COLLOQUIUM MATHEMATICUM

VOL. 86 2000 NO. 1

A NOTE ON A CONJECTURE OF JESMANOWICZ

BY

MOUJIE DENG (A CHENG CITY)
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Abstract. Let a, b, ¢ be relatively prime positive integers such that a4+ b = 2.

Jesmanowicz conjectured in 1956 that for any given positive integer n the only solution of
(an)® 4+ (bn)Y = (cn)® in positive integers is x = y = z = 2. If n = 1, then, equivalently,
the equation (u? —v?)* 4 (2uv)Y = (u®+v?)?, for integers u > v > 0, has only the solution
xr =y = z = 2. We prove that this is the case when one of u, v has no prime factor of the
form 47 + 1 and certain congruence and inequality conditions on u, v are satisfied.

1. Introduction. Let a, b, ¢ be relatively prime positive integers such
that a® + b% = ¢2, and let n be a positive integer. Then the Diophantine
equation

(1) (na)” + (nb)? = (nc)*

has solution z = y = z = 2. JeSmanowicz [4] conjectured in 1956 that there
are no other solutions of (1). Building on the work of Dem’yanenko [2], we
proved in [3] that the conjecture is true when n > 1, ¢ = b+ 1 and certain
further divisibility conditions are satisfied.

If n =1, (1) is equivalent to

(2) (u? —v3)* + (2uwv)¥ = (u? +v?)?,

where u, v are integers such that v > v > 0, ged(u,v) = 1, and one of
u, v is even, the other odd. A number of special cases of JeSmanowicz’s
conjecture have been settled. Sierpinski [8] and Jesmanowicz [4] proved it for
(u,v) = (2,1) and (u,v) = (3,2), (4,3), (5,4) and (6, 5), respectively. Lu [7]
proved it when v = 1, and Dem’yanenko [2] when v = u — 1. Takakuwa [9]
proved the conjecture in a number of special cases in which, in particular,
v =1 (mod 4), and, in [10], when w is exactly divisible by 2 and v = 3, 7, 11
or 15. Le [6] proved it when uv is exactly divisible by 2, v =3 (mod 4) and
u > 8lv. Chao Ko [5] and Jingrun Chen [1] proved the conjecture when uv
has no prime factor of the form 47+ 1 and certain congruence and inequality
conditions on u, v are satisfied.
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In this note, we shall prove that the conjecture is true if one of u, v has
no prime factor of the form 4l 4+ 1, and certain congruence and inequality
conditions on u, v are satisfied.

2. Main results

THEOREM 1. Suppose u is even with no prime factor of the form 41+ 1,
u>wv >0 and ged(u,v) = 1. Write u = 2m and suppose also that one of
the following is true:

(i)m=1 (mod 2), v=1 (mod 4), u?> — v? has a prime factor of the
form 8L+ 5 or u— v has a prime factor of the form 8l + 3;

(il) m =1 (mod 2), v = 3 (mod 4), u + v has a prime factor of the
form 41 + 3;

(iii) m =2 (mod 4), v = 3,7 (mod 8);

(iv) m =2 (mod 4), v =5 (mod 8), u+ v has a prime factor of the
form 8L+ T,

(v) m =2 (mod 4), v =1 (mod 8), u+ v has a prime factor of the
form 41 + 3;

(vi) m =0 (mod 4), v =1 (mod 8), u+ v has a prime factor of the
form 4l + 3, u® — v? has a prime factor of the form 8l +5 or u — v has a
prime factor of the form 81 + 3;

(vii) m =0 (mod 4), v =3,5 (mod 8);

(viii) m =0 (mod 4), v =7 (mod 8), u? — v? has a prime factor of the
form 81+ 3 or 81+ 5.

Then the Diophantine equation (2) has no positive integer solution other
than x =y =z = 2.

