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CESÀRO BOUNDED OPERATORS

BY

YVES D E R R I E N N I C (BREST)

This paper is dedicated to the memory of Anzelm Iwanik

Abstract. For a Cesàro bounded operator in a Hilbert space or a reflexive Banach
space the mean ergodic theorem does not hold in general. We give an additional geometri-
cal assumption which is sufficient to imply the validity of that theorem. Our result yields
the mean ergodic theorem for positive Cesàro bounded operators in Lp (1 < p <∞). We
do not use the tauberian theorem of Hardy and Littlewood, which was the main tool of
previous authors. Some new examples, interesting for summability theory, are described:
we build an example of a mean ergodic operator T in a Hilbert space such that ‖Tn‖/n
does not converge to 0, and whose adjoint operator is not mean ergodic (its Cesàro aver-
ages converge only weakly).

1. Introduction. A bounded linear operator T in a Banach space B
is power bounded when supn ‖Tn‖ < ∞. It is said to be Cesàro bounded

when supn n
−1‖

∑n−1
i=0 T

i‖ <∞. If B is reflexive and T is Cesàro bounded,

then n−1
∑n−1
i=0 T

ix converges strongly for every x ∈ B for which we have
strong-limn T

nx/n = 0; then one says that the mean ergodic theorem holds
for x. Therefore, if T is power bounded, the theorem holds for every x ∈ B
(the best reference for the ergodic theorems is Krengel’s book [K]; see also
[DS], Chap. VIII,5).

This form of the mean ergodic theorem goes back to the thirties. The
basic step was von Neumann’s theorem for a unitary operator in a Hilbert
space. An example showing that power boundedness is not necessary
appeared in [Hi]. Only in 1983 was it observed that the condition
limn T

nx/n = 0 is redundant if T is a positive Cesàro bounded operator
in an L2 space or, more generally, in a reflexive Banach lattice ([B], [E]).
The Lp spaces, for 1 ≤ p ≤ ∞, are classical examples of Banach lattices,
and T positive means that the cone of positive elements is stable under T .
In the present paper we shall give a geometrical condition on T , without
any order relation, sufficient to imply the mean ergodic theorem when T is
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Cesàro bounded. This condition is obviously satisfied by a positive operator
on an Lp space. Our approach does not depend on the tauberian theorem
of Hardy and Littlewood which was the main argument in [B] or [E]. It can
be extended to some systems of averages besides the usual Cesàro averages.

In Section 2 we consider the Hilbert space case, our approach being then
simpler. In Section 3 we consider reflexive Banach spaces. In Section 4 some
examples are discussed; in particular it is shown that for a Cesàro bounded
operator in a Hilbert space, weak convergence of the Cesàro averages may
hold without strong convergence.

2. The Hilbert space case. Here is our main result.

Theorem 1. Let H be a real Hilbert space and T a Cesàro bounded linear
operator acting in H. If x ∈ H satisfies 〈Tnx, Tmx〉 ≥ 0 for any integers n
and m, then (n+ 1)−1

∑n
i=0 T

ix converges strongly as n→∞.
Remarks. 1. By 〈x, y〉 we denote the scalar product of H.
2. The limit, when it exists, is a fixed point of T because, by taking

differences, the convergence of (n+ 1)−1
∑n
i=0 T

ix implies Tnx/n→ 0.
3. From the mean ergodic theorem it is clear that all we need to prove

is the strong convergence to 0 of Tnx/n.
4. When H is an L2 space and T is positive, that is, when f ≥ 0 ⇒

Tf ≥ 0, then, obviously, each nonnegative f ∈ L2 satisfies the assumption
of Theorem 1. Since each function of L2 is the difference of two nonnegative
functions, Theorem 1 implies that the mean ergodic theorem holds in L2 for
a positive Cesàro bounded operator T.

Before giving the proof of Theorem 1 we need to recall a few elementary
facts about the Cesàro averages of order α > −1, which will be useful tools.
Following the classical authors ([H], [Z]), we put

Aαn =
(n+ α)(n+ α− 1) . . . (α+ 1)

n(n− 1) . . . 2
, i.e.

