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Abstract. Recently a new invariant of K-theoretic nature has emerged which is
potentially very useful for the study of symbolic systems. We give an outline of the theory
behind this invariant. Then we demonstrate the relevance and power of the invariant,
focusing on the families of substitution minimal systems and Toeplitz flows.

1. Introduction. For the study of Cantor minimal systems—in partic-
ular, minimal symbolic systems—entropy and spectral invariants have been
used extensively. Recently, however, a new invariant has emerged which
is independent of the two former. This new invariant is of ordered (sic)
K-theoretic nature, and is closely related to the orbit structure of the sys-
tems. Furthermore, the invariant is effectively computable for important
families of symbolic systems—for instance, for the family of substitution
minimal systems.

The crucial tool in proving our results—connecting the dynamics with
the K-theoretic invariant—is a model theorem for Cantor minimal systems.
The key concept is that of a Bratteli diagram, which is a special type of
an infinite graph. Originally, Bratteli diagrams were introduced to encode
the embedding scheme of an ascending sequence of multimatrix algebras (or
finite-dimensional C∗-algebras), thereby providing a tool to tell when such
inductive limits (called AF-algebras) are isomorphic [2]. This could most
conveniently be formulated in terms of the so-called dimension group asso-
ciated with the Bratteli diagram [9]. Subsequently, its K-theoretic under-
pinning was realized, namely as the K0-group of the associated AF-algebra,
endowed with an ordering. The dynamical interpretation of the Bratteli di-
agram originated with Vershik [25]. By a careful modification of Vershik’s
approach, Herman, Putnam and Skau proved the basic model theorem for
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Cantor minimal systems—employing ordered Bratteli diagrams with the as-
sociated lexicographic map (or Vershik map) [16].

In the sequel we first define the key concepts and formulate some relevant
results. We then apply this theory to the families of substitution minimal
systems and Toeplitz flows. As a general reference for the underlying theory
we refer to [16], [11] (cf. also [13]). We refer to [6] and [10] for results on
substitution minimal systems, and to [12] for results on Toeplitz flows.

2. Bratteli diagrams and dimension groups

2.1. Bratteli diagrams

Definition 1. A Bratteli dagram is an infinite directed graph (V,E),
where V is the vertex set and E is the edge set. These sets are partitioned
into non-empty disjoint finite sets V = V0 ∪ V1 ∪ . . . and E = E1 ∪ E2 ∪ . . . ,
where V0 = {v} is a one-point set. There are two maps r, s : E → V such
that r(En) ⊆ Vn and s(En) ⊆ Vn−1 for n ∈ N. Furthermore, s−1(v) 6= ∅ for
all v ∈ V and r−1(v) 6= ∅ for all v ∈ V \ V0. We call r and s the range map

and the source map of (V,E), respectively. We say that u ∈ Vn is connected
to v ∈ Vn+1 if there is an edge e ∈ En such that s(e) = u and r(e) = v.

If Vn = {u1, . . . , uk} and Vn+1 = {v1, . . . , vm}, we define an m×k matrix
An = (aij), where aij is the number of edges connecting vi to uj . We call
An the nth incidence matrix of (V,E).

It is convenient to give a diagrammatic presentation of the Bratteli dia-
gram with Vn the vertices at (horizontal) level n and En+1 the edges (down-
ward directed) connecting the vertices at level n with those at level n + 1,
as illustrated in Figure 1. The vertices of Vn = {u1, . . . , uk} are placed in
the given order from left to right.

Given ek ∈ Ek, ek+1 ∈ Ek+1, . . . , ek+m ∈ Ek+m such that r(ei) = s(ei+1)
for i = k, k + 1, . . . , k + m − 1, we call the sequence (ek, . . . , ek+m) a path

Vn

Vn+1

En+1

s(e)

e

r(e)

An =

(
2 1 0

1 1 1

)

Fig. 1. Two levels of a Bratteli diagram and the corresponding incidence matrix
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(of length m + 1) in (V,E) starting at s(ek) ∈ Vk−1 and terminating at
r(ek+m) ∈ Vk+m.

Let {nk}∞k = 0 be a subsequence of {0, 1, 2, . . .}, where we assume that
n0 = 0. We telescope (V,E) into a new Bratteli diagram (V ′, E′) by letting
V ′
k = Vnk

and letting A′
k = Ank+1−1Ank+1−2 . . . Ank

be the new incidence
matrices. Notice that E′, r′, and s′ are obtained in a natural way from the
incidence matrices {A′

k}. Furthermore, we see that the edges E′
k from V ′

k−1

to V ′
k correspond to the paths from Vnk−1

to Vnk
in (V,E).

A Bratteli diagram is simple if it can be telescoped so that all the inci-
dence matrices have strictly positive entries. Equivalently, a Bratteli diagram
(V,E) is simple if and only if for each n ∈ N ∪ {0} there exists an ln ∈ N
such that there is at least one path from each vertex in Vn to each vertex
in Vn+ln .

There is an obvious notion of isomorphism between Bratteli diagrams
(V,E) and (V ′, E′): namely, there exists a pair of bijections between V and
V ′ and between E and E′ preserving the gradings and intertwining the
respective source and range maps. We let ∼ denote the equivalence relation
on ordered Bratteli diagrams generated by isomorphism and telescoping.
One can show that (V,E) ∼ (V ′, E′) if and only if there exists a Bratteli

dagram (Ṽ , Ẽ) so that telescoping (Ṽ , Ẽ) to odd levels 0 < 1 < 3 < . . .

yields a telescoping of either (V,E) or (V ′, E′), and telescoping (Ṽ , Ẽ) to
even levels 0 < 2 < 4 < . . . yields a telescoping of the other.

2.2. Dimension groups. With the Bratteli diagram (V,E) is associated
a dimension group which we denote by K0(V,E); the notation is motivated
by the connection to K-theory. In fact, with the Bratteli diagram (V,E) is
associated a system of ordered groups

Z|V0| A0−→ Z|V1| A1−→ Z|V2| A2−→ Z|V3| → . . .

where the positive homomorphism An is given by matrix multiplication with
the incidence matrix between levels n − 1 and n. By definition, K0(V,E)
is the inductive limit of the system above endowed with the induced order,
K0(V,E)+ denoting the positive cone. K0(V,E) has a distinguished order

unit , namely the element of K0(V,E)+ corresponding to the element 1 ∈
Z|V0| = Z. One shows easily that (V,E) ∼ (V ′, E′) if and only if K0(V,E)
is order isomorphic to K0(V

′, E′) by a map sending the distinguished order
unit of K0(V,E) to the distinguished order unit of K0(V

′, E′).

Example. The two Bratteli diagrams (V,E) and (V ′, E′) exhibited in

Figure 2 are ∼-equivalent. In fact, if one telescopes the diagram (Ṽ , Ẽ) to

even levels one gets (V,E), and if one telescopes (Ṽ , Ẽ) to odd levels one
gets (V ′, E′). The dimension group associated with all these three diagrams
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etc.

etc. etc.

(V, E) (Ṽ , Ẽ) (V ′, E′)

Fig. 2. ∼-equivalent Bratteli diagrams with associated dimension group Z[1/2]

is the dyadic rationals Z[1/2] with the natural ordering, with distinguished
order unit 1.

