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FUNDAMENTAL SOLUTIONS FOR TRANSLATION AND
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HEISENBERG GROUP
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Abstract. Let H1 be the three-dimensional Heisenberg group. Consider the left in-

variant differential operators of the form D = P (−iT,−L), where P is a polynomial in two

variables with complex coefficients, L is the sublaplacian on H1 and T is the derivative

with respect to the central direction. We find a fundamental solution of D, whose definition

is related to the way the plane curve defined by P (x, y) = 0 intersects the Heisenberg fan

F = A ∪ B, A = {(x, y) ∈ R2 : y = (2m + 1)|x|, m ∈ N}, B = {(x, y) ∈ R2 : x = 0, y >

0}. We can write an explicit expression of such a fundamental solution when the curve

P (x, y) = 0 intersects F at finitely many points, all belonging to A and, if one of them is

the origin, the monomial yk has a nonzero coefficient, where k is the order of zero at the

origin. As a consequence, such operators are globally solvable on H1.

1. Introduction. In this paper we study problems of solvability of left
invariant differential operators on the three-dimensional Heisenberg group
H1.

Let Ω be an open set in a Lie group G. A left-invariant differential
operator P on G is locally solvable at x0 ∈ Ω if there exists a neighborhood
U of x0 in Ω such that for all f ∈ C∞(U) there exists a distribution u on
U that satisfies Pu = f on U .

P is semiglobally solvable in Ω if for all f ∈ D(Ω) and for all open sets
U relatively compact in Ω there exists u ∈ C∞ such that Pu = f on U .

Finally, P is globally solvable in Ω if PC∞(Ω) = C∞(Ω). Global solv-
ability is stronger than semiglobal solvability, and the latter implies local
solvability.

We shall consider those differential operators that are expressed as poly-
nomials with complex coefficients in L and T , L being the sublaplacian and
T the derivative with respect to the central direction. L and T commute
and generate the algebra of differential operators on H1 which are invariant
with respect to both left translations and rotations.

Such a problem has already been solved for operators represented by
polynomials of degree one. In [9] and [6] it is shown that the operator −L+
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iαT + c, α, c ∈ C, is locally solvable unless c = 0 and α = 2m + 1, for
some integer m. As we shall see, it is natural to formulate the following
conjecture: the operator D = P (−iT,−L), where P is a polynomial with
complex coefficients, is locally solvable on the Heisenberg group H1 if and
only if P (λ, ξ) is not divisible by ξ − (2m+ 1)λ, for some m ∈ Z.

In this work, we show that the above conjecture is correct with certain
restrictions on P . In the solvable case we in fact construct a fundamental
solution. If G is a Lie group, a distribution E ∈ D′(G) is a fundamental

solution of an invariant operator P if PE = δ0, δ0 being the Dirac delta
at the identity. The existence of a fundamental solution implies semiglobal
solvability. Moreover, if G is P -convex, then the semiglobal solvability of P
implies its global solvability. The Heisenberg group is P -convex with respect
to all nonzero invariant differential operators (see [4]).

2. Preliminaries. The (2n + 1)-dimensional Heisenberg group Hn is
the Lie group, diffeomorphic to R2n+1, whose multiplication law is defined
as

(x, y, t)(x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(x′ · y − x · y′)),(1)

where x, y, x′, y′ ∈ Rn, t ∈ R and x · y is the usual inner product on Rn.
A base for its Lie algebra hn consists of the left invariant vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t

where j = 1, . . . , n. The commutation relations are [Xj , T ] = [Yj , T ] = 0,
[Xj , Yk] = −4δj,kT, for all j, k = 1, . . . , n.

The sublaplacian is the left invariant operator on Hn defined by

L =
1

4

n∑

j=1

(X2
j + Y 2

j ).

If n = 1, then L = 1
4 (X

2 + Y 2). It is a homogeneous operator of degree two
with respect to the dilations δr on H1, induced by the automorphisms of h1

defined by
δrX = rX, δrY = rY, δrT = r2T.

Indeed,

δrL =
1

4
(δrX

2 + δrY
2) = r2L.

Note that also T = ∂/∂t is homogeneous of degree two.
Consider the spherical functions

ϕλ,m(x, y, t) = e−iλtlm(2|λ|(x2 + y2)),
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where lm(x) = e−x/2Lm(x) and Lm(x) = L
(0)
m (x) is the mth Laguerre poly-

nomial of index α = 0, defined by

L(α)
m (x) =

m∑

k=0

(
m+ α

m− k

)
(−x)k

k!
.

The ϕλ,m are joint bounded radial eigenfunctions of L and T , and

Tϕλ,m = −iλϕλ,m,(2)

Lϕλ,m = −|λ|(2m+ 1)ϕλ,m.(3)

Let ∆ be the Gelfand spectrum of the Banach algebra L1
rad(H1) of integrable

radial functions on H1. Then

∆ = {ϕλ,m : λ 6= 0, m ∈ N} ∪ {ϕ0,ξ : ξ ≥ 0}
where

ϕ0,ξ(x, y, t) = J0(2
√
ξ(x2 + y2))

and

J0(t) =
1

2π

2π\
0

eit sin θ dθ

is the Bessel function of order 0.
It is shown in [2] that the Gelfand topology on ∆ coincides with the

topology on

F = {(λ, |λ|(2m+ 1)) ∈ R
2 : λ 6= 0, m ∈ N} ∪ {(0, ξ) ∈ R

2 : ξ ≥ 0}
induced from the Euclidean topology of R2.6
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The set F is usually called the Heisenberg fan.
We now state two technical lemmas involving Laguerre functions, which

will be useful later on.

