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VARIETIES OF IDEMPOTENT GROUPOIDS WITH SMALL CLONES

BY

J. G A  L U S Z K A (GLIWICE)

Abstract. We give an equational description of all idempotent groupoids with at
most three essentially n-ary term operations.

1. Introduction. The notion of pn-sequences is connected with the
concept of compositions of algebraic operations contained in the papers
of W. Sierpiński [22], E. Marczewski [18] and G. Grätzer [12]. The main
problem connected with representability of pn-sequences was formulated by
G. Grätzer in [13] (Problem 42). The problem is still open. The most gen-
eral case was solved by A. Kisielewicz in [17]. G. Grätzer and A. Kisielewicz
devoted a considerable part of their survey paper [14] to representability of
pn-sequences. Many authors were interested in pn-sequences of idempotent
algebras with small rates of growth (e.g. [1, 2, 19, 20, 6, 10, 9, 8, 16, 15]).

In [8] a description of idempotent groupoids with p2≤2 is given. In this
paper we present a full characterization of idempotent groupoids with p2≤3.

The notations and notions used in this paper are standard and follow
[14]. Recall that pn = pn(A) denotes the number of all essentially n-ary
term operations of a given algebra A for n ≥ 1 and p0(A) is the number of
all unary constant term operations in A.

A commutative idempotent groupoid G = (G, ·) satisfying xy2 = x
is called a Steiner quasigroup; if G satisfies xy2 = xy, then G is called
a near-semilattice. Similarly to [8] we use the following notation: for a
given groupoid G we write xyn instead of (. . . (xy) . . .)y and nyx instead of
y(. . . (yx) . . .) where y appears n times. Recall that G is a proper groupoid
if card(G) ≥ 1 and the operation “·” depends on both its variables. (In
the whole paper we assume that the groupoids G are proper.) For a given
groupoid G = (G, ·) with the fundamental operation xy we consider the
dual groupoid Gd = (G, ◦) where x ◦ y = yx. If K is a class of groupoids,
then Kd denotes the class of all groupoids Gd such that G ∈ K. Following
[21], we say that an identity is regular if the sets of variables on both sides
coincide. Otherwise we say that the identity is nonregular.
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Note that to find A(2)(G), the set of all binary term operations over G,
we use the following formula (cf. [18]):

(1) A(2)(G) =

∞⋃
k=0

A
(2)
k (G),

where A
(2)
0 (G) = {x, y} and A

(2)
k+1(G) = A

(2)
k (G) ∪ {fg | f, g ∈ A

(2)
k (G)}

(we use the convention: e2
1(x, y) = x, e2

2(x, y) = y).
We use also the following notation:

• G denotes the class of all groupoids,
• GC denotes the class of all commutative groupoids,
• GI denotes the class of all idempotent groupoids,
• GIC denotes the class of all idempotent commutative groupoids,
• GIČ denotes the class of all idempotent noncommutative groupoids.

If K is a subclass of G then K(pn=m) denotes the subclass of K defined by the
condition pn = m. For example GI(p2=2) denotes the class of all idempotent
groupoids having exactly two essentially binary term operations. Similarly
G(pn≤m) denotes the class of all groupoids with no more than m essentially
n-ary term operations. The clone of an algebra A, denoted by cl(A), is the
set of all term operations of A. Minimal clones are atoms in the lattice of
all clones on a set A having more than one element (cf. [14]).

2. Main result. Let us recall the results of J. Dudek summarized in [8].

Theorem 2.1 ([8]). Let G ∈ GI (i.e. G is idempotent (and proper)).
Then p2(G) ≤ 1 if and only if G belongs to one of the following varieties:

• G1
1 : xy = yx, xy2 = x (the variety of Steiner quasigroups);

• G1
2 : xy = yx, xy2 = xy (the variety of near-semilattices).

Thus GI(p2≤1) = G1
1 ∪ G1

2 .

Theorem 2.2 ([8]). Let G ∈ GI. Then p2(G) ≤ 2 if and only if G belongs
to one of the following varieties:

• G2
1 : xy2 = x, xy = (xy)x = x(yx), 2xy = (xy)(yx) = x;

• G2
2 : xy2 = y, (xy)(yx) = (xy)x = x, xy = 2xy = y(xy);

• G2
3 : xy2 = y, (xy)x = x, xy = 2xy = y(xy) = (yx)(xy);

• G2
4 : xy2 = y, xy = (yx)y = y(xy) = 2xy = (yx)(xy);

• G2
5 : xy2 = xy, (xy)x = x(yx) = (xy)(yx) = x;

• G2
6 : xy2 = xy = (xy)x = x(yx) = 2xy = (xy)(yx);

• G2
7 : xy2 = yx, (xy)x = x(yx) = y, 2xy = yx, (xy)(yx) = x;

• G2
8 : xy2 = x, xy = yx (the variety of Steiner quasigroups);

• G2
9 : xy2 = yx2, xy = yx, xy2 = xy3 (the variety N2);

or to one of the varieties G2d
i (i = 1, . . . , 9).
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From this result it is not difficult to infer that

GI(p2≤2) = G2
1 ∪ . . . ∪ G2

9 ∪ G2d
1 ∪ . . . ∪ G2d

9 ,

GIC(p2≤2) = G2
8 ∪ G2

9 ,

GIČ(p2≤2) = (G2
1 ∪ . . . ∪ G2

7 ∪ G2d
1 ∪ . . . ∪ G2d

7 )− G1
2 .

Now we formulate our main result.

Theorem 2.3. Let G ∈ GI. Then p2(G) ≤ 3 if and only if G belongs to
GI(p2≤2) or to one of the following varieties:

(commutative case:)

• G3
1 : xy = yx, xy2 = yx2, xy3 = xy4;

• G3
2 : xy = yx, xy = xy3, xy2 = (xy2)x = x(xy)2;

• G3
3 : xy = yx, xy = (xy2)(yx2) = (xy2)x, xy2 = xy3;

• G3
4 : xy = yx, xy2 = yx3, xy4 = x;

(noncommutative case:)

• G3
5 : xy = (xy)x = x(yx) = 2xy, xy2 = yx2;

• G3
6 : xy = (xy)x = y(xy) = 2xy,

(xy)(yx) = (yx)(xy) = x((xy)(yx)) = ((xy)(yx))x;
• G3

7 : xy = (yx)y = y(xy) = xy2, 2xy = 2yx;
• G3

8 : xy = y(xy) = xy2 = 2xy, (xy)x = (yx)y = (xy)(yx);
• G3

9 : xy = y(xy) = xy2, 2xy = 2yx = (xy)x = (yx)y = (xy)(yx);
• G3

10: (xy)x = (yx)y = x(yx), xy2 = x;
• G3

11: (xy)x = (yx)y = x(yx) = (xy)(yx) = 2xy = xy2 = xy3;

or to one of the varieties G3d
i (i = 5, . . . , 11).

Thus GI(p2≤3) = GI(p2≤2) ∪ G3
1 ∪ . . . ∪ G3

11 ∪ G3d
1 ∪ . . . ∪ G3d

11 .
Note that G3

1 is a subvariety of the variety of all totally commutative
groupoids. Such groupoids were considered e.g. in [5]. (Recall that a groupoid
G is totally commutative if every essentially binary term operation f overG
is commutative, i.e. f(x, y) = f(y, x) for all x, y from G.) It is clear that the
variety of affine spaces over GF(5) is a subvariety of G3

4 . We can easily check
that the varieties G3

4 and G3
10 are polynomially equivalent, i.e. there exists

a bijection ϕ : G3
4 → G3

10 such that (G, ·) and ϕ((G, ·)) are polynomially
equivalent in the sense of [13]. From the proof of Theorem 2.3 we get

Theorem 2.4. Let G be an idempotent groupoid such that p2(G) = 3.
Then the following conditions are equivalent :

(i) G satisfies a nonregular identity.
(ii) The clone of G is minimal.
(iii) Every two-generated subgroupoid of G is an affine space over GF(5).

Theorem 2.3 is proved in Sections 3–13.
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COMMUTATIVE CASE

3. The term operation xy3. According to Theorem 1 of [5] in any
proper commutative idempotent groupoid G we have xyn 6= y for all n.

We start with the following obvious

Lemma 3.1 (cf. [4], Theorem 2.1). Let G ∈ GIC. If G is a totally
commutative groupoid satisfying xy = xyn for some n ≥ 2 then G is a
near-semilattice.

P r o o f. Since xy = xyn we have xy2 = xyn+1. Hence xy2 = y(xy)n =
(y(xy)n−1)(xy) = (xyn)(xy) = (xy)(xy) = xy. So G is a near-semilattice.

Lemma 3.2. Let G ∈ GIC. Then:

(i) If p2(G) = 3 then the term operations xyk for k = 1, 2, 3 are essen-
tially binary.

(ii) If p2(G) ≤ 3, xy3 is commutative and xy3 6∈ {xy, xy2, yx2} then xy2

is commutative.

