COLLOQUIUM MATHEMATICUM

1999

NO. 2

ON PEAKS IN CARRYING SIMPLICES

BY

JANUSZ MIERCZYŃSKI (WROCłAW)

Dedicated to my teacher, Professor Andrzej Krzywicki, on the occasion of his retirement

Abstract. A necessary and sufficient condition is given for the carrying simplex of a dissipative totally competitive system of three ordinary differential equations to have a peak singularity at an axial equilibrium. For systems of Lotka–Volterra type that result translates into a simple condition on the coefficients.

1. Introduction. An *n*-dimensional system of C^1 ordinary differential equations (ODEs)

(S_n) $\dot{x}^{[i]} = x^{[i]} f^{[i]}(x),$

VOL. 81

where $f = (f^{[1]}, ..., f^{[n]}) : K \to \mathbb{R}^n, K := \{x = (x^{[1]}, ..., x^{[n]}) \in \mathbb{R}^n : x^{[i]} \ge 0 \text{ for } i = 1, ..., n\}$ is called *totally competitive* if

$$\frac{\partial f^{[i]}}{\partial x^{[j]}}(x) < 0$$

for all $x \in K$, i, j = 1, ..., n. We write $F = (F^{[1]}, ..., F^{[n]})$ with $F^{[i]}(x) = x^{[i]}f^{[i]}(x)$. The symbol DF(x) denotes the Jacobian matrix of the vector field F at $x \in K$, $DF(x) = [(\partial F^{[i]}/\partial x^{[j]})(x)]_{i,j=1}^n$. Let K° stand for the interior of K in \mathbb{R}^n , $K^\circ = \{x \in K : x^{[i]} > 0 \text{ for all } i = 1, ..., n\}$.

We say that system (S_n) is *dissipative* if there is a compact invariant set $\Gamma \subset K$ attracting all bounded subsets of K. A compact invariant set $A \subset K$ is a *repeller* if $\alpha(B) \subset A$ for some neighborhood B of A in K. (For the definitions of concepts from the theory of dynamical systems see Hale [5].)

M. W. Hirsch proved in [6] the following result.

THEOREM 1.1. Assume that (S_n) is a dissipative n-dimensional totally competitive system of ODEs having $\{0\}$ as a repeller. Then there exists a compact invariant set Σ with the following properties:

1991 Mathematics Subject Classification: Primary 34C30.

^[285]

(i) Σ is homeomorphic via radial projection to the standard (n-1)-dimensional probability simplex $\{x \in K : \sum_{i=1}^{n} x^{[i]} = 1\}$.

(ii) For each v ∈ V with positive components the restriction P_v|_Σ of the orthogonal projection P_v along v is a Lipeomorphism onto its image.
(iii) For each x ∈ K \ {0}, ω(x) ⊂ Σ.

We call Σ the *carrying simplex* for (S_n) (after M. L. Zeeman [13]).

In the aforementioned paper Hirsch asked about smoothness of Σ . The problem for $\Sigma \cap K^{\circ}$ was considered by P. Brunovský [3], I. Tereščák [12] and M. Benaïm [2]. The present author in [8], [9] gave criteria for (the whole of) Σ to be a neatly embedded C^1 manifold-with-corners, whereas in [10] he presented (for n = 3) an example of a carrying simplex which is not of class C^1 on a part of its boundary. On the other hand, for n = 2 the carrying simplex is always a C^1 manifold-with-boundary, diffeomorphic to the real interval [0, 1] (Mierczyński [11]).

In this paper we investigate the situation (for the system (S_3)) when at some point the carrying simplex has a peak, which means that the tangent cone of Σ is a halfline.

2. Preliminaries. We specialize to n = 3. For the remainder of the paper the standing assumption is:

 (S_3) is a dissipative three-dimensional totally competitive system of ODEs having $\{0\}$ as a repeller.

The symbol $V := \{v = (v^{[1]}, v^{[2]}, v^{[3]})\}$ stands for the vector space of all three-vectors, with the Euclidean norm $\|\cdot\|$. For $I \subset \{1, 2, 3\}$ we write $V^I := \{v \in V : v^{[i]} = 0 \text{ for } i \in I\}$, and $K^I := \{x \in K : x^{[i]} = 0 \text{ for } i \in I\}$. We also use a dual notation: V_I means $V^{\{1,2,3\}\setminus I}$. Denote the *i*th vector of the standard basis of V by e_i . Further, $\Sigma^I := \Sigma \cap K^I$, $\Sigma_I := \Sigma \cap K_I$, $\Sigma^{\circ} := \Sigma \cap K^{\circ}$.

For a closed set $A \subset \mathbb{R}^3$ and $x \in A$, $\mathcal{C}_x(A)$ denotes the *tangent cone* of A at x, $\mathcal{C}_x(A) := \{\alpha v : \alpha \ge 0, \text{ there is a sequence } \{x_k\} \subset A \setminus \{x\}, x_k \to x \text{ as } k \to \infty, \text{ such that } (x_k - x)/||x_k - x|| \to v\}.$ The cone $\mathcal{C}_x(A)$ is closed, and if x is not isolated in A then $\mathcal{C}_x(A) \neq \emptyset$.