Proof. Modulo 4, (2) becomes (—1)* = 1, so z is even. We now show
that z is also even, and that, except perhaps in case (ii), y is even.
The following simple congruences are required:
2uv = 202 (mod u — v), u? +v? = 20? (mod u — v),
2uv = —2v% (mod u +v), u®+v?=20? (mod u+v).

3)

In case (i), we have 2m + v = 3 (mod 4), so u + v has either a prime
factor, p say, of the form 8/ + 3, or a prime factor, ¢ say, of the form 8] 4+ 7
(or both). In the former case, from (2) and (3),

(~20%)" = (20%)° (mod p),
and it follows that
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where (—) is Legendre’s symbol. So z is even. In the latter case, we find in
the same way that y is even.

If u?> — v? has a prime factor of the form 8] + 5, or v — v has a prime
factor of the form 8/ + 3, then, again in the same way, we find that y = z
(mod 2). Then y and z are even in case (i), and we may similarly obtain
the same conclusion in cases (vi) and (viii).

In case (ii), since u + v has a prime factor of the form 8/ + 3 or 8/ + 7,
we find as above that z is even or y is even. If y is even, then y > 1, and,
recalling that x is even, from (2) we have 5 = 1 (mod 8). It follows that, in
case (ii), z must be even.

Consider case (iii). If v =3 (mod 8), then u+v =7 (mod 8). From (2)
and (3), we have (—2v?)¥ = (20?)* (mod u + v), so that

9,2\ Y 2\ 2
(—l)y—( 21)) _(21} > _q,
u—+v U+ v

where () is Jacobi’s symbol. Then y is even. From (2), 1 = 9% (mod 16),
which implies z is even. If v =7 (mod 8), then, considering (2) modulo u+wv
and u — v, respectively, we may similarly show that y and z are even. This
also follows in a similar fashion in cases (iv), (v) and (vii).

In all cases except one, we have now shown that y and z are both even.
The exception is case (ii), in which we know only that z is even. We show
now that y must be even in this case as well.

Write x = 221 and z = 2z;. Then, from (2),

(4mwv)¥ = ((4m? +v2)™ 4 (4m? — v?)™)((4m? + v?)* — (4m? — v?)™).
2

If 21 is even, then (4m? + v?)* + (4m? — v?)™ = 2 (mod 4). Let p be
an odd prime factor of m, so that, by hypothesis, p = 3 (mod 4). Since
ged(m,v) =1, and since —1 is a quadratic nonresidue of p, we have

(4) (4m? + 03 + (4m? — )" = v** 4+ 0¥ £ 0 (mod p),
It follows that

(5) (4m? 4+ v?)™ + (4m? — v*)™ = 20Y,

(6) (4m? +v*)* — (4m? — %)™ = 22" Il

where v = v1vy. We will show that vy > 1. In case (ii), v =3 (mod 4), so v
has a prime factor ¢ =3 (mod 4) and, as in (4),
(4m? + vH)* + (4m? — 0" = (2m)** + (2m)*** £ 0 (mod q).
In fact, this implies that v; =1 (mod 4) and v3 =3 (mod 4). Since vo > 1,
we now have 22~tm¥vY > (2m)¥ > v¥ > 2v¥, whence (5) and (6) cannot
both hold. Hence z; is odd.
We then have, as above,

(4m? + v*)* + (4m? — 0™ = 22 Il
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(4m? 4+ v?)* — (4m? — v*)™ = 20,
where v = v3vy4, so that
(7) (4m? +v*)* = 22 2Vl + oY,
(8) (4m? — v*)™ = 22V 2mYoY — o,
From (7), ged(vs,vs) = 1, y > 1 and v*** = v} (mod 4). But, in case (ii),
as shown above for vy, we have vy =3 (mod 4), so 1 = 3Y (mod 4), and it
follows that y is even, as required.

We now complete the proof of Theorem 1.

Notice first that 27 must be odd. To confirm this, consider again the
passage above in which it was assumed that z; is even. Then, since y > 2,
it follows that 22V~ 1mYvd > 2¢=1(2m)¥ > 2v=1¥ > 20Y, so, again, (5) and
(6) cannot both hold. With x; odd, we may refer again to (7) and (8).