∞∑
n=0

Aαnz
n = (1− z)−α−1

and Sαn =
∑n
k=0A

α−1
n−kT

k. The nth Cesàro mean of order α of the powers of T

is defined by Mα
n = Sαn/A

α
n. For α = 1 we find M1

n = (n+ 1)−1
∑n
i=0 T

i, the
standard Cesàro averages. We recall that the convergence of the Cesàro-α
means implies the convergence of the Cesàro-β means for every β > α. For
α ≥ 0 all the coefficients of the Cesàro-α means are nonnegative; thus the
Cesàro-α means are weighted averages in the usual sense (see [Z], pp. 76–78).

The following lemma is a simple “abelian” property of the Cesàro means
which is valid in any normed space.

Lemma 1. If supn ‖Mα
n ‖ = K < ∞ with α ≥ 0, then supn ‖Mβ

n ‖ ≤ K
and limn ‖Mβ

n (I − T )‖ = 0 for every β > α.
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P r o o f. We use the elementary identity Sβn =
∑n
k=0A

β−α−1
n−k Sαk (it is

an application of the summation by parts formula; [Z], pp. 76–78). The
assumption ‖Sαn‖ ≤ KAαn yields

‖Sβn‖ ≤ K
n∑
k=0

Aβ−α−1n−k Aαk = KAβn.

To get the second assertion we write

SβnT − Sβn = Sβn+1 − Sβn −A
β−1
n+1 = Sβ−1n+1 −A

β−1
n+1.

If β − α ≥ 1, we get

‖SβnT − Sβn‖ ≤ ‖S
β−1
n+1‖+Aβ−1n+1 ≤ (1 +K)Aβ−1n+1

and we are done since Aαn ∼ Cnα as n→∞.
If β−α < 1, we write Sβ−1n+1 =

∑n+1
k=0 A

β−α−2
n+1−kS

α
k . The coefficients Aβ−α−2n+1−k

are negative for k 6= n+ 1. Therefore

‖SβnT − Sβn‖ ≤ ‖Sαn+1‖ −
n∑
k=0

Aβ−α−2n+1−k ‖S
α
k ‖+Aβ−1n+1

≤ KAαn+1 −K(Aβ−1n+1 −Aαn+1) +Aβ−1n+1

and the same estimate Aαn ∼ Cnα proves the desired result.

Remark. An obvious consequence of Lemma 1 is that the sequence of
means Mβ

n defines an ergodic net for T (according to the terminology of [K],
p. 75), when β > α. Since this notion is important in our reasoning we recall
its definition:

“Given a continuous linear operator T in a Banach space B, a sequence
(Mn)n≥0 of operators which are convex combinations of T k (k ≥ 0) is an
ergodic net for T when supn ‖Mn‖ <∞ and limnMn(I −T )x = 0 for every
x ∈ B.”

An ergodic net is also called an almost invariant system of means.

Proof of Theorem 1. First of all we shall apply the abstract form of the
mean ergodic theorem to the Cesàro-β means with β > 1 ([K], p. 76). For
the convenience of the reader we recall this statement:

“If T is a continuous linear operator in a Banach space B and admits
an ergodic net (Mn)n≥0, then, for any x, y ∈ B, the following conditions are
equivalent:

(i) Ty = y and y belongs to the closed convex hull of the orbit of x
under T,

(ii) y = limnMnx,

(iii) y is a weak cluster point of the sequence Mnx.”
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According to Lemma 1 the assumption that T is Cesàro bounded implies
that the Cesàro-β means are an ergodic net for T, for each β > 1. The unit
ball of the Hilbert space H being weakly compact, Mβ

nu has a weak cluster
point for every u ∈ H. Therefore the closed convex hull of the T -orbit of
u ∈ H contains a unique T -fixed point v ∈ H and limnM

β
nu = v for each

β > 1; this holds for any u ∈ H.
Consider now x ∈ H for which the assumption holds: 〈Tnx, Tmx〉 ≥ 0

for every n and m.
Let y be the unique T -fixed point in the closed convex hull of the or-

bit of x. The main part of the following proof is to show that any weak
cluster point z of the Cesàro averages (n + 1)−1

∑n
i=0 T

ix must be y, in
order to prove first the weak convergence. The difference with the usual
argument of the ergodic theorem is that the invariance of the weak clus-
ter point z requires a specific proof, since we do not assume even weak-
almost invariance of the Cesàro averages (i.e., we do not assume weak-
limn(n+ 1)−1

