dt
¬ CT

∫ t

0

∥∥∥∆u(k)
∥∥∥2

Ds
ds,

where CT = 2L2(T + 4). The recursive use of (6) leads to∥∥∥∆u(k+1)
∥∥∥2

Dt
¬
Ck+1
T tk+1

(k + 1)!

∥∥∥∆u(0)
∥∥∥2

Dt
, k = 0, 1, . . . .
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Hence ∥∥∥u(k+p) − u(k)
∥∥∥2

Dt
¬

(
Ck+p−1
T tk+p−1

(k + p− 1)!
+ . . .+

CkT t
k

k!

)∥∥∥∆u(0)
∥∥∥2

Dt

for k = 0, 1, . . .. We conclude that (u(k))k∈N is a Cauchy sequence in the Banach
space CDT . Therefore it is convergent to the solution u. �

5. First-order convergence of Newton’s method. We formulate Newton’s
scheme for problem (3). Let

u(0) ∈ CDT , u(0)(t, x) = ϕ(t, x) for (t, x) ∈ D0

and consider the following sequence of functional integral problems

u(k+1)(t, x) = ϕ(0, yt,x(0))

+
∫ t

0

{
f
(
s, yt,x(s), u(k)

(s,yt,x(s))

)
+ fv

(
s, yt,x(s), u(k)

(s,yt,x(s))

)
∆u(k)

(s,yt,x(s))

}
ds

+
∫ t

0

{
g
(
s, u

(k)
(s,0)

)
+ gv

(
s, u

(k)
(s,0)

)
∆u(k)

(s,0)

}
dBs, (t, x) ∈ [0, T ]× Rm

u(k+1)(t, x) = ϕ(t, x), (t, x) ∈ [−r, 0]× Rm,
(7)

where ∆u(k)(t, x) = u(k+1)(t, x)− u(k)(t, x) and

f : [0, T ]× Rm×Cb(D0,R)→ R, g : [0, T ]× Cb(D0,R)→ Rp

are continuous functions,

fv ∈ (C(D0,R))∗ , gv ∈ L (C(D0,R),Rp)

are Fréchet derivatives of f and g with respect to the functional variable v ∈
C(D0,R). We have the following integral equation for increments ∆u(k+1):

∆u(k+1)(t, x)

=
∫ t

0

{
∆f (k)(s, x)− f (k)

v (s, x)∆u(k)
(s,yt,x(s)) + f (k+1)

v (s, x)∆u(k+1)
(s,yt,x(s))

}
ds

+
∫ t

0

{
∆g(k)(s)− g(k)

v (s)∆u(k)
(s,0) + g(k+1)

v (s)∆u(k+1)
(s,0)

}
dBs(8)

for (t, x) ∈ [0, T ]× Rm and

∆f (k)(s, x) := f
(
s, yt,x(s), u(k+1)

(s,yt,x(s))

)
− f

(
s, yt,x(s), u(k)

(s,yt,x(s))

)
∆g(k)(s) := g

(
s, u

(k+1)
(s,0)

)
− g

(
s, u

(k)
(s,0)

)
f (k)
v (s, x) := fv

(
s, yt,x(s), u(k)

(s,yt,x(s))

)
g(k)
v (s) := gv

(
s, u

(k)
(s,0)

)
.
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Theorem 5.1 Suppose that there exists a nonnegative constant L such that

(9) ‖fv(t, x)‖(C(D0,R))∗ ¬ L, ‖gv(t)‖L(C(D0,R),Rp) ¬ L.

Then the Newton sequence (u(k))k∈N defined by (7) converges to the unique solution
u of equation (2) in the following sense:

lim
k→∞

∥∥∥u(k) − u
∥∥∥
DT

= 0.

Proof We show that (u(k))k∈N satisfies the Cauchy condition with respect to the
norm ||·||DT . Notice that (9) implies the Lipschitz condition for f(t, x, v) and g(t, v):

(10) |f(t, x, v)− f(t, x, v̄)| ¬ L |v − v̄| , |g(t, v)− g(t, v̄)| ¬ L |v − v̄|

for v, v̄ ∈ C(D0,R). We apply Lemma 3.1 with

α(1)(s, x) = ∆f (k)(s, x)− f (k)
v (s, x)∆u(k)

(s,yt,x(s)), A(1)(s, x) = f (k+1)
v (s, x)

α(2)(s) = ∆g(k)(s)− g(k)
v (s)∆u(k)

(s,0), A(2)(s) = g(k+1)
v (s)

and obtain

||∆u(k+1)||2Dt

¬ 4e4L2(t+4)t
∫ t

0

[
t||∆f (k) − f (k)

v ∆u(k)||2Ds + 4||∆g(k) − g(k)
v ∆u(k)||2s

]
ds.