P r o o f. (i) For k = 1 the statement is obvious. If xy2 is not essentially
binary, then p2(G) < 3. If xy3 is not essentially binary then Theorem 3 of
[5] shows that p2(G) ≥ 5, a contradiction.

(ii) Obvious.

Lemma 3.3. Let G ∈ GIC satisfy xy2 = yx2. Then:

(i) p2(G) = 3 if and only if G satisfies xy3 = xy4 but not xy2 = xy3.

(ii) p2(G) ≤ 3 if and only if G satisfies xy3 = xy4.

P r o o f. If G ∈ GIC and xy2 = yx2, then by Theorem 4 of [5], G is
totally commutative.

(i) Assume that p2(G) = 3. By the preceding lemma the term operations
xy, xy2 and xy3 are essentially binary. If xy = xy3 then G is a near-
semilattice (by Lemma 3.1) and so p2(G) = 1, a contradiction. If xy2 = xy3

and xy 6= xy2, then one can check that p2(G) = 2, a contradiction. Thus
xy, xy2, xy3 are the only essentially binary term operations over G.

The term operation xy4 is essentially binary (recall thatG is idempotent
and totally commutative so every binary term operation is essentially bi-
nary) and xy4 6∈ {xy, xy2}. Indeed, if xy = xy4, thenG is a near-semilattice
(cf. Lemma 2.1), a contradiction. If xy2 = xy4, then xy2 = (xy2)y2 =
y(xy2)2 = (xy3)(xy2) and hence xy3 = xy5 = (xy3)y2 = y(xy3)2 =
(y(xy3))(xy3) = (xy4)(xy3) = (xy2)(xy3) = xy2. Thus we get xy2 = xy3,
which gives p2(G) ≤ 2, a contradiction. Since p2(G) = 3 we deduce that G
satisfies xy3 = xy4 and xy2 6= xy3, as required.
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Conversely, if G ∈ GIC, xy2 = yx2, xy3 = xy4 and xy2 6= xy3, then using
(1) and the fact that G is totally commutative we infer that xy, xy2, xy3

are the only essentially binary term operations over G.
(ii) If p2(G) < 3 then G ∈ G2

9 ⊂ G3
1 (recall that G is totally commuta-

tive).
If G ∈ G3

1 and xy2 = xy3 in G then G ∈ G2
9 and by Theorem 2.2,

p2(G) ≤ 2.

Lemma 3.4. If G ∈ GIC(p2≤3) and the term operation xy2 is noncommu-
tative then G satisfies at least one of the following identities:

xy3 = yx2,(3.1)

xy3 = xy,(3.2)

xy3 = xy2.(3.2)

P r o o f. Lemma 3.2 shows that xy3 is essentially binary, hence must be
one of xy, xy2, yx2.

Further we write GIC(i.j) for the subvariety of GIC defined by the identity
(i.j) above.

The varieties GIC(3.2) and GIC(3.1) are well known. For example any
Steiner quasigroup and any P lonka sum of Steiner quasigroups are members
of GIC(3.2). Every affine space over GF(5) is a model of the variety GIC(3.1).
The most complicated variety is GIC(3.3). Note that any near-semilattice is
a member of GIC(3.2) ∩ GIC(3.3) ∩ GIC(3.1) but we are interested in models G
from these varieties satisfying p2(G) = 3.

4. The identity xy3 = yx2. In this section we deal with commutative
idempotent groupoids G satisfying xy3 = yx2. Using Lemmas 3.2 and 3.3 it
is easy to prove:

Lemma 4.1. If G ∈ GIC(3.1) and p2(G) = 3, then xy, xy2 and yx2 are
the only essentially binary term operations over G.

Lemma 4.2. Let G ∈ GIC(3.1). Then:

(i) G is a near-semilattice if and only if it satisfies xy = xy4.
(ii) The following conditions are equivalent :

(a) G satisfies xy2 = yx2.
(b) G satisfies xy2 = xy4.
(c) G satisfies xy2 = yx4.

P r o o f. (i) If G is a near-semilattice, then clearly G satisfies xy =
xy4. Assume that xy = xy4 in G. Putting xy for x in xy3 = yx2 we get
xy = xy4 = y(yx)2. The identities xy = y(yx)2 and xy = xy4 give xy =
(xy)(xy)2 = y(yx)4 = y(yx) = xy2 and therefore G is a near-semilattice.
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(ii) Since G ∈ GIC(3.1), xy
2 = yx2 implies xy2 = xy3 and hence (a)⇒(b)

and (a)⇒(c).

Assume that (b) holds. Then xy2 = xy4 = (xy)y3 = y(yx)2. Thus
y(yx) = y(yx)2 and hence y(yx)2 = y(yx)3. Further y(yx)2 = (yx)y3 =
xy4 = xy2 and y(yx)3 = (yx)y2 = xy3 = yx2. This proves (b)⇒(a).

If xy2 = yx4, then xy2 = yx3 = (yx)x2 = x(xy)4 = (x(xy)3)(xy) =
((xy)x2)(xy) = (yx3)(xy) = (xy2)(xy) = y(yx)2 = (yx)y3 = xy4 = yx2,
which proves (c)⇒(a).

Lemma 4.3. Let G ∈ GIC. Then:

(i) G satisfies (xy2)x = x if and only if it is a Steiner quasigroup.
(Hence p2(G) = 1.)

(ii) The following conditions are equivalent :

(a) G satisfies (xy2)x = y.

(b) G satisfies (3.1) and xy4 = x.

(c) G satisfies (3.1) and p2(G) = 3.

(d) For every a, b ∈ G such that a 6= b the subgroupoid G(a, b) of G
generated by {a, b} is a five-element affine space over GF(5).

P r o o f. (i) If G is a Steiner quasigroup, then obviously (xy2)x = x in
G. Assume conversely that G ∈ GIC and G satisfies (xy2)x = x. Then
x = x2 = (xy2)x2 and hence x = (xy2)x = ((xy2)x2)(xy2) = xy2, which
proves that G is a Steiner quasigroup.

(ii) (a)⇒(b). First observe that (xy2)x = y gives x = ((xy2)x2)(xy2) =
(yx)(xy2) = y(yx)2. Put xy2 for y in x=y(yx)2 to get x = (xy2)((xy2)x)2 =
xy4, as required. Further we have xy3 = (xy2)y = (xy2)((xy2)x) = x(xy2)2.
Thus xy2 = (x(xy2)2)x = (xy3)x. Hence y = (xy2)x = (xy3)x2 and so
yx2 = (xy3)x4 = xy3.

(a)⇒(c). First we prove that G satisfies the identity (xy2)(yx2) =
xy. Indeed, (xy2)(yx2) = y(xy2)2 = (xy2)y3 (as xy2 = yx3) and hence
(xy2)(yx2)
= xy5 = xy. Using the identities y = (xy2)x = yx4 = x(xy)2, xy3 = yx2,
xy = (xy2)(yx2) and (1) one can prove that p2(G) = 3 if card(G) > 1.

(a)⇒(d). If a 6= b, then G(a, b) = {a, b, ab, ab2, ba2}, card(G(a, b)) = 5
and the groupoid G(a, b) is isomorphic to ({0, 1, 2, 3, 4}, 3x + 3y) i.e., to a
five-element affine space over GF(5) (for details see [3]).

(b)⇒(a) is obvious.

(c)⇒(a). By Theorem 1 of [5] we see that xy4 6= y. Lemma 4.2(i) shows
that xy4 6= xy. If xy4 ∈ {xy2, yx2}, then by Lemma 4.2(ii) we infer that
G is totally commutative with xy2 = yx2. Since G satisfies xy2 = yx3 we
conclude that p2(G) = 2, a contradiction. Thus p2(G) = 3 implies xy4 = x.
Using this identity and xy2 = yx3 we get (xy2)x = yx4 = y, as required.



VARIETIES OF GROUPOIDS 69

(d)⇒(a). We have to check that (ab2)a = b for all a, b∈G. If a=b, then
the identity is satisfied. If a 6= b, then G(a, b) is an affine space over GF(5)
and hence satisfies the identity (xy2)x = y.

As a corollary we get:

Proposition 4.4. Let G ∈ GIC(3.1). Then p2(G) = 3 if and only if G is
a nontrivial groupoid satisfying xy4 = x (or equivalently (xy2)x = y).

From Lemma 4.3 and the fact that the clone of a nontrivial affine space
over GF(p), where p is a prime number, is minimal we get

Proposition 4.5. Let G ∈ GIC(3.1) and p2(G) = 3. Then the clone of
G is minimal if and only if G is a nontrivial affine space over GF(5).

5. The identity xy3 = xy. In this section we deal with groupoids G
from GIC(3.2). We start with

Lemma 5.1. If G ∈ GIC(3.2) and p2(G) > 1, then xy2 is essentially binary
and noncommutative.

P r o o f. If xy2 is not essentially binary, then G satisfies xy2 = x, G is a
Steiner quasigroup and p2(G) = 1, contrary to assumption.