∑n
i=0 T

i(T − I) = 0).
For β > 1 we have limn〈Mβ

nx, T
mx〉 = 〈y, Tmx〉. Since

Aβn

Aβ−1n−k
≥ β + n

β

for every 0 ≤ k ≤ n, using the assumption on x, we get〈
1

n+ 1

n∑
i=0

T ix, Tmx

〉
≥ β + n

β(1 + n)
〈Mβ

nx, T
mx〉,

thus

lim inf
n

〈
1

n+ 1

n∑
i=0

T ix, Tmx

〉
≥ 1

β
〈y, Tmx〉

and then, letting β → 1,

lim inf
n

〈
1

n+ 1

n∑
i=0

T ix, Tmx

〉
≥ 〈y, Tmx〉

for every integer m. Now, let z be a weak cluster point of the sequence
(n+ 1)−1

∑n
i=0 T

ix, existing by the boundedness of the sequence in H. The
preceding inequality yields 〈z, Tmx〉 ≥ 〈y, Tmx〉 for every m.

On the other hand we have
∑n
i=0 T

i(T − I) = Tn+1 − I, thus

lim inf
n

〈
1

n+ 1

n∑
i=0

T i(T−I)x, Tmx

〉
= lim inf

n

1

n+ 1
〈(Tn+1−I)x, Tmx〉 ≥ 0

by the hypothesis on x. Taking a weakly convergent subsequence we get
〈Tz − z, Tmx〉 ≥ 0 for every m. By the same method we find 〈T k+1z −
T kz, Tmx〉 ≥ 0 and, by addition, we get 〈T kz − z, Tmx〉 ≥ 0 for every m
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and k. Since z belongs to the closed convex hull of the orbit of x, by the
abstract mean ergodic theorem recalled above, the Cesàro-β means Mβ

n z
converge strongly to y, for β > 1. However Mβ

n z−z is a convex combination
of the sequence T kz − z. Therefore 〈y − z, Tmx〉 ≥ 0 for every m.

Combining the two inequalities of the preceding two paragraphs, we get
〈y− z, Tmx〉 = 0 for every m. However, y− z is a weak limit point of linear
combinations of the T ix, hence 〈y− z, y− z〉 = 0 and y = z. We just proved
that any weak cluster point of the sequence (n+ 1)−1

∑n
i=0 T

ix must be y.
Hence the sequence weakly converges to y.

It remains to prove the strong convergence. By taking differences the
sequence Tnx/n converges weakly to 0. On the other hand we have

M2
2nx =

2

2n(2n+ 1)

2n∑
i=0

(2n− i+ 1)T ix;

for i = n we find, in this sum, the term (n + 1)Tnx/(n(2n + 1)), thus
2M2

2nx − Tnx/n is a linear combination of T kx, k ≥ 0, with nonnegative
coefficients. Hence〈

2M2
2nx−

Tnx

n
, Tmx

〉
≥ 0 for every m.

Then we write∥∥∥∥Tnxn
∥∥∥∥2 = −

〈
Tnx

n
, 2M2

2nx−
Tnx

n

〉
+

〈
Tnx

n
, 2M2

2nx

〉
.

Since Tnx/n converges weakly to 0 and M2
2nx converges strongly to y,

the last term converges to 0; the first term of the sum being nonpositive,
we get limn ‖Tnx/n‖ = 0. A last appeal to the mean ergodic theorem yields
the desired result: the Cesàro averages of Tnx converge strongly to y, the
unique fixed point belonging to the closed convex hull of the orbit of x.

Remarks and comments. 1. In [B] or [E1, E2] the ergodic theorem for
Cesàro bounded and positive operators in L2 depended on the tauberian the-
orem of Hardy and Littlewood which says that, for nonnegative sequences,
the convergence of the Abel means implies (in fact is equivalent to) the
convergence of the Cesàro means. This theorem, with the elegant proof of
Karamata ([H] or [Z]) is rightly considered a pearl of real analysis (another
proof was given by Feller [F]). The above proof does not use this deep result.
Nevertheless it gives more, as will be shown in the second remark.