By the Lipschitz condition and (9) we have the estimate

||∆u(k+1)||2Dt ¬ 16L2(t+ 4)e4L2(t+4)t
∫ t

0
‖∆u(k)‖2Dsds.

Since t ¬ T , we have

||∆u(k+1)||2Dt ¬ CT

∫ t

0
‖∆u(k)‖2Dsds,(11)

where
CT = 16L2(T + 4)e4L2(T+4)T .

The recursive use of (11) leads to

‖∆u(k+1)‖2Dt ¬
Ck+1
T tk+1

(k + 1)!
‖∆u(0)‖2Dt .

Thus

‖u(k+p) − u(k)‖2[0,t] ¬

(
Ck+p−1
T tk+p−1

(k + p− 1)!
+ . . .+

CkT t
k

k!

)
‖∆u(0)‖2DT .

We conclude that (u(k))k∈N is a Cauchy sequence in the Banach space CDT . There-
fore it is convergent to u, which is the solution to problem (2). �
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6. Probabilistic second-order convergence of Newton’s method. The
following theorem establishes a second-order convergence of Newton’s method in a
probabilistic sense.

Theorem 6.1 Suppose that the general assumptions of Section 5 are satisfied and
there exists a nonnegative constant M such that

‖fv(t, x, v)− fv(t, x, v̄)‖(C(D0,R))∗ ¬M |v − v̄| ,(12)

‖gv(t, v)− gv(t, v̄)‖L(C(D0,R),Rp) ¬M |v − v̄|(13)

for all v, v̄ ∈ C(D0,Rn). Then there exists a nonnegative constant C (independent
of T) such that for any T > 0

P

(
sup

(t,x)∈DT
|∆u(k)(t, x)| ¬ ρ ⇒ sup

(t,x)∈DT
|∆u(k+1)(t, x)| ¬ Rρ2

)
­ 1− eC(T 2+1)TR−2

for all R > 0, 0 < ρ ¬ 1, k = 0, 1, 2, . . . .

Proof Define the sets

A
(k)
ρ,t =

{
ω : sup

(s,x)∈Dt
|∆u(k)(s, x)| ¬ ρ

}
for 0 < ρ ¬ 1, 0 ¬ t ¬ T, k = 0, 1, 2, . . . .

We consider the sequence (∆u(k))k∈N restricted to the sets A(k)
ρ,t . For this reason we

multiply equation (8) by 1
A
(k)
ρ,t

, the characteristic function of the set A(k)
ρ,t , and have

1
A
(k)
ρ,t

∆u(k+1)(t, x)

= 1
A
(k)
ρ,t

∫ t

0

{
∆f (k)(s, x)− f (k)

v (s, x)∆u(k)
(s,yt,x(s)) + f (k+1)

v (s, x)∆u(k+1)
(s,yt,x(s))

}
ds

+ 1
A
(k)
ρ,t

∫ t

0

{
∆g(k)(s)− g(k)

v (s)∆u(k)
(s,0) + g(k+1)

v (s)∆u(k+1)
(s,0)

}
dBs

for (t, x) ∈ [0, T ]× Rm. If we denote

F (s, x) = ∆f (k)(s, x)− f (k)
v (s, x)∆u(k)

(s,yt,x(s)) + f (k+1)
v (s, x)∆u(k+1)

(s,yt,x(s)),

G(s) = ∆g(k)(s)− g(k)
v (s)∆u(k)

(s,0) + g(k+1)
v (s)∆u(k+1)

(s,0) ,

then we have

||1
A
(k)
ρ,t

∆u(k+1)||2Dt

¬ 2E

1
A
(k)
ρ,t

sup
(t̃,x)∈Dt

∣∣∣∣∣
∫ t̃

0
F (s, x)ds

∣∣∣∣∣
2
+ 2E

1
A
(k)
ρ,t

sup
t̃¬t

∣∣∣∣∣
∫ t̃

0
G(s)dBs

∣∣∣∣∣
2


:= 2I1 + 2I2.
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By the fact that for s ¬ t:

A
(k)
ρ,t ⊂ A(k)

ρ,s ⇒ 1
A
(k)
ρ,t

= 1
A
(k)
ρ,t

1
A
(k)
ρ,s

we have

I1 ¬ E

1
A
(k)
ρ,t

sup
(t̃,x)∈Dt

∣∣∣∣∣
∫ t̃

0
1
A
(k)
ρ,s
F (s, x)ds

∣∣∣∣∣
2
 ¬ E

 sup
(t̃,x)∈Dt

∣∣∣∣∣
∫ t̃

0
1
A
(k)
ρ,s
F (s, x)ds

∣∣∣∣∣
2


Hence by the Schwarz inequality:

I1 ¬ tE

[
sup

(t̃,x)∈Dt

∫ t̃

0
1
A
(k)
ρ,s
|F (s, x)|2 ds

]
¬ tE

[∫ t

0
1
A
(k)
ρ,s

sup
(s̃,x)∈Ds

|F (s̃, x)|2 ds

]