If xy2 = yx2, then G is totally commutative, Lemma 3.1 shows that G
is a near-semilattice and again p2(G) = 1.

Lemma 5.2. Let G ∈ GIC(3.2). Then:

(i) If G is not a Steiner quasigroup, then (xy2)x is essentially binary.

(ii) (Lemma 3.1 of [4]) The following are equivalent :

(a) G is a near-semilattice.

(b) (xy2)x ∈ {(yx2)y, yx2, (xy2)(xy)}.
(iii) If p2(G) < 5, then G satisfies (xy2)x = xy2.

P r o o f. (i) If (xy2)x = x, then Lemma 4.3(i) shows that G is a Steiner
quasigroup, a contradiction. If (xy2)x = y, then (ii) of the same lemma gives
xy = xy3 = yx2 and hence G is totally commutative. So G is one-element,
a contradiction.

(ii) If G is a near-semilattice, then the assertion is obvious.

Assume that G satisfies (xy2)x = (yx2)y. Then xy = (xy3)(xy) =
(y(xy)2)y=((xy2)(xy))y. Putting xy for x in the identity xy=((xy2)(xy))y
we get xy2 = ((xy3)(xy2))y = ((xy)(xy2))y = xy, as required.

If (xy2)x = yx2, then xy = (xy)(xy) = (xy3)(xy) = y(xy)2 and hence
xy = x(xy)2. This gives xy = (xy)(xy) = x(xy)3 = x(xy) = yx2, which
proves that G is a near-semilattice.
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Let (xy2)x = (xy2)(xy). Then we have xy=(xy3)(xy) = ((xy)y2)(xy) =
((xy)y2)((xy)y) = (xy3)(xy2) = (xy)(xy2) = (xy2)(xy) = (xy2)x. Putting
xy for x in the identity xy = (xy2)x we conclude thatG is a near-semilattice.

(iii) If G is a Steiner quasigroup, then obviously (xy2)x = xy2. If G
is not a Steiner quasigroup, then (xy2)x is essentially binary by (i). If G
is a near-semilattice, then obviously (xy2)x = xy2. Now assume that G ∈
GIC(3.2) and G is neither a Steiner quasigroup nor a near-semilattice. Then
xy, xy2, yx2, (xy2)x, (yx2)y are essentially binary by (i). Since p2(G) < 5,
G satisfies (xy2)x = xy2 by (ii).

Lemma 5.3. Let G ∈ GIC(3.2). Then:

(i) x(xy)2 6= y.

(ii) The following are equivalent :

(a) G is a near-semilattice.

(b) x(xy)2 ∈ {yx2, y(yx)2, (yx2)y}.

(iii) If G satisfies xy2 = (xy2)x = x(xy)2, then p2(G) ≤ 3.

P r o o f. (i) If x(xy)2 = y, then yx2 = x(xy) = x(xy)3 = (x(xy)2)(xy) =
y(yx) = xy2. Thus G is a totally commutative groupoid satisfying a non-
regular identity, a contradiction.

(ii) (a)⇒(b) is obvious.

If G satisfies x(xy)2 = yx2, then xy2 = (xy2)(xy). Putting xy for x in
this identity we get xy3 = (xy3)(xy2). Hence xy = xy3 = (xy3)(xy2) =
(xy)(xy2) = (xy2)(xy) = xy2, which proves that G is a near-semilattice.

If x(xy)2 = y(yx)2, then by Theorem 2.1 of [4], G is also a near-
semilattice.

Let x(xy)2 = (yx2)y. Then (xy2)x = (xy2)(xy) and so xy = (xy3)(xy) =
(xy3)(xy2) = (xy2)(xy), which proves that G is a near-semilattice.

(iii) Using xy2 = x(xy)2 we obtain xy = xy3 = (xy)y2 = (xy)(xy2)2 =
((xy)(xy2))(xy2) = (y(yx)2)(xy2) = (yx2)(xy2). Further (by (1)) we have

A
(2)
0 (G) = {x, y}, A(2)

1 (G) = {x, y, xy} and A
(2)
2 (G) = {x, y, xy, xy2, yx2}

= A
(2)
3 (G), which proves p2(G) ≤ 3, as required.

Lemma 5.4. If G is a commutative idempotent groupoid satisfying x(xy)2

= x, then G ∈ GIC(3.2).

P r o o f. We have x = (yx2)(yx) and hence xy = (y(yx)2)(y(yx)) =
y(y(yx)) = xy3, as required.

Now we prove the main result of this section.

Proposition 5.5. Let G ∈ GIC(3.2). Then:
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(i) p2(G) = 3 iff G is neither a near-semilattice nor a Steiner quasi-
group satisfying the following identities:

xy2 = (xy2)x,(5.1)

xy2 = x(xy)2.(5.2)

(ii) Any nontrivial P lonka sum G of Steiner quasigroups which are not
all singletons is a member of the variety GIC(3.2)(5.1)(5.2) and p2(G) = 3.

(iii) If G ∈ GIC(3.2)(5.1)(5.2), then the clone of G is minimal iff G is either
a nontrivial affine space over GF(3) or a nontrivial near-semilattice.

(iv) If 1 ≤ p2(G)≤ 4, then the clone of G is minimal iff G is either a
proper near-semilattice or a nontrivial affine space over GF(3).

P r o o f. (i) If G ∈ GIC(3.2)(5.1)(5.2) and G is neither a Steiner quasi-
group nor a near-semilattice, then xy = (xy2)(yx2). Indeed, (xy2)(yx2) =
(xy2)((xy2)(xy)) = (xy2)(yx2) = (xy)(xy2)2 = (xy)((xy)y)2 = xy3 = xy.

Hence A
(2)
2 (G) = {x, y, xy, xy2, yx2} and p2(G) = 3.

Now let p2(G) = 3. Lemma 5.1 shows that xy2 is essentially binary
and noncommutative. Since G is neither a Steiner quasigroup nor a near-
semilattice we have (xy2)x = xy2 by Lemma 5.2(iii). If x(xy)2 = x, then
putting xy2 for y we obtain x = x((xy2)x)2 = x(xy2)2 = ((xy2)x)(xy2) =
xy2. This proves that G is a Steiner quasigroup, a contradiction. Now
Lemma 5.3 yields xy2 = x(xy)2 and therefore G ∈ GIC(3.2)(5.1)(5.2).

(ii) Any Steiner quasigroup satisfies the identities of GIC(3.2)(5.1)(5.2).
Since those identities are regular we infer that P lonka’s sums of such al-
gebras are also in GIC(3.2)(5.1)(5.2) (see [21]).

(iii) Obviously the clones of a proper near-semilattice and of a proper
affine space over GF(3) are minimal. Now let G ∈ GIC(3.2)(5.1)(5.2). In a
proper groupoid G we have xy2 6= y. If xy2 = x, then Proposition of [10]
shows that the clone of G is minimal if and only if G is a proper affine
space over GF(3). If xy2 = xy then G is a near-semilattice. Thus further
we may assume that p2(G) > 1. By Lemma 5.1, xy2 is essentially binary
and noncommutative. Consider now (G, ◦) where x ◦ y = xy2. Using the
identities of GIC(3.2)(5.1)(5.2) one can check that x◦y = (x◦y)◦y = (x◦y)◦x =
x ◦ (x ◦ y) = x ◦ (y ◦ x) = (x ◦ y) ◦ (y ◦ x) and hence p2(G, ◦) = 2. Thus the
clone of G is not minimal since the clone of (G, ◦) is its nontrivial subclone.

(iv) Now let G ∈ GIC(3.2)(5.1)(5.2), 1 ≤ p2(G)≤ 4 and suppose the clone
of G is minimal. If p2(G) = 1 or p2(G) = 2 then the assertion follows
e.g. from Theorem 2.3 of [4]. If p2(G) = 3, then G ∈ GIC(3.2)(5.1)(5.2) and
the proof is given above (see also Lemma 2.3 of [10]). Now let p2(G) = 4.
Lemma 5.2 shows that (xy2)x = xy2 and xy2 is essentially binary and
noncommutative. By Lemma 5.3, x(xy)2 6∈ {y, yx2, y(yx)2}. If x(xy)2 = x,
then using (xy2)x = xy2 one proves that G is a Steiner quasigroup. Thus



72 J. GA  LUSZKA

either x(xy)2 = xy2, or xy, xy2, yx2, x(xy)2, y(yx)2 are essentially binary
and pairwise distinct. The second case is impossible but in the first case
G ∈ GIC(3.2)(5.1)(5.2) and consequently p2(G) = 3, a contradiction.

6. The identity xy3 = xy2. In this section we deal with groupoids G
from the variety GIC(3.3). We start with

Lemma 6.1. Let G ∈ GIC(3.3). Then:

(i) The term operations xy2, (xy2)x are essentially binary.
(ii) If p2(G) = 3, then:

(a) The term operation xy2 is noncommutative.
(b) G satisfies:

(6.1) xy = (xy2)(yx2).