2. For power bounded operators, the abstract mean ergodic theorem
shows the convergence of the Cesàro-α means for any α > 0 or the Abel
means as well, because each of these systems of means defines an ergodic
net. If convergence holds for one ergodic net, it holds for all. Therefore it is
natural to ask whether Theorem 1 remains true if the standard Cesàro means
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are replaced by the Cesàro-α means, with α > 0. The answer is affirmative.
The proof is exactly the same after the obvious change of the values of the
coefficients of the means. However the proof given in [E2] does not allow this
generalisation: if the Cesàro-α means are bounded, with 0 < α < 1, it is easy
to deduce that the Abel means are bounded too and then convergent; but
the tauberian theorem of Hardy and Littlewood, for nonnegative sequences,
asserts that the Abel convergence implies only the Cesàro-1 convergence and
not the stronger Cesàro-α convergence for 0 < α < 1.

3. The Banach space case. In this section we consider a Cesàro
bounded operator T leaving stable a convex cone F in a Banach space
B. A subset F is stable under T when TF ⊆ F . This situation extends the
setting of Theorem 1 and gives a better insight into its proof.

Theorem 2. Let B be a reflexive Banach space and T a Cesàro bounded
linear operator acting in B. Let F be a closed convex cone which is stable
under T, and such that F ∩ (−F) ⊆ Ker(I−T ). If x ∈ F then the sequence
(n+ 1)−1

∑n
i=0 T

ix converges weakly as n→∞.

Remarks. 1. Recall that a strongly closed convex set is necessarily
weakly closed.

2. These assumptions are satisfied when B = Lp, with 1 < p <∞, and T
is a positive Cesàro bounded operator, with F = Lp+ the cone of nonnegative
functions.

3. They are also satisfied in the setting of Theorem 1 if F is taken as
the closed convex cone generated by the orbit of x. Under the assumption
〈Tnx, Tmx〉 ≥ 0 for all integers n and m, we then have 〈u, v〉 ≥ 0 for all u,
v ∈ F , thus F ∩ (−F) = {0}.

4. The weak limit of (n+1)−1
∑n
i=0 T

ix is, of course, the unique T -fixed
point y belonging to the closed convex hull of the orbit of x, whose existence
follows from the mean ergodic theorem applied to the Cesàro-β means, with
β > 1, which define an ergodic net (Lemma 1; beginning of the proof of
Theorem 1). In Section 4 an illustration of Theorem 2 is given.

Proof of Theorem 2. The proof is quite similar to the first part of the
proof of Theorem 1. By reflexivity the bounded sequence (n+1)−1

∑n
i=0 T

ix
must have a weak cluster point z ∈ F . Using the convexity and closedness of
the cone F and applying the same inequalities as in the proof of Theorem 1,
we get, on the one hand, z − y ∈ F , and, on the other hand, y − z ∈ F
(as above, y is the fixed point in the closed convex hull of the orbit of x).
By the hypothesis F ∩ (−F) ⊆ Ker(I − T ), we get Tz = z. Since the fixed
point in the closed convex hull of an orbit is unique, z = y and the weak
convergence of (n+ 1)−1

∑n
i=0 T

ix follows.



MEAN ERGODIC THEOREM 449

Corollary 1. Let T be a positive Cesàro bounded operator on an Lp

space with 1 < p < ∞. Then the Cesàro averages (n+ 1)−1
∑n
i=0 T

if con-
verge strongly as n→∞ for every f ∈ Lp.

P r o o f. Let f be a nonnegative element. Theorem 2, applied to the cone
F = Lp+, yields the weak convergence. Hence Tnf/n → 0 weakly. On the
other hand we have 2M2

2nf −Tnf/n ≥ 0, and the sequence M2
2nf converges

strongly, as we saw in the proof of Theorem 1. In an Lp space it is well known
that, given two sequences gn and hn with gn ≥ hn ≥ 0, if weak-limn hn = 0
and the strong limit of gn exists then hn converges strongly to 0, because
of uniform integrability. Therefore Tnf/n → 0 strongly, and our corollary
follows from the mean ergodic theorem.

The preceding result was proved in [E2] with the help of the tauberian
theorem of Hardy and Littlewood.

In an abstract Hilbert space it is possible to deduce the strong conver-
gence from the weak convergence when the “angle at the summit” of the
cone F is not more than π/2, that is, when 〈u, v〉 ≥ 0 for all u, v ∈ F ; this
was the situation of Theorem 1 with the closed convex cone generated by
the orbit of x. Otherwise this deduction is impossible. An example will be
given in the next section.