Write y = 2y;. From (8),

(4m? — v?)™ = (22~ Im¥relt oY) (22 T iVt — o).

Since ged(vs,vq4) = 1, the factors on the right are relatively prime. Let
2201 tm¥dt 0¥t = 5™ and 221~ ImY10d — o' = t*1. Then
9) st =4m? — %, ged(s,t) =1, s >t +2.
We have
§T1 4 171 = V1 (2m)Y10dt > VipYigft = 2ViRYigYt = QU1 LR (5T o)
from which

(20 Lot 1)t > (2 TV 1)s® > (2U TRV 1) (- 2)™

> (2017 1ud¥ — 1)t 42020 TR — 1)zt

It follows that
(10) t> (23 — Doy > 201 — 1.
But, from (8), we have

0= (4m? — )™ = 2Y=2(2m)Y0f — 0¥ = 22— 1) (4m2) V¥t — 3

= 22(?“71)1)23/11)?2)3’1 — ’Uiyl (mod 4m? — v?),

so that 02(22(3/1’12)2}?’ — 1) = 0 (mod st), by (9). Since ged(vyg, st) = 1,
we have 22(1=1Dy2¥ — 1 =0 (mod st). If v3 > 1 or y; > 1, then the left-
hand side is positive, and we must have t? < st < 22(y1*1)v§y — 1, so that
t < 2v1~1p3¥ — 1, contradicting (10).

Hence vs = y1 = 1, and, from (7), x1 = 21 = 1. Thusz =y = 2z = 2,
completing the proof of Theorem 1.

THEOREM 2. Suppose u is even, 25v > 2u > 2v > 0, ged(u,v) = 1 and
v has no prime factor of the form 4l + 1. Write u = 2m and suppose also
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that one of conditions (i)—(viii) in Theorem 1 is true. Then the Diophantine
equation (2) has no positive integer solution other than © =y = z = 2.

Proof. When one of conditions (i)—(viii) in the statement of Theorem 1
is satisfied, we may show, as in the proof of Theorem 1, that x and z are
even, and, except in case (ii), y is even. We show first that y is even in this
case as well. Let © = 21 and 2z = 2z7. In much the same way as before, we
may show that x; is odd and

(4m? +v*)™ + (4m? — v?)™ = 22 IpY,
(4m? + v?)™ — (4m? — )" = 2mirY,
where m = mi;mo and mg =1 (mod 4). We have
(11) (4m? 4+ v?)™ = 22 2m¥ 1+ muY,
(12) (4m? — v?)®™r =222 mY — mYoY,

From (11), y > 1 so that, in case (ii), 1 = 3Y (mod 4). Hence y is even.
Let y = 2y;. From (12),

2 2\x1 _ (92y1—1__y1 Y1,,91 2y1—1,, Y1 Y1,,Y1
(4m*= —v°)"t = (2 m{* +m3j Y1) (2 m{* —m3tv¥).
As in the corresponding part of the proof of Theorem 1, we may put
221 Im¥t L omro¥t = 5™ and 22 Im¥t — mYtovt =71

so that

(13) st =4m?* —v?,  ged(s,t) =1, s >t 42
and
(14) ST T =22l g T = amYie¥t,

If mg # 1, then my > 5. From (14), (4mq)¥* > 2(mqv)¥*, so 4my > mav.
Then 4m > m3v > 25v, contradicting the hypothesis that 2u < 25v. Thus,
mg = 1, and if y; > 1 then we may use (13) and (14) to obtain a contra-
diction, much as in the closing part of the proof of Theorem 1, by showing
both t > 2%~ 1 and t < 21~ 1.

Hence mg = y; = 1, and it follows from (11) and (12) that x; = z; = 1.
Therefore, x = y = z = 2, completing the proof of Theorem 2.
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