(c) G satisfies at least one of the following identities:

(xy2)x = xy,(6.2)

(xy2)x = xy2,(6.3)

(xy2)x = yx2.(6.4)

P r o o f. (i) If xy2 or (xy2)x is not essentially binary, then Theorem 9
of [11] shows that G is cancellative and hence the identity xy2 = xy3 gives
card(G) = 1, a contradiction.

(ii) If xy2 = yx2 and xy 6= xy2, thenG is a totally commutative groupoid
satisfying xy2 = xy3. It is easy to check that p2(G) = 2, a contradiction.
Since p2(G) = 3 and xy, xy2, yx2 are the only essentially binary term
operations over G we infer that xy = (xy2)(yx2), and at least one of (6.2)–
(6.4) holds.

Lemma 6.2. LetG ∈ GIC(3.3) satisfy (6.2) or (6.3) (i.e. G ∈ GIC(3.3)(6.2)∪
GIC(3.3)(6.3)). If G satisfies (6.1) then:

(i) G satisfies x(xy)2 = yx2 and consequently p2(G) ≤ 3.
(ii) If G is not a near-semilattice then the clone cl(G, ◦), where x ◦ y =

xy2, is a proper subclone of cl(G) and consequently the latter is not minimal.
(iii) If G is not a near-semilattice, then p2(G) = 3.

P r o o f. Let G ∈ GIC(3.3)(6.2).
(i) Putting xy for x in xy = (xy2)x we obtain xy2 = (xy3)(xy) =

(xy2)(xy) = y(yx)2.
(ii) To prove that p2(G, ◦) ≤ 2 we use A(2)(G) = {x, y, xy, xy2, yx2} and

the fact that x◦x = x, x◦y = (x◦y)◦y = (y◦x)◦y = x◦(x◦y) = (y◦x)◦(x◦y).
For example, (x ◦ y) ◦ (y ◦ x) = ((xy2)(yx2))(yx2) = x(xy)2 = yx2 = y ◦ x,
as required. Since p2(G, ◦) = 2 the clone of G is not minimal (cf. also
Lemma 2.5 of [10]).
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(iii) Easy.
The proof for G ∈ GIC(3.3)(6.3) runs analogously.

Lemma 6.3. Let G ∈ GIC(3.3)(6.1). Then:

(i) If G satisfies (6.3) then G is a near-semilattice and p2(G) = 1.
(ii) If G satisfies (6.4) then

(a) G satisfies x(xy)2 = xy.
(b) G is a near-semilattice and p2(G) = 1.

P r o o f. (i) By assumption xy = (xy2)(yx2). So (xy)(xy2)=(yx2)(xy2)2.
Hence (Lemma 6.2(i)) xy2 = y(yx)2 = (yx2)(xy2)2. Then (xy2)(yx2) =
((yx2)(xy2))(yx2). By (6.3), (xy2)(yx2) = (yx2)(xy2)2. Hence (xy2)(yx2) =
xy2. By (6.1), xy2 = xy and consequently G is a near-semilattice.

(ii) (a) We have x(xy)2 = (yx2)(xy) = (yx2)((xy2)(yx2)). So x(xy)2 =
(xy2)(yx2)2 = ((yx2)y)(yx2)2 = y(yx2)3 = y(yx2)2 = (y(yx2))(yx2) =
(xy2)(yx2) = xy.

(b) By Lemma 4.1 of [4].

Proposition 6.4. Let G ∈ GIC(3.3). Then p2(G) = 3 if and only if G is
not a near-semilattice and belongs to the variety

G3
3 : xy = yx, xy = (xy2)(yx2) = (xy2)x, xy2 = xy3.

P r o o f. This follows from Lemmas 6.1–6.3 and formula (1).

NONCOMMUTATIVE CASE

7. The term operation (xy)x. Now assume thatG is a groupoid from
the class GIČ (so the term operations xy and yx are both essentially binary
and distinct). If p2(G) ≤ 3 then at least one of the following identities holds
in G (up to duality):

(xy)x = x,(7.1)

(xy)x = y,(7.2)

(xy)x = xy,(7.3)

(xy)x = yx,(7.4)

(xy)x = (yx)y.(7.5)

8. Groupoids with (xy)x = x

Lemma 8.1. Let G be an idempotent groupoid satisfying (7.1) (G ∈
GI(7.1)). Then the identity x(xy) = xy holds in G.

P r o o f. By assumption, (xy)x = x. Hence xy = ((xy)x)(xy) = x(xy).
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Assume that G satisfies (7.1). If p2(G) ≤ 3, then at least one of the
following identities holds in G:

x(yx) = x,(8.1)

x(yx) = y,(8.2)

x(yx) = xy,(8.3)

x(yx) = yx,(8.4)

x(yx) = y(xy).(8.5)

Lemma 8.2. Let G ∈ GI(7.1). Then:

(i) If G satisfies (8.1) and p2(G) ≤ 3 then G ∈ G2
5 and consequently

p2(G) ≤ 2.
(ii) If p2(G) = 3 then (8.1) does not hold in G.

(iii) (8.2), (8.3), (8.5) do not hold in G.
(iv) If G satisfies (8.4) then xy2 = y holds in G.
(v) If G satisfies (8.4) and p2(G) ≤ 3 then G ∈ G2

2 ∪G2
3 and consequent-

ly p2(G) ≤ 2.
(vi) If p2(G) = 3 then (8.4) does not hold in G.

P r o o f. (i) Assume that (8.3) holds inG. Then xy = (xy)(y(xy)) = xy2.

So by Lemma 8.1 we have A
(2)
2 (G) = {x, y, xy, yx, (xy)(yx), (yx)(xy)}. Now

assume that p2(G) ≤ 3. So (xy)(yx) ∈ {x, y, xy, yx, (yx)(xy)}. Suppose
that (xy)(yx) = x. Then G ∈ G2

5 . If (xy)(yx) = y, then y = (xy2)(y(xy)) =
(xy2)y = xy2 = xy, a contradiction. Assume that (xy)(yx) = xy. Putting
yx for x we have ((yx)y)(y(yx)) = (yx)y. Hence y(2yx) = y. Thus yx = y,
a contradiction. Now assume that (xy)(yx) = yx. Then (x(yx))((yx)x) =
(yx)x. Hence x(yx) = yx. Thus x = yx, a contradiction. Finally suppose
that (xy)(yx) is symmetric. Then, using Lemma 8.1, we have y = (yx)y =
(y(yx))((yx)y) = ((yx)y)(y(yx)) = y(yx) = yx, a contradiction.

(ii) By (i).
(iii) Assume that (8.2) holds in G. Then xy = x(x(yx)). Hence, by

Lemma 8.1 and (8.2), xy = x(yx) = y, a contradiction. Assume that (8.3)
holds in G. Then putting xy for y in (8.3) we get x = xy, a contradiction.
Now assume that (8.5) holds in G. Putting xy for y in (8.5) and using (7.1)
and Lemma 8.1 we get x = xy, a contradiction.

(iv) (8.4) gives y = (y(xy))y = (xy)y.
(v) Assume that p2(G) ≤ 3. If (xy)(yx) = x then G ∈ G2

2 . Assume that
(xy)(yx) = y. Then putting yx for x we have ((yx)y)(y(yx)) = y. Hence
y(y(yx)) = y and by Lemma 8.1, xy = y, a contradiction. Now suppose that
(xy)(yx) = xy. Hence ((xy)(yx))(yx) = (xy)(yx) = xy. By (iv) we obtain
yx = xy, which means that G is commutative. Hence using (7.1) and (8.4)
we deduce that card(G) = 1, a contradiction. If (xy)(yx) = yx thenG ∈ G2

3 .
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Now assume that (xy)(yx) = (yx)(xy). Putting xy for x and using (iv) we
get ((xy)y)(y(xy)) = (y(xy))((xy)y) and so y(y(xy)) = (y(xy))y. Therefore
y(xy) = (xy)y and so xy = y, a contradiction.

(vi) By (v).

As a consequence of Lemma 8.2 we have the following proposition:

Proposition 8.3. Let G ∈ GI(7.1). Then one of the following conditions
holds (recall that card(G) > 1):

(i) p2(G) = 2 and G ∈ G2
2 ∪ G2

3 ∪ G2
5 or

(ii) p2(G) ≥ 4.

9. Groupoids with (xy)x = y. In this section we deal with groupoids
G satisfying (7.2) and such that p2(G) = 3. At least one of the following
identities holds in G:

xy2 = x,(9.1)

xy2 = y,(9.2)

xy2 = xy,(9.3)

xy2 = yx,(9.4)

xy2 = yx2.(9.5)

We start with the following obvious, but useful lemma (cf. Lemma 5.2 of [7]):

Lemma 9.1. Let G ∈ GI. Then:

(i) The following conditions are equivalent :

(a) G satisfies the identity (7.2): (xy)x = y.
(b) G satisfies the identity (7.2)′: x(yx) = y.