4. Examples. We first recall some previously known facts.

Even in a finite-dimensional space the Cesàro averages of a Cesàro
bounded operator need not converge: a very simple example, due to As-
sani, is given in [E1]; it is defined by the 2×2 matrix

(−1 2
0 −1

)
.

In a finite-dimensional space, a linear operator, that is, a matrix, which
is ergodic, is necessarily power bounded: see [S, Chap. 1, §3] (the proof
relies on the fact that a Jordan block of an ergodic matrix, corresponding
to an eigenvalue of unit modulus, is necessarily diagonal). A matrix with
nonnegative elements which is Cesàro bounded is ergodic (i.e. its Cesàro
averages converge); this fact may be seen as a byproduct of our Theorem 1.
Thus nonnegative Cesàro bounded matrices are necessarily power bounded.

In [DL] there is an example of a positive, Cesàro bounded but not
power bounded operator T in an L1 space. Theorem 2.1 of [DL] asserts
then that limn ‖Tnf‖1/n = 0. But the proof shows even more: ‖Tn‖ ≤
K(n+1)/lnn whereK is the uniform bound of the Cesàro averages of T, thus
limn ‖Tn‖1/n = 0. In that example T is also a contraction in the L∞ norm;
by convexity we then get limn ‖Tn‖p/n = 0 in every Lp norm, 1 ≤ p ≤ ∞;
it is shown in [E2] that T is not power bounded in Lp (1 < p <∞).

We now describe a class of new examples which are of interest in summa-
bility theory.
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For any real sequence a = (an)n≥1 we put

vp(a) =

[ ∞∑
n=1

∣∣∣∣ 1n
n∑
i=1

ai

∣∣∣∣p]1/p for 1 ≤ p <∞,

v∞(a) = sup
n≥1

∣∣∣∣ 1n
n∑
i=1

ai

∣∣∣∣.
For 1 ≤ p ≤ ∞, we denote by Vp the space of real sequences a such that
vp(a) < ∞. The space Vp is a Banach space for the norm vp (we keep the
standard notation ‖u‖p for the norm in the classical lp space).

In fact, each Vp space is the bijective and isometric image of the space
lp = {(un)n≥1 : ‖u‖p = (

∑∞
n=1 |un|p)1/p < ∞} through the linear map

S : lp → Vp defined by

S(u) = a with an = nun − (n− 1)un−1 for n ≥ 2, a1 = u1

(or equivalently n−1
∑n
i=1 ai = un).

We consider the shift operator T defined by (Ta)n = an+1 for every
n ≥ 1; we shall explore its ergodic properties in different Vp spaces.

Proposition 1. In each Vp space (1 < p ≤ ∞), the shift operator T is
bounded and leaves stable the closed convex cone of nonnegative elements.
In V1 it is not bounded.

P r o o f. Using the convexity of the real function xp for 1 < p, we find∣∣∣∣ 1n
n∑
i=1

ai+1

∣∣∣∣p ≤ 2p−1
(∣∣∣∣ 1n

n+1∑
i=1

ai

∣∣∣∣p +

∣∣∣∣a1n
∣∣∣∣p),

thus

vp(Ta) ≤
(

22p−1 + 2p−1
∞∑
n=1

(
1

n

)p)1/p

vp(a) ≤ Cvp(a).

If limn

∑n
i=2 ai = −a1 6= 0 and a ∈ V1 then Ta 6∈ V1. The other assertions

are obvious.

Proposition 2. In V∞ the shift operator T is Cesàro bounded : the op-
erator norm satisfies

v∞

(
1

k + 1

k∑
j=0

T j
)
≤ 4,

but v∞(T k) ≥ k for every k.

P r o o f. Let us introduce the expression

w∞(a) = sup
n

1

n
sup
i≤n

∣∣∣ n∑
j=i

aj

∣∣∣.
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It is easy to check w∞(a) ≤ 2v∞(a). Then we have

v∞

(
1

k

k−1∑
j=0

T ja

)
= sup

n

1

nk

∣∣∣ n∑
i=1

k−1∑
j=0

ai+j

∣∣∣,
and

1

nk

∣∣∣ n∑
i=1

k−1∑
j=0

ai+j

∣∣∣ ≤ 1

nk

n∑
i=1

(i+ k − 1)w∞(a) =
1

k

(
(k − 1) +

n+ 1

2

)
w∞(a),

which is less than 2w∞(a) when n ≤ k; since n and k play a symmetric role
the desired inequality is proved.