Lemma 2.1. The Laguerre functions l
(α)
m (x) = e−x/2L

(α)
m (x) satisfy the

following estimates :

|l(α)m (x)| ≤ 1,(4)
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∣∣∣∣
dj

dxj
l(α)m (x)

∣∣∣∣ ≤ Cαj(m+ 1)j , j ≥ 1.(5)

P r o o f. Estimate (4) follows from the properties of Laguerre polynomials
(see, for instance, Section 10.12 in [5]), while (5) is an immediate consequence
of the following property:

dj

dxj
l(α)m (x) =

j∑

h=0

chm(m− 1) . . . (m− h+ 1)l
(α+h)
m−h (x),(6)

which can be proved by induction from the identity

d

dx
l(α)m (x) = −1

2
l(α)m (x) +

m

α+ 1
l
(α+1)
m−1 (x)

(see [5], formula (15) of Section 10.12).

Lemma 2.2. For all λ 6= 0,
∣∣∣∣
∂j

∂λj
ϕ−λ,m(x, y, t)

∣∣∣∣ ≤ Cj [|t|+ (m+ 1)(x2 + y2)]j .(7)

P r o o f. By the estimates of Lemma 2.1 we have
∣∣∣∣
∂j

∂λj
ϕ−λ,m(x, y, t)

∣∣∣∣ =
∣∣∣∣
∂j

∂λj
(eiλtl(0)m (2|λ|(x2 + y2)))

∣∣∣∣

≤
j∑

h=0

(
j

h

)∣∣∣∣
∂j−h

∂λj−h
eiλt

∣∣∣∣
∣∣∣∣
∂h

∂λh
l(0)m (2|λ|(x2 + y2))

∣∣∣∣

=

j∑

h=0

(
j

h

)
|t|j−h(2(x2 + y2))h

∣∣∣∣
∂h

∂ηh
l(0)m (η)

∣∣∣∣
η=2|λ|(x2+y2)

≤
j∑

h=0

(
j

h

)
|t|j−hCh(m+ 1)h(2(x2 + y2))h

≤ Cj

j∑

h=0

(
j

h

)
|t|j−h[(m+ 1)(x2 + y2)]h

= Cj [|t|+ (m+ 1)(x2 + y2)]j .

3. Solvability of polynomials in L and T . We will give some tech-
niques that enable us to find a fundamental solution of operators of the
form

D = P (−iT,−L),(8)

where P is a polynomial in two variables with complex coefficients, L is the
sublaplacian, T is the derivative with respect to t.
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Proposition 3.1. Let D1 and D2 be operators of the form (8). Then

D = D1D2 is locally solvable if and only if D1 and D2 are locally solvable.

P r o o f. Suppose D is locally solvable; then there exist a neighborhood
U and a distribution u ∈ D(U) such that for all f ∈ C∞(U) one has Du = f
in U . Since D1 and D2 commute, we have

D1(D2u) = f = D2(D1u)

on U , that is, D1 and D2 are locally solvable. Let us see that the converse
is also true.

If D1 is locally solvable, then there exists an open set U1 such that for
all f ∈ C∞(U1) (in particular f ∈ S(U1)) there exists u ∈ D′(U1) which
is a solution of D1u = f in U1. Since D2 is locally solvable, there exist a
neighborhood U2 and a distribution v ∈ D′(U2) such that D2v = u in U2.
Therefore D is locally solvable, for Dv = D1D2v = D1u = f in U1 ∩ U2.

Corollary 3.2. (a) If P (λ, ξ) is identically zero on some oblique ray

of the fan, then D is not locally solvable.

(b) If P (λ, ξ) is identically zero on the vertical ray of the fan, i.e. D =
T hD1, then D is locally solvable if and only if D1 is locally solvable.

P r o o f. (a) By hypothesis P (λ, ξ) is divisible by ξ− (2m+1)λ, for some
m ∈ Z. Then D = D1D2, where D1 = −L+ i(2m+1)T . Such an operator is
not locally solvable (see [6]). By Proposition 3.1, D is not locally solvable.

(b) T h is known to be locally solvable. Indeed, solving the problem
T hw = u, where u ∈ D′(U), is equivalent to finding an hth primitive of
u in the variable t. Such a primitive always exists (see Theorem IV, Ch. II,
Sec. 5 in [8]). The statement follows from Proposition 3.1.

We will therefore restrict our investigation to those operators such that
P (λ, ξ) does not vanish identically on any ray of the fan.

Theorem 3.3. If P is a homogeneous polynomial , then D=P (−iT,−L)
is solvable if and only if P (λ, ξ) is not divisible by ξ − (2m + 1)λ, for some

m ∈ Z. Moreover , in this case D is globally solvable.