It is a theorem by Effros, Handelman, and Chen [8] that dimension
groups (K0(V,E),K0(V,E)+) may be abstractly characterized as follows:

A dimension group is a pair (G,G+), where G is a countable abelian

group and G+ = {a ∈ G : a ≥ 0} is the positive cone, with the properties

(i) (G,G+) is unperforated, i.e., if a ∈ G and na ∈ G+ for some n ∈ N,
then a ∈ G+. (Note that this implies that G is torsion free.)

(ii) (G,G+) satisfies the Riesz interpolation property, i.e., given a1, a2,
b1, b2 ∈ G such that ai ≤ bj, there exists a c ∈ G such that ai ≤ c ≤ bj
(i, j = 1, 2).

A dimension group (G,G+) is simple if G contains no non-trivial or-
der ideal . (A subgroup J of G is an order ideal if J = J+ − J+ (where
J+ = J ∩G+) and 0 ≤ a ≤ b ∈ J implies that a ∈ J .) It is a fact that
the dimension group K0(V,E) associated with the Bratteli diagram (V,E)
is simple if and only if (V,E) is a simple Bratteli diagram. Since we want
to avoid trivial cases, we will tacitly assume that all the simple dimension
groups we encounter are acyclic, i.e. not isomorphic to Z. One can show that
the linearly ordered dimension groups (G,G+) (i.e. if a, b ∈ G, then either
a ≤ b or b ≤ a) coincide up to order isomorphism with the countable sub-
groups of the additive group R, with the inherited order. These dimension
groups are necessarily simple.
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If (G,G+) is a simple dimension group, then any u ∈ G+\{0} is an order

unit , i.e., G+ = {a ∈ G : 0 ≤ a ≤ nu for some n ∈ N}. Fixing an order unit
u, we say that a homomorphism p : G → R is a state if p is positive (i.e.
p(g) ≥ 0 whenever g ∈ G+) and p(u) = 1. Denote the collection of all states
by Su(G). Clearly, Su(G) is a convex set. By a Hahn–Banach like argument
one proves that Su(G) determines the order on G. In fact, we have

G+ = {a ∈ G : p(a) > 0 for all p ∈ Su(G)} ∪ {0}.

If ε = p/q, where p, q ∈ N, then a ≤ εu means that qa ≤ pu. The infinites-

imal subgroup Inf G of G consists of those a ∈ G such that −εu ≤ a ≤ εu
for all 0 < ε ∈ Q+. By the above,

Inf G = {a ∈ G : p(a) = 0 for all p ∈ Su(G)}.

It is easy to see that Inf G does not depend on which order unit u we choose.
The quotient G/Inf G with the induced ordering is again a simple dimension
group. (For details, cf. [7].)

2.3. Simple dimension groups and Choquet simplices. The relation be-
tween simple dimension groups and Choquet simplices is rather intimate, and
we refer to [7] for a detailed discussion. Here we just state the one result
that we need in the sequel. First of all, if (G,G+, u) is a simple dimension
group with order unit u, then the state space Su(G) is a Choquet simplex
when Su(G) ⊆ RG is given the relative topology from RG. The following
holds:

Let K be a Choquet simplex and let G be a countable, dense (in the

uniform topology) subgroup of Aff(K), the additive group of real , affine,
and continuous functions on K. Then (G,G+) is a simple dimension group

without infinitesimal elements , where G+ = {a ∈ G : a(k) > 0 for k ∈ K}
∪ {0}. Furthermore, if G contains the constant function u = 1, then K

is affinely homeomorphic to Su(G) by the evaluation map k 7→ k̂, where

k̂(a) = a(k), a ∈ G, k ∈ K.

In Section 4 we will give yet another characterization of simple dimension
groups in terms of purely dynamical concepts.

3. Ordered Bratteli diagrams and Cantor minimal system

3.1. Dynamical concepts. Recall that a topological dynamical system
is a pair (X,T ), where X is a compact metric space and T : X → X is
a homeomorphism. We say that (X,T ) is minimal if TA = A, where A is
a closed subset of X , implies that A = X or A = ∅. Observe that this is
equivalent to all T -orbits being dense, i.e.

orbitT (x)
− := {T nx | n ∈ Z}− = X for all x ∈ X.



208 C. SKAU

The minimal system (X,T ) is Cantor minimal if X is a Cantor set, i.e.
X is totally disconnected without isolated points. (Recall that all Cantor
sets are homeomorphic.) In particular, the Cantor minimal system (X,T )
is a minimal symbolic system if T is expansive, i.e. there exists an a > 0 so
that for every x 6= y, supn d(T

nx, T ny) > a, where d is a metric yielding
the topology of X . For Cantor minimal systems, expansiveness is equivalent
to (X,T ) being conjugate to a (minimal) subshift on a finite alphabet (cf.
[26, Thm. 5.24]).

We say that two dynamical systems (X,T ) and (Y, S) are conjugate

(respectively, flip conjugate) if there exists a homeomorphism F : X → Y
so that F ◦ T = S ◦ F (respectively, F ◦ T = S ◦ F or F ◦ T = S−1 ◦ F ).

We say that (X,T ) is an extension of (Y, S), or that (Y, S) is a factor

of (X,T ), if there exists a continuous surjection F : X → Y , called a factor

map, so that F ◦ T = S ◦ F .
3.2. Ordered Bratteli diagrams

Definition 2. An ordered Bratteli diagram B = (V,E,≥) is a Bratteli
diagram (V,E) together with a partial order ≥ on E, so that edges e, e′ in E
are comparable if and only if r(e) = r(e′); in other words, we have a linear
order on each set r−1({v}), where v belongs to V \V0.

Note that if (V,E,≥) is an ordered Bratteli diagram and k < l in Z+,
then the set Ek+1 ◦ Ek+2 ◦ . . . ◦ El of paths from Vk to Vl may be given
an induced (lexicographic) order: (ek+1, ek+2, . . . , el)> (fk+1, fk+2, . . . , fl) if
and only if for some i with k + 1 ≤ i ≤ l, ej = fj for i < j ≤ l and ei > fi.
It is a simple observation that if (V,E,≥) is an ordered Bratteli diagram
and (V ′, E′) is a telescoping of (V,E), then with the induced order ≥′,
(V ′, E′,≥′) is again an ordered Bratteli diagram. We say that (V ′, E′,≥′) is
a telescoping of (V,E,≥).

Again there is an obvious notion of isomorphism between ordered Brat-
teli diagrams. We let ≈ denote the equivalence relation on ordered Bratteli
diagrams generated by isomorphism and by telescoping. One can show that
B ≈ B′, where B = (V,E,≥), B′ = (V ′, E′,≥′), if and only if there exists

an ordered Bratteli diagram B̃ = (Ṽ , Ẽ, ≥̃) so that telescoping B̃ to odd
levels 0 < 1 < 3 < . . . yields a telescoping of either B or B′, and telescoping
B̃ to even levels 1 < 2 < 4 < . . . yields a telescoping of the other. (This is
analogous to the equivalence relation ∼ above.)

Let B = (V,E,≥) be an ordered Bratteli diagram. Let XB denote the
associated infinite path space, i.e.

XB = {(e1, e2, . . .) | ei ∈ Ei, r(ei) = s(ei+1); i = 1, 2, . . .}.

We will exclude trivial cases and assume henceforth that XB is an infinite
set. Two paths in XB are said to be cofinal if they have the same tails, i.e.
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the edges agree from a certain stage. We topologize XB by postulating a
basis of open sets, namely the family of cylinder sets

U(e1, e2, . . . , ek) = {(f1, f2, . . .) ∈ XB | fi = ei, 1 ≤ i ≤ k}.