Finally, put δki = 1 if k = i and δki = 0 if k 6= i for k, i ≥ 1 (Kronecker
symbol). Then the sequence δk is in V∞; observe that v∞(δk) = 1/k and
v∞(T k−1δk) = 1.

Proposition 3. Let A be the set of real sequences (an)n≥1 which con-
verge in the Cesàro sense. Then A is a closed subspace of V∞. On A the
restriction of the shift operator T is mean ergodic, that is, for every a ∈ A,
the sequence (k + 1)−1

∑k
i=0 T

ia converges in v∞-norm. In other words, if
limn n

−1∑n
i=1 ai = l then

lim
k

1

k + 1
sup
n

1

n

∣∣∣ k∑
i=0

n∑
j=1

(ai+j − l)
∣∣∣ = 0.

P r o o f. By the isometry S introduced above, the subspace A corresponds
to the space of convergent sequences which is a closed subspace of l∞. By
Proposition 2, T is Cesàro bounded on the Banach space A with the norm
v∞. We leave to the interested reader the exercise to check that:

(i) for a ∈ A, limk v∞(T ka)/k = 0.

(ii) for a ∈ A, the sequence (n+ 1)−1
∑n
i=0 T

ia converges weakly in A.

Then the proposition follows from the mean ergodic theorem.

Proposition 4. The space V2 is a Hilbert space with the scalar product

〈a, b〉V2 =

∞∑
n=1

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
,

and norm v2. The shift operator T is Cesàro bounded in V2, that is,

sup
1

k + 1
v2

( k∑
i=0

T i
)
<∞,
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but v2(T k) ≥ k for every k; moreover T is mean ergodic in V2:

lim
k

1

k + 1
v2

( k∑
i=0

T ia
)

= 0 for every a ∈ V2.

P r o o f. The Hilbert space structure of V2 is deduced from the structure
of l2 through the isometry S defined above.

In V2 the sequence ek = k(δk − δk+1), for k ≥ 1, is an orthonormal
Hilbert basis (δki is the Kronecker symbol as above). It is the image under
S of the canonical basis δk of the space l2.

We have v2(T kek+1) = k + 1 and T kel = 0 if k ≥ l + 2. Therefore
the proposition will be proved as soon as the Cesàro boundedness of T is
checked.

To check that T is Cesàro bounded in V2 we need rather involved com-
putations. We put

sj,m =

m∑
l=0

T lej =

{
j(δj−m − δj+1) if m ≤ j − 1,
−jδj+1 if m ≥ j.

We compute

〈si,m, sj,m〉V2
=

∞∑
n=1

(
1

n

n∑
ι=1

si,mι

)(
1

n

n∑
ι=1

sj,mι

)
for 1 ≤ i ≤ j.

We find

〈si,m, sj,m〉V2

=


0 for i ≥ m+ 1 and j ≥ m+ i+ 1,

ij
∑i
n=j−m(1/n2) for i ≥ m+ 1 and j < m+ i+ 1,

−ij
∑j+1
n=max((i+1),(j−m))(1/n

2) for i ≤ m and j ≥ m+ 1,

ij
∑∞
n=j+1(1/n2) for i ≤ m and j ≤ m.

Let a ∈ V2 have the expansion a =
∑∞
i=1 xie

i with respect to the Hilbert
basis (ei) where x ∈ l2, that is,

∑∞
i=1 x

2
i = ‖x‖22 = v2(a) <∞. Then

v2

( m∑
l=0

T la
)2

=

∞∑
i=1

x2i v2(si,m)2 + 2
∑

1≤i<j

xixj〈si,m, sj,m〉V2

=

m∑
i=1

x2i

∞∑
n=i+1

i2

n2
+

∞∑
i=m+1

x2i

i∑
n=i−m

i2

n2
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+ 2

m−1∑
i=1

m∑
j=i+1

xixj

∞∑
n=j+1

ij

n2
+ 2

m∑
i=1

m+i∑
j=m+1

xixj

j+1∑
n=i+1

−ij
n2

+ 2

m∑
i=1

∞∑
j=m+i+1

xixj

j+1∑
n=j−m

−ij
n2

+ 2

∞∑
i=m+1

m+i∑
j=i+1

xixj

i∑
n=j−m

ij

n2
.