P r o o f. It is well known that if P is a homogeneous polynomial in two
variables, then it factors as a product of terms of degree one. Since the
operator −L+ i(2m+1)T , corresponding to the polynomial ξ− (2m+1)λ, is
not locally solvable for all m ∈ Z, the assertion follows from Proposition 3.1.

The last statement is true because D is homogeneous with respect to the
dilations δr on H1 defined before.

Let us describe the irreducible unitary representations of Hn. For every
λ 6= 0, we have the Schrödinger representation πλ, which is unique up to
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equivalence and is defined in the following way. Given f ∈ L2(Rn),

(πλ(x, y, t)f)(ξ) = e−iλ(t+2x·y−4ξ·y)f(ξ − x).

To the value λ = 0 there correspond the one-dimensional representations

πξ,η(x, y, t) = e−i(ξ·x+η·y),

where ξ, η ∈ Rn.
Such representations are pairwise inequivalent and every irreducible uni-

tary representation of Hn is equivalent to one of them.
The Fourier transform of a function f ∈ L1(Hn) is the collection of all

operators

π(f) =
\

Hn

f(x, y, t)π(x, y, t) dx dy dt

where π ranges over the set of unitary irreducible representations of Hn

described above. The inversion formula

f(x, y, t) =
1

(2π)n+1

\
R

tr(πλ(f)πλ(x, y, t)
∗)|λ|n dλ(9)

holds in a dense subspace of L1(Hn), in particular for Schwartz functions.
If we choose an othonormal basis of L2(Rn), we can compute the trace
explicitly. Put n = 1 and fix the normalized Hermite basis {hλ

m}m∈N of
L2(R), where

hλ
m(ξ) =

|λ|1/4
2(m−1)/2

√
m!π1/4

φm(
√
|λ|ξ)

with φm(ξ) = Dm
λ e−2ξ2 and Dλ = 1

2 (d/dξ − 4λξ). In this basis, (9) can be
rewritten as

f(x, y, t) =
1

(2π)n+1

∑

m

\
R

〈πλ(f)h
λ
m, πλ(x, y, t)h

λ
m〉|λ|n dλ,(10)

where the inner product is taken in L2(R).
We have

ϕλ,m(v) = 〈πλ(v)h
λ
m, hλ

m〉,
where v = (x, y, t). If we put ĝ(λ,m, n) = 〈πλ(g)h

λ
m, hλ

n〉 for all g ∈ S(H1),
then

ĝ(λ,m,m) =
\
H1

ϕλ,m(v)g(v) dv.

Therefore, since ‖ϕλ,m‖∞ = 1 for all m and λ,

|ĝ(λ,m,m)| ≤ ‖g‖L1(H1).(11)

Let f be a Schwartz function on H1 and assume that Du = f . By
formally applying the Fourier transform to both sides, we get

πλ(Du)hλ
m = πλ(f)h

λ
m.(12)
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If V is a left invariant vector field, we have

πλ(V u) = −πλ(u)dπλ(V ).(13)

Take D as in (8). By (13) we get

πλ(Du) = πλ(u)dπλ(
tD).(14)

Moreover,

dπλ(T )h
λ
m = −iλhλ

m, dπλ(L)h
λ
m = −(2m+ 1)|λ|hλ

m.

Therefore

dπλ(
tD)hλ

m = dπλ(P (iT,−L))hλ
m = P (dπλ(iT ), dπλ(−L))hλ

m

= P (λ, |λ|(2m+ 1))hλ
m,

and, by (14),
πλ(Du)hλ

m = πλ(u)P (λ, |λ|(2m + 1))hλ
m.(15)

Formula (15) can be viewed as an analogue of the identity

(p(−i∂)u)∧(ξ) = p(ξ)û(ξ),(16)

holding on Rn for a differential operator with constant coefficients. The poly-
nomial p(ξ) appearing in (16) is called the symbol of the operator p(−i∂).
For this reason we call P (λ, ξ) the symbol of D.

From (12) and (15) it follows that

πλ(Du)hλ
m = πλ(u)P (λ, |λ|(2m+ 1))hλ

m = πλ(f)h
λ
m,

therefore

πλ(u)h
λ
m =

πλ(f)h
λ
m

P (λ, |λ|(2m+ 1))
.(17)

From the inversion formula (10) and from (17) we get the following formal
expression for u:

u(v) =
1

(2π)2

\
R

∞∑

m=0

〈πλ(f)h
λ
m, πλ(v)h

λ
m〉

P (λ, |λ|(2m+ 1))
|λ| dλ

=
1

(2π)2

\
R

∞∑

m=0

\
H1

f(w)
〈πλ(w)h

λ
m, πλ(v)h

λ
m〉

P (λ, |λ|(2m+ 1))
dw |λ| dλ

=
1

(2π)2

\
R

∞∑

m=0

\
H1

f(w)
〈hλ

m, πλ(w
−1v)hλ

m〉
P (λ, |λ|(2m+ 1))

dw |λ| dλ

=
1

(2π)2

\
R

∞∑

m=0

\
H1

f(w)ϕ−λ,m(w−1v)

P (λ, |λ|(2m+ 1))
dw |λ| dλ

=
1

(2π)2

\
R

∞∑

m=0

f ∗ ϕ−λ,m(v)