Each U(e1, . . . , ek) is also closed, as is easily seen, and so XB becomes
a compact Hausdorff space with a countable basis of clopen sets, i.e. a
zero-dimensional space. We call XB with this topology the Bratteli com-

pactum associated with B = (V,E,≥). If (V,E) is a simple Bratteli dia-
gram, then XB has no isolated points, and so it is a Cantor set. We let
Xmax

B (respectivelyXmin
B ) denote those elements x = (e1, e2, . . .) of XB so

that en is a maximal edge (respectively minimal edge) for each n = 1, 2, . . .
An easy argument shows that Xmax

B (respectivelyXmin
B ) is non-empty.

Definition 3. The ordered Bratteli diagram B = (V,E,≥) is properly
ordered (called simple ordered in [16], [11]) if

(i) (V,E) is a simple Bratteli diagram,

(ii) Xmax
B , resp. Xmin

B , consists of only one point xmax, resp. xmin.

We can now define a minimal homeomorphism VB : XB → XB, called
the Vershik map (or the lexicographic map), associated with the properly or-
dered Bratteli diagram B = (V,E,≤). (We call the resulting Cantor minimal
system (XB, VB) a Bratteli–Vershik system.) We let VB(xmax) = xmin. If
x = (e1, e2, . . .) 6= xmax, let k be the smallest number so that ek is not a
maximal edge. Let fk be the successor of ek (and so r(ek) = r(fk)). Define
VB(x) = y = (f1, . . . , fk−1, fk, ek+1, ek+2, . . .), where (f1, . . . , fk−1) is the
minimal edge in E1 ◦ E2 ◦ . . . ◦ Ek−1 with range equal to s(fk).

3.3. The model theorem

Theorem 4 [16, Thm. 4.7]. Let (X,T, x) be a (pointed) Cantor minimal

system. Then there exists a properly ordered Bratteli diagram B = (V,E,≥)
so that (X,T, x) is pointedly conjugate to (XB , VB, xmin), where xmin is the

unique minimal path of XB, i.e. the conjugating map F : X → XB maps

x to xmin. Moreover , if (Xi, Ti, xi) is associated with Bi = (V i, Ei,≥i),
i = 1, 2, then (X1, T1, x1) is pointedly conjugate to (X2, T2, x2) if and only if

B1 ≈ B2.

P r o o f (sketch). The proof is based on constructing Kakutani–Rokhlin
towers—where the heights of the various towers are determined by the return
times to the base set—over the clopen sets An, where {An} is a sequence
of clopen sets shrinking to the one-point set {x}. The vertices Vn at level n
correspond to the distinct towers over An. We have an edge in En each time
a tower over An (which corresponds to a vertex at level n) passes through a
tower over An−1 (which corresponds to a vertex at level n−1). The edges are
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ordered according to the order a given tower over An traverses the various
towers over An−1.

Let (X,T ) denote the Bratteli–Vershik system (XB, VB) associated with
the properly ordered Bratteli diagram B = (V,E,≥). For k ≥ 1 let Σk be the
set of paths from V0 to Vk, i.e. the set of paths starting at v0 ∈ V0 and ter-
minating at some v ∈ Vk. There is an obvious truncation map πk : X → Σk,
obtained by restriction of paths to their initial segments of length k. With
each x ∈ X , one associates a bisequence π̃k(x) = (πk(T

n(x)))n∈Z in ΣZ
k .

The map π̃k is obviously continuous. Clearly, π̃k(T (x)) = Sk(π̃k(x)), where
Sk denotes the shift. Hence the subshift (Yk, Sk), where Yk is the compact
space π̃k(X), is a factor of (X,T ), the factor map being π̃k. One verifies
that (X,T ) is the inverse limit of {(Yk, Sk)}k∈N.

If (X,T ) is expansive, it is easy to see that there exists a k such that
the map π̃k : X → Yk is one-to-one. (The converse is also true.) Hence
(X,T ) and (Yk, Sk) are conjugate. By telescoping the diagram between level
0 and k, we may assume that k = 1.

It is important that the Bratteli–Vershik system we get is the same up
to conjugacy regardless of the choice of base point and the choice of the sets
shrinking down to the base point. This fact yields a great deal of freedom
when we are going to do the construction for concrete examples. A judicious
choice of the shrinking sequence may hugely simplify the construction and
yield a “nice” Bratteli–Vershik model.

Example. We exhibit two examples of Bratteli–Vershik models, with
ordering of the edges indicated (Figure 3).

(i) Odometers , i.e. minimal rotations on a-adic groups (cf. [17] for details
about a-adic groups). (It is a fact that these systems coincide with the
family of distal Cantor minimal systems (X,T ), i.e. for every x 6= y in
X there exists a > 0 so that infn d(T

nx, T ny) > a, where d is a metric
yielding the topology.) If a = (a1, a2, . . .), then Xa =

∏∞
n=1{0, 1, . . . , an − 1}

is endowed with the product topology, and Ta : Xa → Xa is defined by
“add (1, 0, 0, . . .)”. The (“nicest”) Bratteli–Vershik model has one vertex at
each level; see Figure 3(a). The dimension group associated with the Bratteli
diagram (strip the ordering) is the rational numbers {m/(a1a2 . . . ak) | m
∈ Z, k = 1, 2, . . .} with the natural order, the distinguished order unit
being 1.

We say that the odometer associated with a = (a1, a2, . . .) is stationary

if ak = ak+1 = ak+2 = . . . from some k on.

(ii) Sturmian flows . Let 0 < α < 1 be an irrational number (we may
assume without loss of generality that 0 < α < 1/2), and let

x =
1

a1 +

1

a2 +

1

a3 + . . .
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α = 1/(a1 + 1/(a2 + . . .))a = (a1, a2, . . .)

a2 + 1

1

a3 + 1

a321

.

...

a1
...

(b)

.

.

.

(a)

...32

1

.

.

...
a3

a2

21

...
2 a1

2

1

1
...

Fig. 3. Bratteli–Vershik models for odometers (a) and Sturmian flows (b)

be the continued fraction expansion of α. Let X be the unit circle “Can-
torized” by doubling points at Zα (mod 1), and let T : X → X be rotation
by α. The (“nicest”) Bratteli–Vershik model is shown in Figure 3(b). The
dimension group associated with the Bratteli diagram (strip the ordering)
is Z + Zα with the natural order, the distinguished order unit being 1.

Recall that two Cantor minimal systems (X,T ) and (Y, S) are Kakutani

equivalent if they have (up to conjugacy) a common derivative, i.e. there
exist clopen sets U (in X) and V (in Y ) so that the induced systems on U
and V , respectively, are conjugate. There is a simple procedure—given the
model theorem—to relate Kakutani equivalent systems. Indeed, the relevant
fact is changing the order unit.

Observe first that if (V,E) is a Bratteli diagram with associated dimen-
sion group G = K0(V,E), then any finite change of (V,E), i.e. adding and/or
removing a finite number of edges (vertices), thus changing (V,E) into a new
Bratteli diagram (V ′, E′), does not change the isomorphism class of G, but
does change the order unit. In fact, G′ = K0(V

′, E′) is order isomorphic
to G, but the distinguished order units are not necessarily preserved by the
isomorphism. Clearly, any change of order unit of G may be obtained by such
a procedure.