We have to show the existence of an absolute constant C, independent of m
and x, such that v2(

∑m
l=0 T

la)2 ≤ C(m+1)2‖x‖22. We shall prove it for each
of the six expressions appearing above; the letter C may denote different
values along the computations, but always represents an absolute constant.

To begin with, we replace each term by its absolute value, and we esti-
mate

u∑
n=t+1

1

n2
≤ u− t

tu
.

The estimation of the first two expressions is straightforward.

The next two expressions are easily majorized using the Cauchy–Schwarz
inequality, and estimates like

∑u
i=t i ≤ C(u2 − t2).

The fifth expression is less than

2

m∑
i=1

∞∑
j=m+i+1

xixj
ij(m+ 1)

(j −m)(j + 1)
≤ 2‖x‖2(m+1)

m∑
i=1

√
i xi≤C(m+1)2‖x‖22,

by using the Cauchy–Schwarz inequality twice.

The last expression requires a more delicate treatment. After interchang-
ing the sums on i and j, the last expression is majorized by

(m+ 1)C

[ ∞∑
j=2m+1

j|xj |
j −m

j−1∑
i=j−m

|xi|+
2m∑

j=2+m

j|xj |
j −m

j−1∑
i=1+m

|xi|
]

≤ 2(m+ 1)2C

[ ∞∑
j=2m+1

|xj |
m+ 1

j−1∑
i=j−m

|xi|+
2m∑

j=2+m

|xj |
j −m

j−1∑
i=1+m

|xi|
]
.

By convexity the sequence yj = (m + 1)−1
∑j−1
i=j−m |xi| belongs to l2 and

‖y‖2 ≤ ‖x‖2. The sequence zj = (j −m)−1
∑j−1
i=1+m |xi| also belongs to l2

and ‖z‖2 ≤ 2‖x‖2 by a classical inequality of Hardy (see [DS], p. 522, ex. 22;
[Z], p. 20); this inequality means that a ∈ l2 ⇒ a ∈ V2 and v2(a) ≤ 2‖a‖2.
Hence the Cauchy–Schwarz inequality yields the desired result.

Remarks. 1. Proposition 4 gives an example of a mean ergodic operator
T in a Hilbert space such that ‖Tn‖/n does not converge to 0.
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2. For a real sequence an, Proposition 4 means that

∞∑
n=1

(
1

n

n∑
i=1

ai

)2

<∞⇒ lim
m

∞∑
n=1

(
1

nm

n∑
i=1

m−1∑
j=0

ai+j

)2

= 0.

3. By convexity, the shift operator T is also Cesàro bounded in Vp for
2 ≤ p ≤ ∞. For 1 < p < 2 this property is unknown to the author. It would
be desirable to give a more direct proof of this property in V2 or Vp.

4. Consider now the dual operator T ∗ of the shift operator T in the
Hilbert space V2. It is also Cesàro bounded, and by duality we get

weak- lim
k

1

k + 1

k∑
i=0

T ∗ia = 0 for every a ∈ V2.

The strong convergence does not hold, as the following easy computations
show: for a ∈ V2 we have 〈ek, a〉V2

= k−1(a1 + . . . + ak); we also have

〈T ∗ie1, a〉V2
= ai+1, thus k−1

∑k−1
i=0 T

∗ie1 = ek, where (ek)k≥1 is the or-
thonormal Hilbert basis of the space V2, e

k = k(δk − δk+1), introduced
above.

5. The weak convergence of the Cesàro averages of T ∗ can be deduced
from our Theorem 2. InV2 the set of nonnegative sequences is a closed convex
cone V +

2 . The dual cone is F = {b ∈ V2 : 〈b, a〉V2
≥ 0 for every a ∈ V +

2 }.
It is obvious that V +

2 is stable under T ; then F is a closed convex cone
which is stable under T ∗. It is easy to check that F ∩ (−F) = 0, and
F − F = V2. Therefore Theorem 2 applies; this is an example where the
strong convergence does not hold. The geometric idea is that the cone V +

2

being “thin” in the space V2, the dual cone F is “wide” in V2.

Acknowledgments. The author thanks Bachar Hachem for some useful
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