(ii) If G satisfies (7.2) or (7.2)′ then G is a quasigroup.

Lemma 9.2. Let G ∈ GI(7.2). Then:

(i) If (9.1) holds in G, then G is a Steiner quasigroup and p2(G) = 1
(cf. Lemma 3.1 of [8]).

(ii) (9.2) does not hold in G.

P r o o f. (i) (9.1) yields y((xy)y) = yx. By Lemma 9.1(i) we get xy = yx.
So G is commutative.

(ii) (9.2) implies (xy)y = yy. By Lemma 9.1(ii), xy = y, a contradiction.

Proposition 9.3. Let G ∈ GI(7.2). Then one of the following conditions
holds:

(i) p2(G) = 1 and G is a Steiner quasigroup or
(ii) p2(G) = 2 and G ∈ G2

7 or
(iii) p2(G) ≥ 4.
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P r o o f. (i) If xy2 is not essentially binary thenG is a Steiner quasigroup
(by Lemma 9.2).

(ii) Suppose that (9.3) holds in G. As G is a quasigroup (Lemma 9.1) it
follows that xy = x, a contradiction.

Assume that (9.4) holds inG. Then y = ((xy)y)(xy) = (yx)(xy). There-
fore y(yx) = ((yx)(xy))(yx) = xy. So p2(G) ≤ 2, more exactly G is a
member of G2

7 .
(iii) Now assume that G satisfies (9.5). By Lemmas 9.1 and 9.2 we have

y(yx) 6∈ {x, y, yx}. Suppose that y(yx) = xy. Then (xy)(yx) = (y(yx))(yx).
Hence by (9.5) we get (xy)(yx) = ((yx)y)y. By (7.2), (xy)(yx) = xy. Hence
((xy)(yx))(xy) = xy. Thus yx = xy = y(yx). By Lemma 9.1(ii) we get
yx = y, a contradiction with the assumption that G is proper. Assume that
y(yx) = xy2 = yx2. Then y = (yx)(y(yx)) = (yx)((yx)x) = (x(yx))(yx) =
y(yx), a contradiction. Therefore y(yx) 6∈ {x, y, xy, yx, (yx)y} and p2(G)
≥ 4.

Proposition 9.4. Let G be an idempotent groupoid such that p2(G) = 3.
Then the term operations (xy)x and x(yx) are both essentially binary.

P r o o f. By Propositions 8.3, 9.3 and their dual versions.

10. Groupoids with (xy)x = xy. Assume that G satisfies (7.3). If
p2(G) ≤ 3 then at least one of (8.1)–(8.5) holds in G. Note that (8.5) is a
dual case of (7.5).

Lemma 10.1. If G satisfies (8.3) then the identity xy2 = (xy)(yx) holds
in G.

P r o o f. By (8.3) we have (xy)(yx) = (xy)(y(xy)) = (xy)y.

Lemma 10.2. Let G ∈ GI(7.3). Then:

(i) If p2(G) = 3 then x(yx) is essentially binary.
(ii) If G satisfies (8.4) then xy2 = xy in G.

P r o o f. (i) By Proposition 9.4.
(ii) By (7.3) and (8.4) we have (xy)y = (y(xy))y = y(xy) = xy.

Lemma 10.3. Let G ∈ GI(7.3)(8.3). Then:

(i) If p2(G) ≤ 2 then p2(G) = 1 and G is a near-semilattice or p2(G)
= 2 and G ∈ G2

1 ∪ G2d
4 .

(ii) If p2(G) = 3 then:

(a) The term operation xy2 is symmetric and x(xy) = xy in G.
(b) The clone {x, y, x ◦ y}, where x ◦ y = xy2, is a proper subclone of
{x, y, xy, yx, xy2}.

(iii) If xy2 is symmetric and 2xy = xy in G then p2(G) ≤ 3.
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P r o o f. (i) Since p2(G) ≤ 3, at least one of (9.1)–(9.5) holds. As-
sume that (9.1) holds. By Lemma 10.1, (xy)(yx) = x. Then x(yx) =
((xy)(yx))(yx). Hence x(yx) = xy. Moreover x(xy) = ((xy)(yx))(xy). So
x(xy)=x. Thus G∈G2

1 . Suppose that G satisfies (9.2). Then ((yx)y)y=y.
Therefore yx= y, a contradiction. Now suppose that (9.3) holds. Assume
that x(xy) = x. By Proposition 9.4 the term operation x(yx) is essentially
binary. If x(yx) = xy then G ∈ G2d

4 , and p2(G) ≤ 2. If x(yx) = yx then
x(x(yx))=x(yx) and x=xy, a contradiction. If x(yx)=y(xy) then putting
xy for y we obtain x((xy)x) = (xy)(x(xy)). Hence x = (xy)x = xy, a con-
tradiction. Suppose that G satisfies (9.4). Then ((xy)y)(xy) = (yx)(xy).
By (7.3) and Lemma 10.1 we have xy2 = xy. Hence yx = xy. So G is a
near-semilattice and p2(G) = 1.

(ii) (a) By (i) the term operation xy2 is symmetric in G. As p2(G) = 3,
at least one of the following identities holds:

2xy = x,(10.1)
2xy = y,(10.2)
2xy = xy,(10.3)
2xy = yx,(10.4)
2xy = 2yx.(10.5)

Suppose that (10.1) holds. Then x=(x(xy))(xy)=((xy)x)x. Hence x =
(xy)x=xy, a contradiction. Suppose that (10.2) holds. Then (x(xy))x=yx.
Hence y = x(xy) = yx, a contradiction. Suppose that (10.4) holds. Then
(x(xy))x=(yx)x. Hence (yx)x = x(xy) = yx, so G is commutative, a con-
tradiction. Suppose that x(xy) is symmetric. As p2(G) = 3 we have x(xy) =
(xy)y. Hence xy = (xy)x = ((xy)x)x = (x(xy))(xy) = ((xy)y)(xy) = (xy)y.
Hence G is commutative, a contradiction. Therefore G satisfies x(xy) = xy.

(b) Obvious (by (7.3), (8.3) and Lemma 10.1).

(iii) A(2)(G) = {x, y, xy, yx, (xy)y}. Indeed, observe that A
(2)
3 (G) =

A
(2)
2 (G) = {x, y, xy, yx, (xy)y}. For example ((xy)y)y = (y(xy))(xy) =

(yx)(xy) = yx2 = xy2.

Lemma 10.4. Let G ∈ GI(7.3)(8.4). Then:

(i) If p2(G) ≤ 2 then p2(G) = 1 and G is a near-semilattice.

(ii) If p2(G) = 3 then:

(a) The term operation (xy)(yx) is symmetric and x(xy) = xy,
x((xy)(yx)) = ((xy)(yx))x = (xy)(yx) in G.

(b) The clone {x, y, x ◦ y}, where x ◦ y = (xy)(yx), is a proper sub-
clone of {x, y, xy, yx, (xy)(yx)}.
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(iii) If (xy)(yx) is symmetric and x(xy) = xy, (xy)(yx) = x((xy)(yx)) =
((xy)(yx))x in G then p2(G) ≤ 3.

P r o o f. (i) Assume that p2(G) ≤ 3. Then at least one of (10.1)–(10.5)
holds in G. Suppose that x(xy) = x. Then by (7.3) and (8.4) we have
(xy)x = y(xy). Putting xy for y we get (x(xy))x = (xy)((x(xy)). Hence
x = (xy)x = xy. Thus card(G) = 1, a contradiction. Now assume that
x(xy)=y. Hence (x(xy))x=yx. By (7.3) we get x(xy)=yx. Hence y=yx,
a contradiction. Now suppose that x(xy) = yx. Lemma 10.2 shows that
yx=(yx)(xy)=(xy)((xy)(yx))=xy. Thus G is a near-semilattice. Assume
x(xy)=y(yx). Hence, by (7.3) and (8.4) we get y(yx) = y((yx)y) = (yx)y.
By (7.3), y(yx) = yx. So G is commutative and hence a near-semilattice.
So if p2(G) ≤ 3 then x(xy) = xy in G.

Now at least one of the following identities holds:

(xy)(yx) = x,(10.6)

(xy)(yx) = y,(10.7)

(xy)(yx) = xy,(10.8)

(xy)(yx) = yx,(10.9)

(xy)(yx) = 2yx.(10.10)

Suppose that (10.6) holds. Then ((xy)(yx))(xy) = x(xy). Hence, by
(7.3), x = (xy)(yx) = xy, a contradiction. Assume that (10.7) holds. So
((xy)(yx))(xy) = y(xy) = xy and by (7.3), y = (xy)(yx) = xy, a contra-
diction. Now assume (10.8). Hence (yx)((xy)(yx)) = (yx)(xy) = yx. By
(8.4) we get xy = yx, so G is a near-semilattice. Now assume (10.9). Then
((xy)(yx))(xy) = (yx)(xy) = xy. By (7.3), yx = (xy)(yx) = xy. So G is a
near-semilattice again. Thus if p2(G) ≤ 3 then eitherG is a near-semilattice
and p2(G) = 1, or (xy)(yx) is symmetric and p2(G) = 3.