Likewise, if B = (V,E,≥) is a properly ordered Bratteli diagram we may
change B into a new properly ordered Bratteli diagram B′ = (V ′, E′,≥′) by
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making a finite change, i.e. adding and/or removing any finite number of
edges (vertices), and then making an arbitrary choice of linear orderings of
the edges meeting at the same vertex (for a finite number of vertices). So B
and B′ are cofinally identical, i.e. they only differ on finite initial portions.
(Observe that this defines an equivalence relation on the family of properly
ordered Bratteli diagrams.)

We have the following theorem about Kakutani equivalent systems.

Theorem 5 [11, Thm. 3.8]. Let (XB, VB) be the Bratteli–Vershik system
associated with the properly ordered Bratteli diagram B = (V,E,≥). Then

the Cantor minimal system (Z,ψ) is Kakutani equivalent to (XB, VB) if and
only if (Z,ψ) is conjugate to (XB′ , VB′), where B′ = (V ′, E′,≥′) is obtained
from B by a finite change as described above.

4. Ordered K-theory and orbit equivalence. In this section we re-
late the K-theoretic invariant—which for a Cantor minimal system turns out
to be a simple dimension group—to the orbit structure of Cantor minimal
systems. For details, cf. [11] (see also [13]).

4.1. The K-theoretic invariant

Definition 6. Let (X,T ) be a Cantor minimal system. Let C(X,Z)
denote the set of continuous functions on X with values in Z. Let

K0(X,T ) = C(X,Z)/∂TC(X,Z)

where ∂T : C(X,Z) → C(X,Z) denotes the coboundary operator ∂T (f) =
f − f ◦ T , and f − f ◦ T is a coboundary. Define the positive cone

K0(X,T )+ = {[f ] | f ∈ C(X,Z+)}

where [·] denotes the quotient map. K0(X,T ) has a distinguished order unit,
namely [1] = 1, where 1 denotes the constant function one.

Remark. The group C(X,Z)/∂TC(X,Z), as an abstract group without
order, has appeared before in the theory of dynamical systems. It is the first
Čech cohomology group H1(X̂,Z) of the suspension X̂ of (X,T ), where X̂
is obtained from X × [0, 1] by identifying (x, 1) and (Tx, 0); cf. [21].

Remark. The notation K0(X,T ) is used because of the K-theoretic
underpinning of this notion. In fact, one can show that the K0-group of
the associated C∗-crossed product C(X) ×T Z is isomorphic to K0(X,T ).
Furthermore, the natural order that the K0-group is endowed with makes
this an order isomorphism by a map preserving the canonical order units.
(One can show that the K1-group of C(X)×T Z is isomorphic to Z.)

The following theorem is an immediate consequence of Theorem 4. It
shows that simple dimension groups may be defined by purely dynamical
concepts.
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Theorem 7 [16, Thm. 5.4 and Cor. 6.3]. Let (X,T ) be a Cantor minimal

system. Let B = (V,E,≥) be the associated properly ordered Bratteli diagram

(having chosen a base point in X , cf. Theorem 4). Then

K0(X,T ) ∼= K0(V,E)

as ordered groups with distinguished order units. Furthermore, every simple

dimension group G (G 6= Z) arises in this manner.

Let (K0(X,T ),K0(X,T )+,1) be the dimension group with distinguished
order unit associated with the Cantor minimal system (X,T ). It is fairly
routine to show that there is a natural correspondence between the set of
T -invariant probability measures M(X,T ) on X , and the set of states (cf.
Section 2.2) on (K0(X,T ),K0(X,T )+,1). In fact, the map

[f ] 7→
\
X

f dµ, f ∈ C(X,Z), µ ∈M(X,T ),

implements this correspondence. This implies that InfK0(X,T ) (cf. Sec-
tion 2.2) is equal to the quotient

N(C(X,Z))/∂TC(X,Z)

where N(C(X,Z)) = {f ∈ C(X,Z) |
T
X
f dµ = 0 for all µ ∈ M(X,T )}.

Also, we get

K̂0(X,T ) := K0(X,T )/InfK0(X,T ) ∼= C(X,Z)/N(C(X,Z))

with the induced ordering, and with the distinguished order unit correspond-
ing to the constant function equal to 1 (which we again will denote by 1).

K̂0(X,T ) is a simple dimension group (cf. Section 2.2).

4.2. Results on orbit equivalence. We first give the necessary definitions.

Definition 8 (Orbit equivalence). The dynamical systems (X,T ) and
(Y, S) are (topologically) orbit equivalent if there exists a homeomorphism
F : X → Y so that F (orbitT (x)) = orbitS(F (x)) for all x ∈ X . We use the
generic term orbit map for a map like F .

Obviously, orbit equivalence is an equivalence relation. It is easily seen
that flip conjugacy (and hence conjugacy) implies orbit equivalence. Fur-
thermore, one shows by a simple argument that F (M(X,T )) = M(Y, S),
where F is an orbit map as in Definition 8.

Let (X,T ), (Y, S) and F be as in Definition 8. For each point x in X
there exists an integer n(x) so that F ◦ T (x) = Sn(x) ◦ F (x). Likewise, there
exists an integer m(x) so that F ◦Tm(x)(x) = S ◦F (x). If (X,T ) (and hence
(Y, S)) is minimal, m and n are uniquely defined integer-valued functions
on X . We call m and n the orbit cocycles associated with the orbit map F .

Definition 9 (Strong orbit equivalence). Let (X,T ) and (Y, S) be min-
imal systems that are (topologically) orbit equivalent. We say that (X,T )
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and (Y, S) are (topologically) strong orbit equivalent if there exists an orbit
map F : X → Y so that the associated orbit cocycles m,n : X → Z each
have at most one point of discontinuity.

Remark. That strong orbit equivalence really is an equivalence re-
lation for Cantor minimal systems is a consequence of Theorem 11 below.
Obviously flip conjugacy implies strong orbit equivalence. It is worth point-
ing out that between strong orbit equivalent systems (in fact, even between
conjugate systems) one may find orbit maps so that the associated orbit
cocycles each have more than one point of discontinuity.

To put Definition 9 in perspective we cite the following theorem of M.
Boyle [1].

Theorem 10 [11, Thm. 2.4]. Let (X,T ) and (X,S) be two dynamical

systems on the compact metric space X having the same orbits , one orbit

being dense (i.e. the systems are transitive). Assume that one of the orbit

cocycles m and n is continuous everywhere. Then the two systems are flip

conjugate.

The next two theorems show that complete invariants of ordered K-
theoretic nature exist for the orbit structure of Cantor minimal systems.

Theorem 11 [11, Thm. 2.1]. Let (X,T ) and (X,S) be two Cantor min-

imal systems. The following are equivalent :

(i) (X,T ) and (Y, S) are strong orbit equivalent.

(ii) K0(X,T ) is order isomorphic to K0(Y, S) by a map preserving the

distinguished order units.

Theorem 12 [11, Thm. 2.2]. Let (X,T ) and (Y, S) be two Cantor min-

imal systems. The following are equivalent :

(i) (X,T ) and (Y, S) are orbit equivalent.

(ii) K̂0(X,T ) is order isomorphic to K̂0(Y, S) by a map preserving the

distinguished order units (cf. Section 4.1 for notation).

(iii) There exists a homeomorphism F : X → Y which maps the set of

T -invariant probability measures onto the S-invariant probability measures.