P (λ, |λ|(2m+ 1))
|λ| dλ.
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Therefore, if we can define

K(v) =
1

(2π)2

\
R

∞∑

m=0

ϕ−λ,m(v)

P (λ, |λ|(2m+ 1))
|λ| dλ

as a distribution, it follows that u = f ∗K, so that a fundamental solution
of D is the tempered distribution defined by

〈K, g〉 = 1

(2π)2

\
H1

\
R

∞∑

m=0

ϕ−λ,m(v)g(v)

P (λ, |λ|(2m+ 1))
|λ| dλ dv(18)

=
1

(2π)2

\
R

∞∑

m=0

ĝ(−λ,m,m)

P (λ, |λ|(2m+ 1))
|λ| dλ,

for all g ∈ S(H1). Note that only the radial coefficients ĝ(−λ,m,m) occur in
this formula, so K is radial.

For a generic polynomial P , (18) does not converge absolutely in general.
The series may not converge, and the integral has singularities when the
algebraic curve defined by P (λ, ξ) = 0 intersects the Heisenberg fan. Thus,
we are going to face our problem by considering separately different cases,
according to the mutual position of the algebraic curve P (λ, ξ) = 0 and the
fan. For each case, we define a fundamental solution of D, modifying (18)
in a suitable way, in order to get a well defined tempered distribution.

As we have already said above in this section, we are reduced to consid-
ering algebraic curves P (λ, ξ) = 0 that intersect each ray of the fan in at
most finitely many points.

4. First case: no intersections. The simplest situation occurs when
P (λ, ξ) is never zero on F . To solve this problem we use the following fact
(see [7], Appendix A, Example 2.7).

Lemma 4.1. If P ∈ R[x1, . . . , xn] and P (x) > 0 for all x ∈ Rn, then
there exist C > 0 and N ∈ N such that

P (x) > C(1 + |x|2)−N ∀x ∈ R
n.

A consequence of this lemma is the following

Lemma 4.2. If P ∈ C[x, y] and P (x, y) 6= 0 in the closed domain of the

plane defined by y ≥ |x|(2m+ 1), then in this region we have the estimate

|P (x, y)| > C(1 + x2 + y2)−N ,

for some C > 0 and N ∈ N.

P r o o f. By changing coordinates we can reduce to the case P (x, y) 6= 0
in the first quarter of the plane. Therefore assume that for all x ≥ 0, y ≥ 0
we have |P (x, y)| > 0.
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If P (x, y) = P1(x, y) + iP2(x, y) with P1(x, y), P2(x, y) ∈ R[x, y], then
|P (x, y)| =

√
P1(x, y)2 + P2(x, y)2 and Q(x, y) = P1(x, y)

2 + P2(x, y)
2 ∈

R[x, y]. Since Q is positive for all x ≥ 0 and y ≥ 0, the polynomial R(x, y) =
Q(x2, y2) is positive for all (x, y) ∈ R2.

By Lemma 4.1 there exist C1 > 0 and N ∈ N such that

R(x, y) > C1(1 + x2 + y2)−N .

For x ≥ 0 and y ≥ 0, Q(x, y) = R(
√
x,

√
y), therefore

Q(x, y) > C1(1 + x+ y)−N > C2(1 + x2 + y2)−N/2

and so
|P (x, y)| > C(1 + x2 + y2)−N/4.

Consider an operator D whose symbol P is such that P (λ, ξ) = 0 defines
an algebraic curve that does not intersect F , i.e. P (λ, |λ|(2m + 1)) 6= 0 for
all m ∈ N, λ ∈ R and P (0, ξ) 6= 0 for all ξ > 0.

Theorem 4.3. Take D=P (−iT,−L) such that P (λ, ξ) is not zero on F .

Define the distribution K by

〈K, g〉 = 1

(2π)2

\
R

∞∑

m=0

ĝ(−λ,m,m)

P (λ, |λ|(2m+ 1))
|λ| dλ, g ∈ S(H1),

where the integral on the right-hand side is absolutely convergent. Then K
is a fundamental solution of D.

P r o o f. The algebraic curve P (λ, ξ) = 0 in the λ, ξ plane has a finite
number of connected components (see [3], Theorems 2.3.6 and 2.4.5). Since
it does not intersect F , there exists an integer k ∈ N such that P (λ, ξ) 6= 0
in the closed region defined by ξ ≥ (2k + 1)|λ|.

By Lemma 4.2, for all m ≥ k one has

|P (λ, |λ|(2m+ 1))| > C(1 + λ2(2m+ 1)2)−N ,

for some C > 0 and N ∈ N. Moreover, for fixed m < k, we define

µm = min
λ∈R

|P (λ, |λ|(2m + 1))| > 0.

Let M be a positive constant such that M < min{µm : m = 1, . . . , k − 1}.
Hence |P (λ, |λ|(2m + 1))| > M for m < k. Putting these two estimates
together shows that there exist a positive constant C and a natural number
N such that

|P (λ, |λ|(2m + 1))| > C(1 + λ2(2m+ 1)2)−N(19)

for every m.