For further reference we restate Hirsch's result:

THEOREM 2.1. There exists a compact invariant set Σ with the following properties:

(a) Σ is homeomorphic via radial projection to the standard two-dimensional probability simplex $\{x \in K : \sum_{i=1}^{3} x^{[i]} = 1\}.$

(b) For each $v \in V$ with positive components the mapping $P_v|_{\Sigma}$ is a Lipeomorphism onto its image.

(c) Let $v \in V^i$ with $v^{[j]} > 0$ for both $j \neq i$. Then the mapping $P_v|_{\Sigma \cap K^i}$ is a Lipeomorphism onto its image.

(d) For each $x \in K \setminus \{0\}$, $\omega(x) \subset \Sigma$.

An equilibrium is called *axial* if only one of its coordinates is positive. By Theorem 2.1(a) there are precisely three axial equilibria $y_i \in K_i$, and $\Sigma_i = \{y_i\}$.

We say Σ has a *peak singularity* at $y \in \Sigma$ if there is a nonzero vector $p \in V$ such that $C_y(\Sigma) = \{\alpha p : \alpha \ge 0\}.$

PROPOSITION 2.2. If Σ has a peak singularity at y then y is an axial equilibrium.

Proof. Suppose first that $y \in \Sigma^{\circ}$, that is, all three coordinates of y are positive. Denote by P the orthogonal projection along v = (1, 1, 1) on $S := \{x \in \mathbb{R}^3 : x^{[1]} + x^{[2]} + x^{[3]} = 0\}$. Theorem 2.1(b) states that $P|_{\Sigma}$ is a Lipeomorphism (hence a homeomorphism) onto its image. Put L to be a Lipschitz constant of the inverse $(P|_{\Sigma})^{-1}$. The projection P takes the set $\Sigma \cap K^{\circ}$ onto the interior of $P\Sigma$ in S. Consequently, the tangent cone $\mathcal{C}_{Py}(P\Sigma)$ is the (two-dimensional) tangent space of S at Py, that is, $\mathcal{C}_{Py}(P\Sigma) = \{v \in V : v^{[1]} + v^{[2]} + v^{[3]} = 0\}.$

Take a unit vector $r \in C_{Py}(P\Sigma)$. There is a sequence $\{x_k\} \subset \Sigma^{\circ} \setminus \{y\}$ such that $\lim_{k\to\infty} x_k = y$ and $\lim_{k\to\infty} (Px_k - Py)/||Px_k - Py|| = r$. By choosing a subsequence if necessary, we can assume $\lim_{k\to\infty} (x_k - y)/||x_k - y|| = q$. As the derivative of P at y is equal to P, one has $Pq = \beta r$. We claim that $\beta \neq 0$. Indeed,

$$||Pq|| = \lim_{k \to \infty} \left| \left| P \frac{x_k - y}{||x_k - y||} \right| \right| = \lim_{k \to \infty} \frac{||Px_k - Py||}{||x_k - y||} \ge \frac{1}{L}$$

We have thus proved that P takes $C_y(\Sigma)$ onto $C_{Py}(P\Sigma)$. Therefore $C_y(\Sigma)$ contains two noncollinear vectors, so Σ cannot have a peak singularity at y.

Suppose now that only one of the coordinates of y is zero, say $y \in \Sigma^3 \setminus (\Sigma_1 \cup \Sigma_2)$. Thm. 1 in Mierczyński [11] yields that Σ^3 is a C^1 onedimensional manifold-with-boundary containing y in its (manifold) interior $\Sigma^3 \setminus (\Sigma_1 \cup \Sigma_2)$. Hence $\mathcal{C}_y(\Sigma^3) \subset \mathcal{C}_y(\Sigma^3)$ is a one-dimensional vector space. Therefore Σ does not have a peak singularity at y.

For an axial equilibrium y_i the Jacobian matrix $DF(y_i)$ leaves both the two-dimensional vector subspaces V^j , $j \neq i$, as well as their one-dimensional intersection V_i , invariant. As $V_i = \operatorname{span} e_i$, e_i is an eigenvector of $DF(y_i)$. Adapting the terminology from Mierczyński [9] we will call the eigenvalue of $DF(y_i)$ corresponding to e_i the *internal eigenvalue* at y_i . By the *external eigenvalue* at y_i in K^j , $j \neq i$, we mean the (unique) eigenvalue of the quotient linear mapping $(DF(y_i)|_{V^j})/V_i$. An eigenvector for $DF(y_i)$ belonging to an external eigenvalue is called an *external eigenvector* (such an eigenvector need not exist, see Lemma 3.1(iii)).

We are now ready to formulate our principal result.