We have already (in Section 3.3) mentioned odometer systems, which
in particular are uniquely ergodic. Recall that a Denjoy homeomorphism is
an aperiodic homeomorphism of the unit circle T which is not conjugate to
a pure rotation. (Denjoy proved that such homeomorphisms cannot be of
class C2.) By a Denjoy system we mean a Denjoy homeomorphism restricted
to its unique invariant Cantor set (which is the support of the unique invari-
ant measure); cf. [22] for details. (The simplest examples of Denjoy systems
are the Sturmian flows exemplified in Section 3.3.) We have the following
remarkable corollary of Theorem 12.
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Corollary 13. Let (X,T ) be a uniquely ergodic Cantor system. Then

(X,T ) is orbit equivalent to either an odometer system or a Denjoy system.

Remark. There is an abundance of Cantor minimal systems that are
strong orbit equivalent but not flip conjugate. Likewise, within each or-
bit equivalence class there are uncountably many strong orbit equivalence
classes. A truly remarkable result proved by N. Ormes [20] says that given
any Cantor minimal system (X,T ) and an ergodic measure-preserving sys-
tem (Y, C, µ, S), µ(Y ) = 1, there exists a system (X ′, T ′), orbit equivalent
to (X,T ), and a T ′-invariant (ergodic) measure ν′, ν′(X ′) = 1, so that
(Y, C, µ, S) is metrically isomorphic to (X ′,B′, ν′, T ′), where B′ is the set
of Borel sets in X ′. This result implies both the Dye theorem on orbit
equivalence of ergodic measure-preserving systems and the Jewett–Krieger
realization theorem for ergodic systems. (Ormes also proved a similar result
in the strong orbit equivalent case.) A direct consequence of Ormes’ result
(and also of a result by Sugisaki [24]) is that within each strong orbit equiv-
alence class all (topological) entropies occur. In particular, the K-theoretic
and entropy invariants are independent of each other.

5. Dimension groups associated with substitution minimal sys-

tems. In this section we present an algorithmic and explicit construction
which renders an effective method to compute the (ordered) K-theoretic in-
variant associated with substitution minimal systems. First we state some
relevant definitions and basic results, referring to [6] for further details. For
a general reference on substitutions, cf. [23].

5.1. Basic facts about substitutions. An alphabet is a finite set of sym-
bols called letters . If A is an alphabet, a word in A is a finite (non-empty)
sequence of letters. A+ denotes the set of words. For u=u1u2 . . . un∈A+,
|u| = n is the length of u. Given a word u = u1 . . . un, we say that v =
ui . . . uj, where 1 ≤ i ≤ j ≤ n, is a subword (or a factor) of u. We extend
this definition in an obvious way to (infinite) sequences. We will use the
notation v ≺ u. We say that v occurs in u. Elements of AZ are called
sequences over the alphabet A. The language L(x) of the sequence x is the
set of words which are factors of x.

A substitution on the alphabet A is a map σ : A → A+. Using the
extension to words by concatenation, σ can be iterated: for each integer
n > 0, σn : A → A+ is again a substitution. In this paper we only consider
primitive substitutions, i.e. substitutions σ on A such that there exists n ∈ N
so that for every a, b ∈ A, b occurs in σn(a), i.e. b ≺ σn(a). We also require
that limn |σn(a)| =∞ for every a ∈ A.

Let A = {a1, . . . , ak} and let σ be a substitution on A. The matrix
M(σ) is defined by M(σ)ij = the number of occurrences of aj in σ(ai). One
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observes that M(σn) = M(σ)n, and that σ is primitive if and only if there
exists n so that M(σ)n has only non-zero entries, i.e. M(σ) is a primitive

matrix.

We denote by L(σ) the language of σ, i.e. the set of words on A which
are factors of σn(a) for some a ∈ A and some n ≥ 1, and by Xσ the subset
of AZ associated with this language, i.e. the set of x ∈ AZ whose every finite
factor belongs to L(σ). Xσ is closed in AZ and invariant under the shift. We
denote by Tσ the restriction of the shift with Xσ. The dynamical system
(Xσ, Tσ) is called the substitution dynamical system associated with σ. The
following is well known:

Every substitution dynamical system is minimal and uniquely ergodic, and
has (topological) entropy equal to zero.

In the literature, substitution dynamical systems are often defined by a
different (but equivalent) method, using fixed points:

For every integer p > 0, the substitution σp defines the same language,
thus the same system, as σ does. Substituting σp for σ if needed, we can
assume that there exist two letters r, l ∈ A such that:

(i) r is the last letter of σ(r),

(ii) l is the first letter of σ(l),

(iii) rl ∈ L(σ).
Whenever r and l satisfy the conditions (i) and (ii), it is easy to check

that there exists a unique ω = (ωn)n∈Z ∈ AZ such that

ω−1 = r, ω0 = l and σ(ω) = ω

where it is obvious how to extend σ to sequences. Such an ω is called a fixed

point of σ. If r and l also satisfy (iii), we say that ω is an admissible fixed

point of σ.

If ω is an admissible fixed point of σ, then Xσ is the closure of the orbit
of ω for the shift. This property is often taken as the definition of Xσ in the
literature.

In the sequel, (Xσ, Tσ) is the system associated with the primitive sub-
stitution σ on the alphabet A, ω is an admissible fixed point of σ, r = ω−1

and l = ω0.

To avoid trivial cases, we consider henceforth only aperiodic substitu-
tions, i.e. substitutions giving rise to infinite systems, in fact, minimal sym-
bolic systems. (There is an algorithm which decides whether a given substi-
tution is aperiodic or not [15].) For substitution dynamical systems associ-
ated with primitive and aperiodic substitutions we use the term substitution

minimal systems.

We now introduce a class of substitutions which are easier to study.



ORDERED K-THEORY 217

Definition 14. A substitution σ on the alphabet A is proper if there
exists an integer p > 0 and two letters r, l ∈ A such that:

(i) For every a ∈ A, r is the last letter of σp(a).

(ii) For every a ∈ A, l is the first letter of σp(a).

A proper substitution has only one fixed point. A crucial result that we
shall prove is that every substitution minimal system is conjugate to the
system associated with some proper substitution, which can be explicitly
constructed from the former.

5.2. Stationary Bratteli diagrams and associated dimension groups

Definition 15. A Bratteli diagram (V,E) is stationary if k = |V1| =
|V2| = . . . and if (by an appropriate labeling of the vertices) the incidence
matrices between levels n and n+1 are the same k×k matrix C for all n=
1, 2, . . . In other words, beyond level 1 the diagram repeats. (Clearly, we may
label the vertices in Vn as V (n, a1), . . . , V (n, ak), where A = {a1, . . . , ak} is
a set of k distinct symbols.)

B = (V,E,≥) is a stationary ordered Bratteli diagram if (V,E) is station-
ary, and the ordering on the edges with range V (n, ai) is the same as the or-
dering on the edges with range V (m, ai) for m,n = 2, 3, . . . and i = 1, . . . , k.
In other words, beyond level 1 the diagram with the ordering repeats. (For
each ai in A = {a1, . . . , ak} and each n = 2, 3, . . . , we thus get an ordered
list of edges whose range is V (n, ai). By the stationarity of the ordering of
B we get a well-defined map from A to A+ (by taking the sources of the
edges in the given order).