192 P. GORELLI

Since the symbol of tD is P (−λ, |λ|(2m + 1)), it follows from (15) that,
for all g ∈ S(H1),

πλ(g)h
λ
m =

πλ(
tDg)hλ

m

P (−λ, |λ|(2m+ 1))
,

whence

π−λ(g)h
λ
m =

π−λ(
tDg)hλ

m

P (λ, |λ|(2m+ 1))
(20)

and, recalling (11),

|ĝ(−λ,m,m)| = |(tDg)∧(−λ,m,m)|
|P (λ, |λ|(2m+ 1))| ≤ C

‖tDg‖L1

|P (λ, |λ|(2m+ 1))| .(21)

Set A = I + L2; then tA = A and, by replacing D with AN+2 in (20),
we get

〈K, g〉 = 1

(2π)2

∞∑

m=0

\
R

ĝ(−λ,m,m)|λ|
P (λ, |λ|(2m+ 1))

dλ

=
1

(2π)2

∞∑

m=0

\
R

(AN+2g)∧(−λ,m,m)

(1 + λ2(2m+ 1)2)N+2
· |λ|
P (λ, |λ|(2m + 1))

dλ.

Moreover, by (19), we get

|〈K, g〉| ≤ ‖AN+2g‖L1

(2π)2

∞∑

m=0

\
R

|λ| · |P (λ, |λ|(2m+ 1))|−1

(1 + λ2(2m+ 1)2)N+2
dλ

≤ C‖AN+2g‖L1

∞∑

m=0

\
R

|λ|(1 + λ2(2m+ 1)2)N

(1 + λ2(2m+ 1)2)N+2
dλ

≤ C‖AN+2g‖L1

∞∑

m=0

\
R

|λ|
(1 + λ2(2m+ 1)2)2

dλ

≤ 2C‖AN+2g‖L1

∞∑

m=0

1

(2m+ 1)2

∞\
0

t

(1 + t2)2
dt

≤ C′‖AN+2g‖L1 ≤ C′′‖g‖(n)
where ‖ · ‖(n) is a continuous Schwartz norm. Therefore K is a tempered
distribution. Let us show that it is a fundamental solution. We verify that
DK = δ, by testing both sides of the identity on a Schwartz function f and
applying (20):

〈DK, f〉 = 〈K, tDf〉 = 1

(2π)2

∑

m

\
R

(tDf)∧(−λ,m,m)|λ|
P (λ, |λ|(2m+ 1))

dλ

=
1

(2π)2

∑

m

\
R

〈π−λ(
tDf)hλ

m, hλ
m〉

P (λ, |λ|(2m+ 1))
|λ| dλ
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=
1

(2π)2

∑

m

\
R

〈π−λ(f)h
λ
m, hλ

m〉|λ| dλ

=
1

(2π)2

∑

m

\
R

〈π−λ(f)h
λ
m, π−λ(0, 0, 0)h

λ
m〉|λ| dλ

=
1

(2π)2

∑

m

\
R

〈πλ(f)h
λ
m, πλ(0, 0, 0)h

λ
m〉|λ| dλ

=
1

(2π)2

\
R

tr(πλ(f)πλ(0, 0, 0)
∗)|λ| dλ = f(0, 0, 0).

Therefore a solution of the problem Du = f is

u(x, y, t) = (f ∗K)(x, y, t).

5. Second case: a finite number of intersections, all away from

the vertical ray. We now turn to the case in which the algebraic curve
P (λ, ξ) = 0 intersects the Heisenberg fan in a finite number of points, all of
them belonging to the oblique rays and different from the origin.

Let us begin, for simplicity, by assuming that {(λ, ξ) ∈ R2 : P (λ, ξ) = 0}
intersects the fan with multiplicity h ≥ 1 in one single point, lying on the
kth ray. We can assume that this point has the form (α, |α|(2k + 1)), with
α > 0. Therefore, there exists a polynomial Q(λ) such that, for λ ≥ 0,
P (λ, |λ|(2k + 1)) = (λ − α)hQ(λ) and Q(λ) 6= 0; for λ < 0, P (λ, |λ|(2k + 1))
6= 0. Moreover, P (λ, |λ|(2m+ 1)) 6= 0 for m 6= k and λ ∈ R.

Given a C∞ function ϕ(x), define

Rh,α(ϕ(x)) = ϕ(x) −
h−1∑

j=0

ϕ(j)(α)

j!
(x− α)j .

If g(x) is a rational function with a pole of order h at α and I is an interval
containing α, then

ϕ 7→
\
I

Rh,α(ϕ)g(x) dx

is a well defined distribution, which is a modified version of Hadamard’s

finite part (see [8], Ch. 2, Sec. 2, Example 2).
Note that

Rh,α((x− α)hg(x)) = (x − α)hg(x).(22)

Theorem 5.1. Consider D = P (−iT,−L) and suppose that P is as

above. Then D has a fundamental solution K ∈ S ′(H1), defined as follows :
for all g ∈ S(H1),

〈K, g〉 = 1

(2π)2

∞∑

m=0

〈Km, g〉
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where

〈Km, g〉 =
\
R

ĝ(−λ,m,m)|λ|
P (λ, |λ|(2m + 1))

dλ for m 6= k,

〈Kk, g〉 =
\

R\[0,2α]

ĝ(−λ, k, k)|λ|
P (λ, |λ|(2k + 1))

dλ+

2α\
0

Rh,α(ĝ(−λ, k, k))|λ|
P (λ, |λ|(2k + 1))

dλ.