¬ 2tE

[∫ t

0
1
A
(k)
ρ,s

sup
(s̃,x)∈Ds

∣∣∣∆f (k)(s̃, x)− f (k)
v (s̃, x)∆u(k)

(s̃,yt,x(s̃))

∣∣∣2 ds]

+ 2tE

[∫ t

0
1
A
(k)
ρ,s

sup
(s̃,x)∈Ds

∣∣∣f (k+1)
v (s̃, x)∆u(k+1)

(s̃,yt,x(s̃))

∣∣∣2 ds]

From the fundamental theorem of calculus and (12) it follows that∣∣∣∆f (k)(s, x)− f (k)
v (s, x)∆u(k)

(s,yt,x(s))

∣∣∣
¬ sup

(s̃,x)∈Ds

∣∣∣∆u(k)
(s̃,yt,x(s̃))

∣∣∣
×
∫ 1

0

∥∥∥fv (s̃, x, u(k)
(s̃,yt,x(s̃)) + θ∆u(k)

(s̃,yt,x(s̃))

)
− fv

(
s̃, x, u

(k)
(s̃,yt,x(s̃))

)∥∥∥
L(C(D0,R),R)

dθ

¬ 1
2
M sup

(s̃,x)∈Ds

∣∣∣∆u(k)
(s̃,yt,x(s̃))

∣∣∣2 .
Hence by (9)

I1 ¬ 1
2
tM2 E

[∫ t

0
1
A
(k)
ρ,s

sup
(s̃,x)∈Ds

∣∣∣∆u(k)
(s̃,yt,x(s̃))

∣∣∣4 ds]

+ 2tL2 E

[∫ t

0
1
A
(k)
ρ,s

sup
(s̃,x)∈Ds

∣∣∣∆u(k)
(s̃,yt,x(s̃))

∣∣∣2 ds] .
Recall that |∆u(k)(s̃, x)| ¬ ρ on A

(k)
ρ,s for 0 ¬ s̃ ¬ s, x ∈ Rm . Thus

I1 ¬
1
2
t2M2ρ4 + 2tL2

∫ t

0

∥∥∥1A(k)ρ,s ∆u(k+1)
∥∥∥2

Ds
ds.
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We have

I2 = E

1
A
(k)
ρ,t

sup
t̃¬t

∣∣∣∣∣
∫ t̃

0
G(s)dBs

∣∣∣∣∣
2


¬ E

1
A
(k)
ρ,t

sup
t̃¬t

∣∣∣∣∣
∫ t̃

0
1
A
(k)
ρ,s
G(s)dBs

∣∣∣∣∣
2


¬ E

sup
t̃¬t

∣∣∣∣∣
∫ t̃

0
1
A
(k)
ρ,s
G(s)dBs

∣∣∣∣∣
2


Applying the Doob martingale inequality and the Itô isometry we obtain

I2 ¬ 4E

[∣∣∣∣∫ t

0
1
A
(k)
ρ,s
G(s)dBs

∣∣∣∣2
]

= 4E
[∫ t

0
1
A
(k)
ρ,s
G2(s)ds

]
Hence

I2 ¬ 2tM2ρ4 + 8L2
∫ t

0

∥∥∥1A(k)ρ,s ∆u(k+1)
∥∥∥2

Ds
ds.

We have the estimate

||1
A
(k)
ρ,t

∆u(k+1)||2Dt ¬ 2I1 + 2I2

¬ t(T + 4)M2ρ4 + 4(T + 4)L2
∫ t

0

∥∥∥1A(k)ρ,s ∆u(k+1)
∥∥∥2

Ds
ds.

Applying the Gronwall inequality we obtain

||1
A
(k)
ρ,t

∆u(k+1)||2Dt ¬ t(T + 4)M2ρ4e4T (T+4)L2 .

The Chebyshev inequality yields

P

(
sup

(s,x)∈Dt
|∆u(k)(s, x)| ¬ ρ ∧ sup

(s,x)∈Dt
|∆u(k+1)(s, x)| > Rρ2

)

= P

(
1
A
(k)
ρ,t

sup
(s,x)∈Dt

|∆u(k+1)(s, x)| > Rρ2

)
¬ 1

R2ρ4 ||1A(k)ρ,t ∆u(k+1)||2Dt

¬ (T + 4)M2e4T (T+4)L2tR−2.

Hence for any R > 0, 0 < ρ ¬ 1 we have

P

(
sup

(s,x)∈Dt
|∆u(k)(s, x)| ¬ ρ ⇒ sup

(s,x)∈Dt
|∆u(k+1)(s, x)| ¬ Rρ2

)
­ 1− eC(T 2+1)tR−2,

which completes the proof. �
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