(G,G+) is a stationary dimension group if G is order isomorphic to
K0(V,E), where (V,E) is a stationary Bratteli diagram. K0(V,E) is com-
pletely determined by the k × k incidence matrix C of (V,E) (we disregard
the distinguished order unit). Also, K0(V,E) is simple if and only if C is a
primitive matrix. In this case K0(V,E) has a unique state (with respect to
a given order unit), and this state is determined by a left Perron–Frobenius
eigenvector of C (appropriately normalized); cf. [7, Chapter 6].

Define

H(C) = {~h ∈ Qk | ∃n ∈ N so that Cn~h ∈ Zk},
H(C)+ = {~h ∈ Qk | ∃n ∈ N so that Cn~h ∈ Zk

+},
K(C) = {~h ∈ Qk | ∃n ∈ N so that Cn~h = ~0}.

Then G = H(C)/K(C) and G+ is the image of H(C)+ in G. (Alternatively,
G+ is determined by the unique state (if C is primitive); cf. Section 2.2.)

We refer to [7] and [14] for further details on how to compute (G,G+)
when C is given.
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5.3. Main results

Theorem 16 [6, Thm. 1]. The family Φ of Bratteli–Vershik systems

associated with stationary, properly ordered Bratteli diagrams is (up to con-

jugacy) the disjoint union of the family of substitution minimal systems and

the family of stationary odometer systems. Furthermore, the correspondence

in question is given by an explicit and algorithmic effective construction.

The same is true for the computation of the (stationary) dimension group

associated with a substitution minimal system.

Remark. The main part of Theorem 16 is also proved in [10]. However,
the proofs given there are mostly of existential nature and do not state a
feasible method to compute effectively.

Theorem 17 [6, Cor. 2 and Thm. 3]. The family Φ in the above theorem

is stable under Kakutani equivalence. Furthermore, a Cantor factor of a

system (X,T ) belonging to Φ is again in Φ.

Before we present concrete examples to demonstrate the algorithm re-
ferred to in Theorem 16, we give an idea of the proof.

Sketch of proof of Theorem 16. (i) We first consider proper substitu-
tions (cf. Definition 14). So let σ : A → A+ be a (primitive, aperiodic)
proper substitution. Denote by B = (V,E,≥) the stationary ordered Brat-
teli diagram associated with σ in an obvious way (cf. Definition 15), with
the proviso that there is a single edge from the top vertex (at level 0)
to each of the vertices at level 1. It is easily seen that B = (V,E,≥)
is properly ordered, and that the incidence matrix C of (V,E) is M(σ).
Furthermore, the substitution minimal system (Xσ, Tσ) is conjugate to the
Bratteli–Vershik system (XB , VB) via the truncation map π̃1 : XB → Y1;
cf. Section 3.3. In fact, (Xσ, Tσ) may be naturally identified with (Y1, S1),
and the factor map π̃1 from (XB , VB) onto (Y1, S1) is actually one-to-one
(thus a conjugation). The last fact depends upon the highly non-trivial result
on “recognizability” for primitive, aperiodic substitution by Mossé [18], [19].

(ii) In general, let σ : A → A+ be a (primitive, aperiodic) substitution
(with associated substitution minimal system (Xσ, Tσ)) satisfying condi-
tions (i), (ii) and (iii) of Section 5.1, and let

σ(ω) = ω = (ωn)n∈Z

be an admissible fixed point for σ. To reduce to the proper substitution case
above, it is a remarkable fact that by inducing (Xσ, Tσ) to the clopen set

[ω−1
•
ω0] := {x = (xn)n∈Z ∈ Xσ | x−1 = ω−1, x0 = ω0}

this may be achieved. In fact, by introducing a new alphabet consisting of
so-called return words to ω−1ω0 in ω (i.e. the subwords of ω lying between
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two consecutive occurrences of ω−1ω0 in ω), σ generates a proper (primi-
tive, aperiodic) substitution τ . Then (Xτ , Tτ ) is conjugate to the induced
system. By Theorem 5 the properly ordered Bratteli diagram associated with
(Xσ, Tσ) is obtained form the stationary diagram associated with (Xτ , Tτ )
by a finite change, and the latter is easily determined. The details are lengthy
to explain precisely, but two concrete examples should be instructive and
demonstrate the effectiveness of the algorithm to compute the associated
dimension groups.

(iii) Conversely, let B = (V,E,≥) be a stationary properly ordered Brat-
teli diagram. One shows first that there exists a ≈-equivalent stationary
(properly ordered) diagram with the same arrangement of edges between lev-
els 0 and 1 as in (i). (Cf. [6, Lemma 9].) By an appropriate telescoping of
the diagram we may assume that all the minimal edges in En have the same
source in Vn−1 for n = 2, 3, . . . Similarly for the maximal edges. The substi-
tution σ read off the diagram (cf. Definition 15) is clearly proper. There are
two alternatives: Either the Bratteli–Vershik system is a stationary odome-
ter (the associated substitution is then periodic), or it is a substitution
minimal system conjugate to (Xσ, Sσ).

5.4. Examples

Example 1. The substitution σ on the alphabet A = {a, b} defined by

σ(a) = aab, σ(b) = abab

is proper (and primitive, aperiodic). Clearly, M(σ) =
(
2
2

1
2

)
.

So K0(Xσ, Tσ) is the stationary dimension group associated with the
2× 2 matrix C =

(
2
2

1
2

)
; cf. Section 5.2. The Perron–Frobenius eigenvalue of

C is λ = 2+
√
2 and a left Perron–Frobenius eigenvector is (

√
2, 1), which de-

termines the unique state. Since detC = 2, K(C) = {0} and so K0(Xσ, Tσ)
= H(C) (cf. Section 5.2 for notation). A simple computation shows that

K0(Xσ, Tσ) = {(2−ka, 2−kb) | a, b ∈ Z, k ≥ 0} ⊂ Q2,

K0(Xσ, Tσ)+ = {(r, s) ∈ K0(Xσ, Tσ) | r
√
2 + s ≥ 0}.

The distinguished order unit is (1, 1).

Example 2. Let ω = (ωn)n∈Z = . . . ω−2ω−1•ω0ω1ω2 . . . be a sequence
over the alphabet A, where • indicates the position of the zeroth coordinate.
We denote by ω[i,j), where i < j, the subword ωiωi+1 . . . ωj−1 of ω. An oc-

currence of the subword ω−1ω0 in ω is by definition an integer n so that
ω[n−1,n+1) = ω−1ω0. A subword u of ω is a return word with respect to
ω−1ω0 if there exist two consecutive occurrences i, j (i < j) of ω−1ω0 in ω
so that u = ω[i,j). If ω is uniformly recurrent , which is the case when we are
dealing with minimal subshifts, the set of return words is finite. (The notion
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of return word is intimately tied to the notion of a tower over the clopen
set [ω−1•ω0] with respect to a minimal subshift.)

Let ̺ be the substitution over the alphabet A = {a, b} defined by

̺(a) = aba, ̺(b) = ab.