P r o o f. All of the integrals converge absolutely. For all m 6= k and for
all λ ∈ R, P (λ, |λ|(2m+1)) 6= 0, so we can argue as in the proof of Theorem
4.3 to show that∣∣∣

∑

m

〈Km, g〉
∣∣∣ ≤ C‖g‖(N), for some N ≫ 0.

If m = k, we have

〈Kk, g〉 =
\

R\[0,2α]

ĝ(−λ, k, k)|λ|
P (λ, |λ|(2k + 1))

dλ

+
\
H1

2α\
0

[
dh

dλh
ϕ−λ,k(v)

]

λ=ξ

|λ|g(v)
h!Q(λ)

dλ dv,

where ξ is strictly between α and λ. The first term is absolutely convergent
because again P (λ, |λ|(2k + 1)) 6= 0 in R \ [0, 2α]. If we apply estimate
(5) to the derivatives of the functions ϕ−λ,m(v) we can show that also the
second integral is absolutely convergent, so we deduce that K is a tempered
distribution. Let us show that it is a fundamental solution of D. Using (22)
we have

〈Kk,
tDf〉 =

\
R\[0,2α]

f̂(−λ, k, k)|λ| dλ

+

2α\
0

Rh,α(P (λ, |λ|(2k + 1))f̂(−λ, k, k))

P (λ, |λ|(2k + 1))
|λ| dλ

=
\

R\[0,2α]

f̂(−λ, k, k)|λ| dλ

+

2α\
0

P (λ, |λ|(2k + 1))f̂(−λ, k, k)

P (λ, |λ|(2k + 1))
|λ| dλ

=
\
R

f̂(−λ, k, k)|λ| dλ.

Therefore

〈K, tDf〉 = 1

(2π)2

∞∑

m=0

\
R

f̂(−λ,m,m)|λ| dλ = f(0, 0, 0).



FUNDAMENTAL SOLUTIONS 195

This result extends in an obvious way to those operatos D = P (−iT,−L)
such that P (λ, ξ) = 0 intersects the fan with finite multiplicity in finitely
many points, all of them belonging to the oblique rays and different from
the origin.

Corollary 5.2. Let D=P (−iT,−L) be such that P (λ, |λ|(2m+1))=0
only at finitely many points , say (λj,h, |λj,h|(2mj + 1)), j = 1, . . . , r, h =
1, . . . , rj , each of them lying on the curve ξ = |λ|(2mj + 1) and having

multiplicity µj,h. Suppose also that P (0, ξ) 6= 0 for all ξ ≥ 0. Let Ij,h be

intervals centered at λj,h such that Ij,h ∩ Ij,h′ = ∅ if h 6= h′. Then D has a

fundamental solution

〈K, g〉 = 1

(2π)2

( r∑

j=1

〈Kmj
, g〉+

∑

m 6∈{m1,...,mr}

〈Km, g〉
)
, g ∈ S(H1),

where

〈Km, g〉 =
\
R

ĝ(−λ,m,m)|λ|
P (λ, |λ|(2m+ 1))

dλ if m 6∈ {m1, . . . ,mr},

〈Kmj
, g〉 =

\
⋃

Ij,h

Rµj,h,λj,h
(ĝ(−λ,mj ,mj))|λ|

P (λ, |λ|(2mj + 1))
dλ

+
\

R\
⋃

Ij,h

ĝ(−λ,mj ,mj)|λ|
P (λ, |λ|(2mj + 1))

dλ.

6. Third case: intersection in the origin. The last case we examine
concerns the kind of singularity occurring in the distribution (18) when P
vanishes at the origin. We consider an operator D = P (−iT,−L) where P is
a polynomial with complex coefficients, having only a finite number of zeros
on the fan, one of them being the origin and no other lying on the vertical
ray.

We are able to find a fundamental solution of D only if we add a technical
hypothesis: we must suppose that the homogeneous part of minimum degree
(say k) of D contains a term of the form aLk, with a 6= 0. The symbol of D
is therefore a polynomial of the form

P (λ, ξ) = cαξ
k +

∑

|α|=k, α6=α

cαξ
α1λα2 +

∑

|α|>k

cαξ
α1λα2 ,(23)

α = (k, 0), cα ∈ C and cα = −a. This includes the case D = Lk, considered
in [1].

We will need the following lemma.

Lemma 6.1. Suppose P ∈ C[x, y], P (x, y) 6= 0 for all x, y ≥ 0, (x, y) 6=
(0, 0). Then there exist a positive constant C and N ∈ N such that
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|P (x, y)| > C(1 + x2 + y2)−N(24)

for all x, y ≥ 0 with
√
x2 + y2 ≥ 1.