(ii) (a) Assume that p2(G) = 3. By what was proved above, x(xy) = xy
and (xy)(yx) is symmetric in G. Now, x((xy)(yx)) ∈ {x, y, xy, yx} or
x((xy)(yx)) = y((yx)(xy))=(xy)(yx). Suppose that x((xy)(yx))=x. Then
x = x((x(xy))((xy)x)). Hence x = x((xy)(xy)) = x(xy) = xy, a contradic-
tion. Now, suppose that x((xy)(yx)) = y. Then y = (xy)(((xy)y)(y(xy))).
Hence y = (xy)(((xy)y)(xy)) = (xy)((xy)y) = (xy)y, a contradiction. As-
sume x((xy)(yx)) = xy. Then ((xy)(yx))(x((xy)(yx))) = ((xy)(yx))(xy).
Hence, by (8.4) and (7.3), we have xy = x((xy)(yx)) = (xy)(yx), so G
is commutative, a contradiction. Assume that x((xy)(yx)) = yx. Then
((xy)(yx))(x((xy)(yx))) = ((xy)(yx))(yx) = ((yx)(xy))(yx). Hence yx =
(yx)(xy), a contradiction. Therefore we have x((xy)(yx)) = y((yx)(xy)) =
(xy)(yx).

(b) Obvious.
(iii) By formula (1).
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11. Groupoids with (xy)x = yx. Assume that G satisfies (7.4). If
p2(G) ≤ 3 then at least one of (8.1)–(8.5) holds in G. Note that (8.5) is a
dual case of (7.5).

Lemma 11.1. Assume that G satisfies (7.4). Then:

(i) The term operation x(yx) is essentially binary.
(ii) If (8.3) holds in G then G is a near-semilattice.

(iii) If G satisfies (8.4) then 2yx = (xy)(yx) in G.

P r o o f. (i) Assume that x(yx) = x. Then xy = (xy)(y(xy)). So xy =
(xy)y. Hence xy = ((xy)y)(xy) = y(xy) = y, a contradiction.

Now suppose that x(yx) = y. By Lemma 9.1(ii), G is a quasigroup.
Hence, (7.4) yields xy = y, a contradiction.

(ii) Suppose that (8.3) is satisfied in G. Putting xy for x in (8.3) we
get (xy)(y(xy)) = (xy)y. Hence (xy)(yx) = (xy)y. Then ((xy)(yx))(xy) =
((xy)y)(xy). Hence (yx)(xy) = y(xy) = yx. Therefore yx = (yx)(yx) =
((yx)(xy))(yx) = (xy)(yx) = xy. So G is commutative.

(iii) By (7.4) we have ((yx)y)(yx) = y(yx). Hence (xy)(yx) = y(yx).

Lemma 11.2. Assume that G satisfies (7.4) and (8.4). Then:

(i) If p2(G) ≤ 2 then either p2(G) = 1 and G is a near-semilattice, or
p2(G) = 2 and G ∈ G2d

1 ∪ G2
4 ∪ G2d

6 .
(ii) If p2(G) = 3 then:

(a) xy2 = xy and the term operation 2xy is symmetric in G.
(b) The clone {x, y, x ◦ y}, where x ◦ y = 2xy, is a proper subclone

of the clone {x, y, xy, yx, 2xy}.
(iii) If xy2 = xy and 2xy is symmetric in G then p2(G) ≤ 3.

P r o o f. (i) and (ii). Since p2(G) ≤ 3, at least one of (9.1)–(9.5) holds in
G. Suppose that (9.1) holds. Then (x(xy))(xy) = x. By Lemma 11.1(iii) we
get ((yx)(xy))(xy) = x. So yx = x, a contradiction.

Now suppose that (9.2) holds. We have 2yx ∈ {x, y, xy, yx, 2xy}. If
y(yx) = x then evidently G ∈ G2d

1 . Assume that y(yx) = y. Then (by
Lemma 11.1(iii)), y = y(yx) = (xy)(yx). Hence, by (7.4), y = (xy)((xy)x) =
xy, a contradiction. Now assume that y(yx) = xy. Then (y(yx))(yx) =
(xy)(yx). Hence yx = (xy)(yx)=y(yx)=xy, a contradiction. Now suppose
that y(yx) = yx. Then y(yx) = (xy)(yx) = yx and consequently G ∈ G2

4 .
Suppose that y(yx) =x(xy). Then by (8.4) we have x(x(yx)) =x(yx) =yx.
Hence, as x(xy) is commutative, we get (yx)((yx)x) = yx. Therefore yx =
(yx)(yx2) = (yx)x = x, a contradiction.

Now assume that (9.3) holds and consider the same cases as above. If
y(yx) = x, then (yx)((yx)x) = y and yx = x, a contradiction. Suppose that
y(yx) = y. Then y(y(xy)) = y. By (8.4) we get xy = y, a contradiction.
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Now suppose that y(yx) = xy. Lemma 11.1(iii) gives xy = (xy)(yx). Hence
xy = ((xy)(yx))(xy). Thus by (7.4), xy = (yx)(xy) = yx. So G is a near-
semilattice. Suppose that y(yx) = yx. Then G ∈ G2d

5 . Evidently if y(yx) =
x(xy) and y(yx) is essentially binary and different from xy then p2(G) = 3.

Assume that (9.4) holds. Then ((xy)y)(xy) = (yx)(xy). By (7.4) and
(8.4), ((xy)y)(xy) = y(xy) = xy. Hence xy = ((yx)(xy))(xy) = (yx)(xy).
So xy is commutative and consequently G is a near-semilattice.

Now assume that (9.5) holds. If y(yx) = x then, by (8.4), (y(yx))(yx) =
x(yx) = yx. Therefore, by (7.4), we get yx = ((yx)y)y = (xy)y, a con-
tradiction. Now assume that y(yx) = y. Hence y = y(yx) = (y(yx))(yx).
Then, as xy2 = yx2, we have y = ((yx)y)y) = (xy)y, a contradiction.
Suppose now that y(yx) = xy. Then, by Lemma 11.1(iii), we have xy =
y(yx) = (xy)(yx) = (y(yx))(yx). Hence, by (7.4), xy = ((yx)y)y = (xy)y.
So G is a near-semilattice. Suppose that y(yx) = yx. Then (y(yx))(yx) =
yx. Hence yx = ((yx)y)y = (xy)y and G is a near-semilattice. Assume
that y(yx) = x(xy). Then, since xy2 = yx2 and p2(G) ≤ 3, we have
(y(yx))(yx) = ((yx)x)(yx). By (8.4) and (7.4), yx = x(yx) = ((yx)x)(yx).
Then, as xy2 = yx2, yx = ((yx)y)y = (xy)y. So G is a near-semilattice
again.

(iii) By Lemma 11.1(iii) and using formula (1).

12. Groupoids with (xy)x = (yx)y. In this section we deal with
proper, noncommutative groupoids G such that (xy)x is symmetric in G
and (xy)x 6∈ {xy, yx}. As in the whole paper, we assume that p2(G) ≤ 3 so
at least one of (8.1)–(8.5) holds in G.

Lemma 12.1. Assume that G ∈ GI(7.5) and (xy)x 6∈ {xy, yx}. Then:

(i) The term operation x(yx) is essentially binary.
(ii) (8.3) does not hold in G.

P r o o f. (i) Assume that (8.1) holds in G. Then x = (x(yx))x. Hence—
by (7.5) and using the dual version of Lemma 8.1—we get x = ((yx)x)(yx) =
yx, a contradiction. Suppose that (8.2) holds in G. So, by Lemma 9.1(ii),
G is a quasigroup. Then (x(yx))x = yx, ((yx)x)(yx) = yx, (yx)x = yx,
yx = y, a contradiction.

(ii) Assume that G satisfies (7.5) and (8.3). Consider identities (9.1)–
(9.5). Assume that (9.1) holds. Then ((xy)y)(xy) = x(xy) and x(xy) =
(y(xy))y. By (8.3) and (7.5), x(xy) = (yx)y = (xy)x = y(yx). Hence
((xy)x)(xy) = (x(xy))(xy). By (9.1), ((xy)x)(xy) = x. By (7.5), (x(xy))x =
x. Hence x = (((x(xy))x)x. By (9.1), x = x(xy), a contradiction. Now sup-
pose that (9.2) holds. By (8.3), ((xy)y)(xy) = y(xy) = yx. By (7.5), yx =
((xy)y)(xy) = (y(xy))y. By (8.3), yx= (yx)y and consequently yx is com-
mutative. By (9.2), y = (xy)y = (yx)y = yx, a contradiction. Assume that
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(9.3) holds. Then, by (7.5), xy = ((xy)y)(xy) = (y(xy))y. By (8.3), xy =
(yx)y, a contradiction. Suppose that (9.4) holds. By Lemma 10.1 we get
xy = (yx)x = (yx)(xy) = ((xy)y)(xy). By (7.5) and (8.3), xy = (y(xy))y =
(yx)y, a contradiction. Now, assume that (9.5) holds, xy2 6∈ {x, y, xy, yx}
and p2(G)=3. Then (xy)y=(yx)y. Hence y((xy)y)=y((yx)y). Therefore,
by (8.3), yx = y(xy) = y(yx). Then yx = (yx)(yx) = (yx)(y(yx)) = (yx)y,
a contradiction.