One verifies that ̺ is primitive, aperiodic and satisfies the conditions (i),
(ii) and (iii) of Section 5.1. (̺ is the square of the Fibonacci substitution
a 7→ ab, b 7→ a, and so the two dynamical systems are the same.) Let

ω = lim
n

←−−−
̺n(a)• limn

−−−→
̺n(a)

= . . . aba|
w2︷ ︸︸ ︷

ababa |•
w1︷︸︸︷
aba |

w2︷ ︸︸ ︷
ababa |

w1︷︸︸︷
aba |

w2︷ ︸︸ ︷
ababa |

w2︷ ︸︸ ︷
ababa |

w1︷︸︸︷
aba |

w2︷ ︸︸ ︷
ababa |

w1︷︸︸︷
aba |ab . . .

be an admissible fixed point for ̺. We have indicated the occurrences and
return words of ω−1ω0 = aa by | and ︷︸︸︷ , respectively. We find two return
words, namely w1 = aba, w2 = ababa. (One of the reasons these are the only
ones is that the new (proper) substitution we construct on the alphabet
consisting of return words must be primitive, according to the theory. See
below.)

Now we construct a proper (primitive, aperiodic) substitution on the
new alphabet B = {w1, w2} in the following way:

Apply ̺ to w1 and w2:

̺(w1) =

w1︷︸︸︷
aba

w2︷ ︸︸ ︷
ababa, ̺(w2) =

w1︷︸︸︷
aba

w2︷ ︸︸ ︷
ababa

w2︷ ︸︸ ︷
ababa .

(By the theory the set of return words forms a circular code, and we get a
unique decomposition of ̺(w1) and ̺(w2) as concatenations of return words.)
So we get a proper substitution τ on B = {w1, w2} by

τ(w1) = w1w2, τ(w2) = w1w2w2.

Now the theory says that the Bratteli–Vershik model for (X̺, T̺) is obtained
from the one for (Xτ , Tτ ) by adding edges between level 0 and level 1 cor-
responding to the lengths of the return words (which in this case are 3 and
5, respectively). The diagrams in Figure 4 illustrate this.

The two diagrams have matrix C =
(
1
1

1
2

)
, which has determinant equal

to 1, so K0(X̺, T̺) ∼= Z2 as abstract groups. The Perron–Frobenius eigen-
value is λ = (3 +

√
5)/2, and a left Perron–Frobenius eigenvector is (1, (1 +√

5)/2) = (1, θ), where θ = (1 +
√
5)/2 is the golden mean. One gets from

this immediately

K0(X̺, T̺) = {(a, b) | a, b ∈ Z},
K0(X̺, T̺)

+ = {(a, b) | a+ θb ≥ 0, a, b ∈ Z}.
Distinguished order unit = (3, 5).
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(X̺, T̺)(Xτ , Tτ )

etc.

2 3
12

w1
1

w2

w2w1

etc.

2 3
121

Fig. 4

Remark. The substitution δ on A = {a, b} defined by

δ(a) = aab, δ(b) = ba

has the same matrix M(δ) =
(
2
2

2
1

)
as the substitution ̺ in Example 2.

One can also show that the two associated (measure-preserving) ergodic
systems are metrically isomorphic—hence the spectral properties are the
same. However, by a similar procedure one readily shows that K0(Xδ, Tδ) ∼=
Z3 as abstract groups. In particular, (Xδ, Tδ) is not flip conjugate to (X̺, T̺).

6. Bratteli–Vershik models for Toeplitz flows and their impli-

cations. We now give a brief survey of some results about Toeplitz flows
that can be obtained rather easily using the ordered K-theoretic invariant
we have introduced above. The details can be found in [12]. We assume the
reader has some familiarity with the basic facts about Toeplitz flows—[27]
is a good reference.

6.1. Basic definitions

Definition 18. A Toeplitz sequence is a non-periodic sequence η =
(ηn)n∈Z in AZ, where A is a finite alphabet, so that for each m ∈ Z there
exists n ∈ N so that ηm = ηm+kn for all k ∈ Z.

The associated Toeplitz flow—which is easily seen to be minimal (thus
it is a symbolic system)—is the dynamical system (Xη, Tη), where Xη is the
closure of the orbit of η under the shift, and Tη denotes the restriction of
the shift to Xη.

If x ∈ Xη, p ∈ N and a ∈ A, we let

Perp(x, a) = {n ∈ Z : x(m) = a for all m ≡ n (mod p)},
Perp(x) =

⋃

a∈A

Perp(x, a).

The p-skeleton of x is the part of x which is periodic with period p. We say
that p is an essential period of x if the p-skeleton of x is not periodic with
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any smaller period. The least common multiple of two essential periods is
again an essential period, a fact which is easily verified. A periodic structure

for a Toeplitz sequence η is a strictly increasing sequence (pi)i∈N such that
pi is an essential period of η for all i, pi | pi+1 (i.e. pi is a divisor of pi+1),
and

⋃∞
i=1 Perpi

(η) = Z. A periodic structure always exists for a Toeplitz
sequence. In fact, order the essential periods, r1 < r2 < r3 < . . . , and let
pi be the least common multiple of {r1, r2, . . . , ri}. A periodic structure is
obtained by deleting repeated terms from the sequence (pi)i∈N.

Now let (pi)i∈N be a periodic structure for the Toeplitz sequence η. Then
the odometer (Xa, Ta) associated with a = (p1, p2/p1, p3/p2, . . .) (cf. Sec-
tion 3.3) is the maximal equicontinuous factor of the Toeplitz flow (Xη, Tη).
Furthermore, (Xη, Tη) is an almost one-to-one extension of (Xa, Ta), i.e.
there exists a point in Xa whose preimage with respect to the factor map is
a one-point set. Conversely, if (X,T ) is a minimal symbolic system which is
an almost one-to-one extension of an odometer (Xa, Ta), then (X,T ) is con-
jugate to a Toeplitz flow, whose maximal equicontinuous factor is (Xa, Ta)
(cf. [5]).

For each i ∈ N, n ∈ Z/piZ, let Ai
n = {Tm

η η : m ≡ n (mod pi)}.
Williams [27] showed that:

(i) Ai
n is exactly the set of all ω ∈ Xη with the same pi-skeleton as T n

η η.

(ii) {Ai
n : n ∈ Z/piZ} is a partition of Xη into clopen sets.

(iii) Ai
m ⊃ Aj

n for i < j and m ≡ n (mod pi).

(iv) TηAi
n = Ai

n+1.

(v) If (pn)n∈N is a periodic structure for η and
⋂∞

i=1 A
i
ni

(where ni ≡ nj

(mod pi) for j ≥ i) contains a Toeplitz sequence ω, then
⋂∞

i=1 A
i
ni

= {ω}. In
particular ,

⋂∞
i=1 A

i
0 = {η}. This implies that the factor map onto Xa is 1-1

on the set of Toeplitz sequences in Xη. (In general , we have x, y ∈ ⋂∞
i=1 A

i
ni

if and only if x and y have the same pi-skeleton for all i ∈ N.)

We next give the definition of Bratteli diagrams that are relevant for
Toeplitz flows.

Definition 19. Let (V,E) be a simple Bratteli diagram. We say that
(V,E) has the equal path number property if for each n ∈ N, the number of
paths from the top vertex (i.e. the one vertex in V0) to each of the vertices
at level n (i.e. the vertices in Vn) is the same. An equivalent definition would
be to say that for each n ∈ N, |r−1(u)| = |r−1(w)| for every u,w ∈ Vn
(cf. Definition 1 for notation). In other words, if An is the nth incidence
matrix of (V,E), the row sums of An are the same.

Observe that the equal path number property is preserved under tele-
scoping.
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6.2. Results on Toeplitz flows using Bratteli diagrams

Theorem 20 [12, Thm. 8]. The family of expansive Bratteli–Vershik sys-

tems associated with Bratteli diagrams with the equal path number property

coincides with the family of Toeplitz flows up to conjugacy.