P r o o f. Define Q(x, y) = P (x+1/
√
2, y). Then Q(x, y) 6= 0 for all x ≥ 0,

y ≥ 0, therefore by Lemma 4.2 we have the estimate

|Q(x, y)| > C1(1 + x2 + y2)−N1

for all x ≥ 0, y ≥ 0. Hence

|P (x, y)| = |Q(x− 1/
√
2, y)| > C2(1 + x2 + y2)−N1

for all x ≥ 1/
√
2, y ≥ 0. In the same way we can show that there exist

C3 > 0 and N2 ∈ N such that, for all x ≥ 0, y ≥ 1/
√
2,

|P (x, y)| > C3(1 + x2 + y2)−N2 .

If we take C = max(C2, C3) and N = min(N1, N2), we get the estimate (24)

for all x, y ≥ 0 with
√
x2 + y2 ≥ 1.

We begin with the case where the origin is the only zero.

Theorem 6.2. Suppose that

P (λ, ξ) = cαξ
k +

∑

|α|=k, α6=α

cαξ
α1λα2 +

∑

|α|>k

cαξ
α1λα2 , cα ∈ C, cα 6= 0,

and that P (λ, |λ|(2m+ 1)) 6= 0 for all λ 6= 0, m ∈ N. Define the distribution

K, for all g ∈ S(H1), by

〈K, g〉 = 1

(2π)2

∞∑

m=0

{ \
|λ|≥δ/(2m+1)

ĝ(−λ,m,m)|λ|
P (λ, |λ|(2m+ 1))

dλ(25)

+
\

|λ|<δ/(2m+1)

Rk+Nm−1,0(ĝ(−λ,m,m))|λ|
P (λ, |λ|(2m+ 1))

dλ

}

where Nm ∈ N is zero except for finitely many m ∈ N and δ is a suitable

positive constant. Then K is a fundamental solution of D = P (−iT,−L).

P r o o f. Let σ be a positive constant. On the line ξ = λ/σ, P (λ, ξ) takes
the value

Pσ(ξ) = P (σξ, ξ) = ξk
(
cα +

∑

|α|=k,α6=α

cασ
α2

)
+

∑

|α|>k

cασ
α2ξ|α|.

Note that cα +
∑

|α|=k, α6=α cασ
α2 tends to cα as σ → 0. Therefore, if σ is

small enough, the quantity |cα +
∑

|α|=k,α6=α cασ
α2 | is not zero and can be

bounded from below by a positive constant. Thus, there exists σ0 such that
for all σ ≤ σ0, |cα +

∑
|α|=k, α6=α cασ

α2 | ≥ C1 > 0.
Since ∑

|α|>k

cασ
α2ξ|α| = o(ξk) as ξ → 0,
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if ξ is small enough, then
∑

|α|>k cασ
α2ξ|α| is negligible with respect to ξk.

Therefore there exists δ0 > 0 such that if ξ ≤ δ0 and σ ≤ σ0, then

|Pσ(ξ)| ≥
∣∣∣C1|ξ|k −

∣∣∣
∑

|α|>k

cασ
α2ξ|α|

∣∣∣
∣∣∣ ≥ C2|ξ|k.

Thus, in the triangle

E = {(λ, ξ) ∈ R
2 : |λ|/σ0 ≤ ξ ≤ δ0}

we have |P (λ, ξ)| ≥ Cξk.
Hence,

|P (λ, |λ|(2m+ 1))| ≥ C(2m+ 1)kλk(26)

for all m ≥ 1/(2σ0)− 1/2 and all λ such that |λ| ≤ δ0σ0.
For finitely many m < 1/(2σ0) − 1/2, it may happen that the sum

cα +
∑

|α|=k,α6=α cα/(2m+1)α2 is zero. Therefore, for all m < 1/(2σ0)− 1/2,

there exist Nm ∈ N and δ1 > 0 such that, if |λ| < δ1, then

|P (λ, |λ|(2m + 1))| > Mλk+Nm .(27)

Put δ = min(σ0, δ0, δ1) and let us show that K in (25) is a tempered
distribution. Note that

〈K, g〉 = 1

(2π)2

∞∑

m=0

(I1m + I2m),

where

I1m =
\

|λ|≥δ/(2m+1)

ĝ(−λ,m,m)|λ|
P (λ, |λ|(2m+ 1))

dλ

I2m =
\

|λ|<δ/(2m+1)

[
dk+Nm−1

dλk+Nm−1
ĝ(−λ,m,m)

]

λ=λm

× λk+Nm−1|λ|
(k +Nm − 1)!P (λ, |λ|(2m+ 1))

dλ

and λm in I2m is a value between 0 and λ, for all m.
Take m < 1/(2σ0) − 1/2. Then I1m is absolutely convergent because

P (λ, |λ|(2m+ 1)) 6= 0 for all λ such that |λ| ≥ δ/(2m+ 1). By estimate (27)
we get

∣∣∣∣
dk+Nm−1

dλk+Nm−1
ϕ−λ,m(v)

∣∣∣∣
λ=λm

|λ|k+Nm

(k +Nm − 1)!|P (λ, |λ|(2m+ 1))|

≤ Cm

∥∥∥∥
dk+Nm−1

dλk+Nm−1
ϕ−λ,m

∥∥∥∥
∞

≤ C,
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so
∣∣∣∣
dk+Nm−1

dλk+Nm−1
ĝ(−λ,m,m)

∣∣∣∣
λ=λm

|λ|k+Nm

(k +Nm − 1)!|P (λ, |λ|(2m+ 1))| ≤ C‖g‖1.