Lemma 12.2. Let G ∈ GI(7.5)(8.4). Then:

(i) If p2(G) = 3 then:

(a) G satisfies the following identities:

xy2 = xy,(12.1)

(xy)(yx) = (yx)(xy),(12.2)

(xy)x = (yx)y = (xy)(yx) = (yx)(xy).(12.3)

(b) G satisfies one of the following identities:

2xy = xy,(12.4)
2xy = 2yx.(12.5)

(c) The clone {x, y, x◦y}, where x◦y = (xy)(yx), is a proper subclone
of {x, y, xy, yx, (xy)x}. Moreover (G, ◦) is a near-semilattice.

(ii) If G satisfies (7.5), (8.4) and (12.3) then p2(G) ≤ 3.

P r o o f. (i) (a) p2(G) = 3 so one of (9.1)–(9.5) holds in G. Suppose
that (9.1) holds. Then, by (8.4), we have xy = x((yx)x) = (yx)x = y, a
contradiction. Now suppose that (9.2) holds. Then, by (8.4), x = (yx)x =
(x(yx))x. By (7.5), x = ((yx)x)(yx) = x(yx). By (8.4), x = yx, a contra-
diction. Assume that (9.4) is satisfied. Then yx = (yx)(yx) = (x(yx))(yx).
By (9.4), yx = (yx)x = y, a contradiction. Now assume that (9.5) holds
and xy2 6∈ {x, y, xy, yx}. Then (recall that p2(G) = 3)

(12.6) (xy)x = (yx)y = (xy)y = (yx)x.

Consider identities (10.1)–(10.5). Suppose that (10.1) holds. Then x=
x(xy) = (x(xy))(xy). Hence x= ((xy)x)x= ((yx)x)x. Thus x= (x(yx))x=
(yx)x, a contradiction. Suppose that (10.2) holds. Hence (xy)(x(xy)) =
(xy)y. By (8.4), (xy)y = (xy)(x(xy)) = x(xy) = y, a contradiction. Assume
that (10.3) holds. By (8.4) and (9.5) we have xy=(xy)(xy)=(x(xy))(xy)=
((xy)x)x. By (12.6) we obtain xy = ((xy)x)x = ((yx)x)x. By (9.5), xy =
((yx)x)x = (x(yx))(yx) = yx, a contradiction. Suppose that (10.4) holds.
Hence—putting yx for y—we have x(x(yx)) = (yx)x. So by (8.4), (yx)x =
x(x(yx)) = x(yx) = yx. By (9.5), G is commutative, a contradiction. Now
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suppose that (10.5) holds and 2xy is essentially binary. Thus

(12.7) x(xy) = y(yx) = (xy)x = (yx)y = (xy)y = (yx)x.

Putting yx for y in (10.5) we obtain x(x(yx)) = (yx)((yx)x). By (8.4) and
(12.7) we get yx = x(x(yx)) = (yx)((yx)x) = (yx)(y(yx)) = y(yx). So G is
commutative, a contradiction. Thus (12.1) holds in G. So in the sequel we
can assume that (7.5), (8.4) and (12.1) are satisfied in G.

As p2(G) ≤ 3 at least one of identities (10.6)–(10.9) and (12.2) holds
in G. Assume that (10.6) holds. Then (x(yx))((yx)x) = x. Hence yx = x,
a contradiction. Suppose that (10.7) holds. Then ((xy)y)(y(xy)) = y. By
(12.1), (xy)(y(xy)) = y. Hence xy = y, a contradiction. Now suppose
that (10.8) holds. Then ((xy)(yx))(xy) = xy. By (7.5) we obtain xy =
((yx)(xy))(yx) = yx, a contradiction. Assume that (10.9) holds. Then, by
(7.5), xy = (yx)(xy) = ((xy)(yx))(xy) = ((yx)(xy))(yx) = yx, a contradic-
tion. So (xy)(yx) is symmetric (i.e. (12.2) holds). The assumption p2(G)≤3
yields

(xy)x = (yx)y = (xy)(yx) = (yx)(xy).

(b) At least one of (10.1)–(10.5) holds in G. Suppose that (10.1) holds.
Then x = x(x(yx)). By (8.4) we have x = x(yx) = yx, a contradiction.
Assume that (10.2) holds. By (12.1), y = (xy)((xy)y) = xy, a contradiction.
Assume now that (10.4) holds. Then by (12.1) we have yx = (yx)x =
(x(xy))x. By (12.3), yx = ((xy)x)(xy) = ((xy)(yx))(xy) = ((yx)(xy))(yx)
= xy, a contradiction.

(c) Obvious.

(ii) By formula (1).

Lemma 12.3. Let G ∈ GI(7.5)(8.5). If p2(G) = 3 then:

(i) The following identities hold :

(12.8) (xy)x = (yx)y = x(yx) = y(xy).

(ii) G satisfies exactly one of the following identities:

xy2 = x,(12.9)

xy2 = yx2.(12.10)

P r o o f. (i) By the assumption p2(G) = 3.

(ii) Consider identities (9.1)–(9.5). Suppose that (9.2) holds or equiva-
lently (yx)x=x. Putting xy for y and using (12.8) we obtain x = ((xy)x)x =
(x(yx))x=((yx)x)(yx). By (9.2) we get x=x(yx), a contradiction. Assume
that (9.3) holds. Hence—using (9.3) and (12.8)—we have x = (xy)(xy) =
((xy)y)(xy) = (y(xy))y. So x = ((yx)y)y = (yx)y, a contradiction. Suppose
now that (9.4) holds. By (12.8) we have x(xy) = x((yx)x) = (yx)(x(yx)).
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Hence x(xy) = ((yx)x)(yx) = (xy)(yx). So we have

(12.11) x(xy) = (xy)(yx).

Consider identities (10.1)–(10.5). Suppose that (10.1) holds. By (12.11)
and (9.4) we have y = (yx)(xy) = ((xy)y)(xy). By (12.8) we get y =
(xy)(y(xy)) = (xy)((xy)x). Then by (10.1), y = xy, a contradiction. The
term operation 2xy is dual to xy2. So 2xy 6= y, i.e. (10.2) does not hold inG.
Assume that (10.3) holds. By (10.3) we get xy = (xy)(xy) = (xy)(x(xy)).
Hence—using (12.8)—we have xy=x((xy)x) =x(x(yx)). Thus xy=x(yx),
a contradiction. Now suppose that (10.4) holds. Then by (12.11) we have
yx=(xy)(yx). So yx=((xy)(yx))(yx). By (9.4), (12.11) and (10.4) we have
yx=(yx)(xy)=y(yx)=xy, a contradiction. Now assume that (10.5) holds.
So evidently the term operation 2xy is essentially binary. As p2(G) = 3 we
have

(12.12) (xy)x = (yx)y = x(yx) = y(xy) = x(xy) = y(yx).

Putting yx for y in (9.4) we get (x(yx))(yx) = (yx)x = xy. Hence by (12.12)
we obtain xy = (x(yx))(yx) = (y(yx))(yx) = (yx)y. So xy is commutative,
a contradiction.

Lemma 12.4. Let G ∈ GI(7.5)(8.5). Then:

(i) If p2(G) = 3 then G ∈ G3
10 ∪ G3

11 where G3
10 = GI(12.8)(12.9), G3

11 =
GI(12.13) and

(12.13) (xy)x = (yx)y = x(yx) = 2xy = (xy)(yx) = xy2 = xy3.

(ii) If G ∈ G3
10 ∪ G3

11 then p2(G) ≤ 3.
(iii) If G ∈ G3

10 then the clone {x, y, x ◦ y}, where x ◦ y = (xy)x, is
minimal , and G is polynomially equivalent to an affine space over GF(5).

(iv) If G ∈ G3
11 then the clone in (iii) is a proper subclone of {x, y, xy,

yx, (xy)x}.
P r o o f. (i) By Lemma 12.3 it is enough to prove (12.13). Identity (12.8)

was proved, so we must prove that if G ∈ GI(12.8)(12.10) and p2(G) = 3 then

2xy = 2yx,(12.14)

(xy)(yx) = (yx)(xy),(12.15)

xy2 = xy3.(12.16)

From p2(G) = 3 we infer that

(12.17) (xy)x = (yx)y = x(yx) = y(xy) = xy2 = yx2.