P r o o f (sketch). (i) Assume first that B = (V,E,≥) is a properly or-
dered Bratteli diagram with the equal path number property, so that the
associated Bratteli–Vershik system is expansive. By telescoping we may as-
sume that B has the property that at each level the sources of the minimal
edges coincide. Likewise with the maximal edges. (Cf. [16, Prop. 2.8].) Also,
we may assume that π̃1 : XB → Y1 is a conjugacy between (XB, VB) and
(Y1, S1) (cf. Section 3.3 for notation). Now it is easily seen that π̃1(xmin),
where xmin is the unique min path in XB, is a Toeplitz sequence over the
alphabet Σ1. Hence (Y1, S1) is conjugate to a Toeplitz flow.

(ii) Conversely, if (Xη, Tη) is a Toeplitz flow associated with the Toeplitz

sequence η, we modify the clopen partitions {Ai
n | n ∈ Z/piZ} above for

each i to get a nested sequence of clopen partitions (Ωi)i∈N (where Ωi+1 is a
refinement of Ωi) associated with a new periodic structure (qi)i∈N for η. For
each i the resulting Kakutani–Rokhlin towers have the same height. This
gives rise to a properly ordered Bratteli diagram that has the equal path
number property.

Corollary 21. Substitution minimal systems associated with (primi-

tive, aperiodic) proper substitutions of constant length are Toeplits flows (up
to conjugacy).

P r o o f. By part (i) of the proof of Theorem 16, the properly ordered
Bratteli diagram associated with a proper substitution of constant length has
the equal path number property.

The Bratteli–Vershik models for Toeplitz flows yield the maximal equi-
continuous odometer factors and the associated factor maps straightfor-
wardly by “collapsing” the vertices at each level to one vertex. Figure 5
illustrates how this works: An edge e ∈ En with ordinal number k is mapped
to the edge f ∈ E′

n with ordinal number k (as illustrated with E3 and E′
3

in the figure). This induces an obvious map on infinite paths, which, by an
easy verification, is a factor map. Observe that the pre-image of the unique
minimal path of the odometer is the unique minimal path of the “Toeplitz
diagram”, which corresponds to the Toeplitz sequence η.

Remark. It is noteworthy that two strong orbit equivalent Toeplitz flows
have the same maximal equcontinuous factor. This follows from Theorem 11,
and the fact that the rational (continuous) eigenvalues of a Cantor minimal
system (X,T ) can be detected from K0(X,T ) (cf. [12, Prop. 13]).



224 C. SKAU

3
2

1
1

2
3

32
1

3

21

.

.

.

.

.

.
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Fig. 5. “Collapsing” the Bratteli–Vershik model of a Toeplitz system to get the maximal

equicontinuous factor

Downarowicz proved that any Choquet simplex may be obtained as the
set of invariant probability measures of a 0-1 Toeplitz flow [3]. Using The-
orem 20 and the result cited in Section 2.3, it is fairly straightforward to
prove the following strengthening of Downarowicz’ result.

Theorem 22 [12, Thm. 11]. Let K be a Choquet simplex. There exists a

Toeplitz flow (Xη, Tη) of zero entropy over a two-symbol alphabet (i.e. a 0-1
Toeplitz flow) such that K is affinely homeomorphic to the set M(Xη, Tη) of
Tη-invariant probability measures. Furthermore, we may choose (Xη, Tη) so

that the (unique) maximal equicontinuous factor is the odometer (Xa, Ta)
associated with a = (2, 3, 4, 5, . . .). Hence K0(Xa, Ta) ∼= Q as ordered groups

with distinguished order units , and the set of (topological) eigenvalues of

(Xη, Tη) is {e2πir : r ∈ Q}.
P r o o f (sketch). Choose a countable, dense subgroup G of Aff(K), the

additive group of affine continuous functions on K, such that G is a vector
space over Q containing the constant function u = 1. So G is a divisible

group. By Section 2.3, K is affinely homeomorphic to Su(G).

It is now fairly routine to construct a simple Bratteli diagram (V,E)
with the equal path number property (using the divisibility of G) so that
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K0(V,E) ∼= G as ordered groups with distinguished order units. Further-
more, the Bratteli diagram (V,E) admits a proper ordering so that the
associated Bratteli–Vershik model is expansive, thus getting a Toeplitz flow
(Xη, Tη) by Theorem 20. By Theorem 7 and the ensuing remarks we deduce
that K is affinely homeomorphic to M(Xη, Tη).

Finally, we obtain the other properties stated in the theorem by adjusting
(V,E) slightly.

To conclude this section we state a theorem—the first assertion of which
is well known—whose proof is easily obtained using the Bratteli diagram
approach (similar to the “collapsing” procedure in Figure 5).

Theorem 23 [12, Thm. 14]. Let (Xa, Ta) be the odometer associated

with a = (qi)
∞
i=1. There exists a uniquely ergodic 0-1 Toeplitz flow (Xη, Tη)

of zero entropy such that (Xa, Ta) is the maximal equicontinuous factor

of (Xη, Tη). Furthermore, we may choose (Xη, Tη) such that K0(Xη, Tη) ∼=
K0(Xa, Ta) as ordered groups with distinguished order units—hence (Xη, Tη)
and (Xa, Ta) are strong orbit equivalent.

If (Xa, Ta) is associated with a stationary odometer (i.e. qk = qk+1 =
qk+2 = . . . from a certain k on), we may choose (Xη, Tη) so that it is also a

substitution minimal system.

6.3. Kakutani equivalence—an example. Theorem 17 implies that a sys-
tem that is Kakutani equivalent to a substitution minimal system is again
substitution minimal. Furthermore, Theorem 17 says that a Cantor factor
of a substitution minimal system is either again a substitution minimal sys-
tem or a stationary odometer. One may ask: do analogous results hold for
Toeplitz flows? The answer is no. In [4] there is an example of a Toeplitz
flow that has a Cantor factor that is neither Toeplitz nor an odometer. As
for the Kakutani equivalence case, we exhibit in Figure 6 an example (which
can be found in [12]) of a Toeplitz flow which has a Kakutani equivalent sys-
tem that is prime (i.e. has no non-trivial factors). In fact, the Toeplitz flow
(which incidentally is also a substitution minimal system associated with
a proper substitution of constant length) associated with the stationary,
properly ordered Bratteli diagram B = (V,E,≥) in Figure 6 is Kakutani
equivalent, according to Theorem 5, to the system associated with the sta-
tionary, properly ordered Bratteli diagram B′ = (V ′, E′,≥′) in Figure 6. The
latter turns out to be conjugate with the Chacon system. (Recall that the
Chacon system is the minimal symbolic system associated with the Chacon

substitution 0 7→ 0010, 1 7→ 1.) It is well known that the Chacon system is
prime, hence it cannot be conjugate to a Toeplitz flow or to an odometer
system. For further details we refer to [12, Section 4.2].
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(XB′ , VB′)(XB , VB)
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3

etc.

1

etc.

1 321
2

13
2

2

1

1 2 3
321

Fig. 6. A Toeplitz system (XB , VB) and the Kakutani equivalent Chacon system

(XB′ , VB′)
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[18] B. Moss é, Puissances de mots et reconnaissabilité des points fixes d’une sub-
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