Therefore the integrals occurring in K, corresponding to m < 1/(2σ0)− 1/2,
are absolutely convergent.

Consider now the infinitely many terms in K labeled by m ≥ 1/(2σ0) −
1/2. Recall that Nm = 0 for such m. By applying (7) to the derivatives of
ϕ−λ,m(v), and (26) to the polynomial P , we get\

|λ|<δ/(2m+1)

∣∣∣∣
dk−1

dλk−1
ϕ−λ,m(v)

∣∣∣∣
λ=λm

|λ|k
(k − 1)!|P (λ, |λ|(2m+ 1))| dλ

≤
\

|λ|<δ/(2m+1)

C1(m+ 1)k−1(|t|+ (x2 + y2))k−1

(2m+ 1)k
dλ

≤ C2(|t|+ (x2 + y2))k−1

(m+ 1)2
.

It follows that, for all m ≥ 1/(2σ0)− 1/2,

|I2m| ≤ C2

(m+ 1)2

\
H1

(|t|+ (x2 + y2))k−1|g(x, y, t)| dx dy dt

=
C2

(m+ 1)2
‖(|t|+ (x2 + y2))k−1g‖1 ≤ C3

(m+ 1)2
‖g‖(N),

for some N ≫ 0.
By hypothesis, estimate (24) holds for P . Let h = N be the exponent

appearing in (24) and A = −L(I + L2)h+1. Then, by (21), we have
∣∣∣∣

\
|λ|≥δ/(2m+1)

ĝ(−λ,m,m)|λ|
P (λ, |λ|(2m+ 1))

dλ

∣∣∣∣

≤
\

|λ|≥δ/(2m+1)

‖tAg‖1|λ|
|λ|(2m+ 1)|1 + λ2(2m+ 1)2|h+1|P (λ, |λ|(2m+ 1))| dλ

≤ C1‖tAg‖1
2m+ 1

\
|λ|≥δ/(2m+1)

dλ

|1 + λ2(2m+ 1)2|

≤ C1

(2m+ 1)2
‖tAg‖1

\
|t|≥δ

dt

1 + t2
≤ C2

(2m+ 1)2
‖tAg‖1.

Therefore K ∈ S ′(H1). Let us show that it is a fundamental solution of D:
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〈K, tDf〉 = 〈K,P (−iT,−L)f〉

=
1

(2π)2

∞∑

m=0

{ \
|λ|≥δ/(2m+1)

f̂(−λ,m,m)|λ| dλ

+
\

|λ|<δ/(2m+1)

Rk+Nm−1,0((
tDf)∧(−λ,m,m))|λ|

P (λ, |λ|(2m+ 1))
dλ

}

=
1

(2π)2

∞∑

m=0

{ \
|λ|≥δ/(2m+1)

f̂(−λ,m,m)|λ| dλ

+
\

|λ|<δ/(2m+1)

Rk+Nm−1,0(P (λ, |λ|(2m+ 1))f̂(−λ,m,m))|λ|
P (λ, |λ|(2m + 1))

dλ

}

=
1

(2π)2

∞∑

m=0

\
R

f̂(−λ,m,m)|λ| dλ = f(0, 0, 0)

since

Rk+Nm−1,0(P (λ, |λ|(2m+ 1))f̂(−λ,m,m))

P (λ, |λ|(2m+ 1))

=
P (λ, |λ|(2m + 1))f̂(−λ,m,m)

P (λ, |λ|(2m+ 1))
.

Putting together the results obtained up to now, we can generalize The-
orem 6.2, allowing P (λ, ξ) to have zeros on F also outside the origin.

Theorem 6.3. Suppose P (λ, ξ) has the form (23) and let P (λ, ξ) vanish
on F only at the origin and at finitely many points , (λj , |λj |(2mj + 1)), j =
1, . . . , r, with multiplicity µj. Choosing a sufficiently small positive constant

δ, let Ij be intervals centered at λj such that

Ij ∩
(
− δ

2mj + 1
,

δ

2mj + 1

)
= ∅

and Ij ∩ Ij′ = ∅ if mj = mj′ . Put also

Bm = R \
[(

− δ

2mj + 1
,

δ

2mj + 1

)
∪

⋃

m=mj

Ij

]
.

Define the distribution K, for all g ∈ S(H1), by

〈K, g〉 = 1

(2π)2

∞∑

m=0

{ \
Bm

ĝ(−λ,m,m)|λ| dλ
P (λ, |λ|(2m+ 1))

+
\

|λ|<δ/(2m+1)

Rk+Nm−1,0(ĝ(−λ,m,m))|λ| dλ
P (λ, |λ|(2m + 1))

}



200 P. GORELLI

+
1

(2π)2

r∑

j=1

\
Ij

Rµj ,λj
(ĝ(−λ,mj ,mj))|λ| dλ

P (λ, |λ|(2mj + 1))
,

where Nm = 0 except for finitely many m ∈ N. Then K is a fundamental

solution of D.
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