As in the proof of Lemma 12.3 consider identities (10.1)–(10.5). Suppose
that (10.1) holds. Putting xy for x in this identity we obtain (xy)((xy)y) =
xy. Hence—using (12.17)—we have xy = (xy)((xy)y) = (xy)(y(xy)). Using
(12.17) again we obtain xy = (xy)(y(xy)) = y((xy)y) = y(y(xy)) = y, a



84 J. GA  LUSZKA

contradiction. Now suppose that (10.2) holds. Putting yx for y in (10.2)
and using (12.17) we get yx = x((xy)x) = (xy)(x(xy)) = (xy)y. Thus
G is commutative, a contradiction. Assume that (10.3) holds. So xy =
(xy)(xy) = (x(xy))(xy). By (12.17) we have xy = ((xy)x)x = ((yx)x)x =
((yx)x)(yx). Hence xy = ((yx)y)(yx) = (y(yx))(yx). By (10.3) we obtain
xy = (yx)(yx) = yx. So G is commutative, a contradiction. Suppose
that (10.4) holds. Then xy = y(yx) = (yx)((yx)y). By (12.17) we have
xy = (yx)((yx)x) = x(yx), a contradiction. By the assumption p2(G) = 3
we find that (10.5) holds. More exactly,

(12.18) (xy)x = (yx)y = x(yx) = y(xy) = xy2 = yx2 = 2xy = 2yx.

Now consider identities (10.6)–(10.9) and (12.2). Suppose that (9.2) holds
in G. Putting xy for y we have (x(xy))((xy)x) = x. By (12.18) the term
operation (x(xy))((xy)x) is commutative. So we have a contradiction. Now
suppose that (10.7) holds. Putting xy for x we get ((xy)y)(y(xy)) = y, a
contradiction. Assume that (10.8) is satisfied. Then xy = ((xy)(yx))(xy).
By (7.5) we have xy = ((yx)(xy))(yx) = yx, a contradiction. Now assume
that (10.9) holds. Then ((xy)(yx))(yx) = yx. By (12.10) we have yx =
((yx)(xy))(xy) = xy, a contradiction. Thus (xy)(yx) is commutative and
consequently

(12.19) (xy)x = (yx)y = x(yx) = xy2 = 2xy = (xy)(yx).

Now consider the identities

xy3 = x,(12.20)

xy3 = y,(12.21)

xy3 = xy,(12.22)

xy3 = yx,(12.23)

xy3 = yx3.(12.24)

Assume that (12.20) is satisfied. Then x = ((x(xy))(xy))(xy). By (12.19) we
obtain x = (((xy)x)x)(xy) = (((yx)x)x)(xy). By (12.20) we have x = x(xy),
a contradiction. Suppose that (12.21) holds. Then—using (12.19)—we get
y = ((xy)y)y = (y(yx))y = ((yx)y)(yx). Hence y = (y(yx))(yx). There-
fore y(yx) = ((y(yx))(yx))(yx) = yx, a contradiction. Now assume that
(12.22) holds. By (12.10) we have xy = (y(xy))(xy). Hence xy = (xy)(xy) =
((y(xy))(xy))(xy) = y(xy), a contradiction. Suppose that (12.23) holds. By
(12.19), yx = ((yx)y)y = (y(yx))(yx). Hence yx = ((y(yx))(yx))(yx) =
(yx)y, a contradiction. Thus G satisfies (12.24) and from the assumption
p2(G) = 3 we get

(12.25) (xy)x = (yx)y = x(yx) = xy2 = 2xy = (xy)(yx) = xy3.
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(ii) Assume that G ∈ G3
10. Observe that

x(xy) = yx,(12.26)

(xy)(yx) = y.(12.27)

Indeed, putting yx for x in (12.9) we obtain yx = ((yx)y)y. By (12.8) we
have yx = (y(xy))y = ((xy)y)(xy) = x(xy). So we have (12.26). To prove
(12.27) observe that y = (y(yx))(yx). By (12.26) we have y = (xy)(yx). By
(1) we have p2(G) ≤ 3.

Assume that G ∈ G3
11. By (1)—using (12.25)—we have p2(G) ≤ 3.

(iii) Assume that G ∈ G3
10. Consider the binary operation x ◦ y = (xy)x.

Evidently this operation is commutative. It is easy to prove that (x◦y)◦y =
xy. So G is polynomially equivalent to an affine space over GF(5) and its
clone is minimal.

(iv) Assume that G ∈ G3
11. As above x ◦ y = (xy)x is commutative. By

(12.13) we have (x ◦ y) ◦ y = x ◦ y. So (G, ◦) is a near-semilattice and the
clone of G is not minimal.

13. The proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3. LetG = (G, ·) be a groupoid such that p2(G) = 3.

Let G ∈ GIC(p2=3). Using Lemma 3.2 we infer that xy, xy2, xy3 are
essentially binary. If xy2 = yx2, then Lemma 3.3 shows that G ∈ G3

1 . If xy2

is essentially binary and noncommutative, then by Lemma 3.4, G satisfies
either (3.1), (3.2) or (3.3). If G satisfies (3.1), then the statement follows
from Proposition 4.4. If G satisfies (3.2), then Proposition 5.5 shows that
G ∈ G3

2 . If G satisfies (3.3), then Proposition 6.4 yields G ∈ G3
3 .

Let G ∈ GIČ(p2=3). By Proposition 9.4, G satisfies (7.3), (7.4) or (7.5).

If G satisfies (7.3), then Lemma 10.2 shows that G satisfies (8.3), (8.4)
or (8.5). If G ∈ GIČ(p2≤3)(7.3)(8.3) then by Lemma 10.3, G ∈ G3

5 . If G ∈
GIČ(p2≤3)(7.3)(8.4) then by Lemma 10.4, G ∈ G3

6 . If G ∈ GIČ(p2≤3)(7.3)(8.5)

then by the dual version of Lemma 12.2 we infer that G ∈ G3d
8 ∪ G3d

9 . If
G ∈ GIČ(p2≤3)(7.4) then using Lemma 11.2 we see that G ∈ G3

7 . If G ∈
GIČ(p2≤3)(7.5) then Lemmas 12.2 and 12.4 give G ∈ G3

8 ∪ G3
9 ∪ G3

10 ∪ G3
11.

Thus we have proved that if G ∈ GI and p2(G) = 3, then G ∈ GI(p2≤3) =

G3
1 ∪ . . . ∪ G3

11 ∪ G3d
1 ∪ . . . ∪ G3d

11 .

To prove the converse we use the identities of the varieties G3
i and G3d

i

(i = 1, . . . , 11) and also the formula for A(2)(G).

Proof of Theorem 2.4. By Theorem 2.3 and Lemma 4.3, Proposition 5.5
and Lemmas 6.2, 10.3, 10.4, 11.2, 12.2, and 12.4.
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14. Examples. In this section we prove that the classes described in
Theorem 2.3 are all nonempty. Below we give the tables of eleven groupoids
G1, . . . ,G11:

G1 0 1 2 3 4
0 0 2 3 4 4
1 2 1 3 4 4
2 3 3 2 4 4
3 4 4 4 3 4
4 4 4 4 4 4

G2 0 1 2 3 4
0 0 2 4 3 2
1 2 1 3 2 4
2 4 3 2 4 3
3 3 2 4 3 2
4 2 4 3 2 4

G3 0 1 2 3 4
0 0 2 4 2 4
1 2 1 3 3 2
2 4 3 2 3 4
3 2 3 3 3 2
4 4 2 4 2 4

G4 0 1 2 3 4
0 0 2 4 1 3
1 2 1 3 4 0
2 4 3 2 0 1
3 1 4 0 3 2
4 3 0 1 2 4

G5 0 1 2 3 4
0 0 2 2 2 2
1 3 1 3 3 3
2 2 4 2 4 4
3 4 3 4 3 4
4 4 4 4 4 4

G6 0 1 2 3 4
0 0 2 2 3 4
1 3 1 2 3 4
2 2 2 2 4 4
3 3 3 4 3 4
4 4 4 4 4 4

G7 0 1 2 3 4
0 0 2 4 3 4
1 3 1 2 4 4
2 3 2 2 4 4
3 3 2 4 3 4
4 3 2 4 4 4

G8 0 1 2 3 4
0 0 2 2 3 4
1 3 1 2 3 4
2 4 2 2 4 4
3 3 4 4 3 4
4 4 4 4 4 4

G9 0 1 2 3 4
0 0 2 4 3 4
1 3 1 2 4 4
2 4 2 2 4 4
3 3 4 4 3 4
4 4 4 4 4 4

G10 0 1 2 3 4
0 0 2 3 4 1
1 3 1 4 2 0
2 4 0 2 1 3
3 1 4 0 3 2
4 2 3 1 0 4

G11 0 1 2 3 4
0 0 2 4 4 4
1 3 1 4 4 4
2 4 4 2 4 4
3 4 4 4 3 4
4 4 4 4 4 4

We leave it to the reader to check thatGi ∈ G3
i for i = 1, . . . , 11. The author

has checked it using a program written by Marek Żabka.
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