MAIN THEOREM. The carrying simplex Σ has a peak singularity at an axial equilibrium y_i if and only if the internal eigenvalue at y_i is larger than or equal to the maximum external eigenvalue at y_i . In that case, $C_{y_i}(\Sigma) = \{-\alpha e_i : \alpha \geq 0\}$.

3. Proof of the Main Theorem. To streamline the argument and limit the number of indices we assume in the present section that the axial equilibrium under consideration is $y = y_1$. Similarly, we write $e = e_1$.

LEMMA 3.1. (i) If the internal eigenvalue at y is larger than the external eigenvalue at y in K^3 [resp. in K^2] then there is an external eigenvector in V^3 [resp. in V^2] of the form $(1, a_2, 0)$ with $a_2 > 0$ [resp. of the form $(1, 0, a_3)$ with $a_3 > 0$].

(ii) If the internal eigenvalue at y is smaller than the external eigenvalue at y in K^3 [resp. in K^2] then there is an external eigenvector in V^3 [resp. in V^2] of the form $(1, -b_2, 0)$ with $b_2 > 0$ [resp. of the form $(1, 0, -b_3)$ with $b_3 > 0$].

(iii) If the internal eigenvalue at y is equal to the external eigenvalue at y in K^3 [resp. in K^2] then there are no external eigenvectors in V^3 [resp. in V^2].

Proof. It suffices to observe that the matrix of the restriction of DF(y) to K^j , j = 2, 3, has the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ with a < 0 and b < 0, and compute eigenvectors (compare Lemma 2 in [11]).

3.1. Necessity. Suppose by way of contradiction that the internal eigenvalue at y is smaller than the external eigenvalue at y in, say, K^3 . By Mierczyński [11], $\Sigma^3 = \Sigma \cap K^3$ is a C^1 one-dimensional manifold-with-boundary. By the theory of invariant manifolds (see e.g. Hirsch, Pugh and Shub [7]) any locally invariant C^1 one-dimensional submanifold passing through y is tangent either to e or to another eigenvector of $DF(y)|_{V^3}$ (not collinear with e); moreover, in the former case the submanifold is locally unique. As K_1 is an invariant one-dimensional submanifold tangent at y to e, Σ^3 cannot be locally equal to it, since otherwise the radial projection of Σ would not be injective (Theorem 2.1(a)). Consequently, Σ^3 is tangent at y to the vector $(1, -b_2, 0)$ with nonzero second component (by Lemma 3.1(ii)). Hence $C_y(\Sigma) \supset C_y(\Sigma^3)$ contains $(1, -b_2, 0)$. On the other hand, any vector in $C_y(\Sigma^3) \subset C_y(\Sigma)$ has zero second component (and $C_y(\Sigma^3) \neq \{0\}$). Therefore $C_y(\Sigma)$ contains two noncollinear vectors, so Σ does not have a peak singularity at y.

3.2. Sufficiency. Put $\mathcal{C} := \mathcal{C}_y(\Sigma)$. We write A for the linear operator DF(y). In the standard basis, A has the matrix

$$\begin{bmatrix} d_{11} & d_{12} & d_{13} \\ 0 & d_{22} & 0 \\ 0 & 0 & d_{33} \end{bmatrix}$$

with

$$\begin{aligned} d_{11} &= y^{[1]} \frac{\partial f^{[1]}}{\partial x^{[1]}}(y) < 0, \quad d_{12} = y^{[1]} \frac{\partial f^{[1]}}{\partial x^{[2]}}(y) < 0, \quad d_{13} = y^{[1]} \frac{\partial f^{[1]}}{\partial x^{[3]}}(y) < 0, \\ d_{22} &= f^{[2]}(y), \quad d_{33} = f^{[3]}(y). \end{aligned}$$

We will prove sufficiency by carefully analyzing the action of the group $\{e^{tA}\}_{t\in\mathbb{R}}$ on the tangent cone \mathcal{C} .

As $y \in \Sigma$ is an equilibrium and Σ is invariant, each of the linear operators e^{tA} leaves C invariant.

Put $\mathcal{C}^{\mathbb{N}} := \mathcal{C} \cap \mathbb{S}$, where $\mathbb{S} := \{v \in V : ||v|| = 1\}$ is the unit sphere in V. For $t \in \mathbb{R}$ define the mapping $\psi_t : \mathbb{S} \to \mathbb{S}$ as

$$\psi_t v := \frac{e^{tA}v}{\|e^{tA}v\|}.$$

The family $\psi = {\psi_t}_{t \in \mathbb{R}}$ is the solution flow of the system of ODEs

$$\dot{v} = Av - \langle Av, v \rangle v,$$

where $\langle \cdot, \cdot \rangle$ denotes the standard inner product on \mathbb{R}^3 . The flow ψ leaves \mathcal{C}^N invariant.

LEMMA 3.2. For any nonzero $v \in C$ we have $v^{[1]} < 0, v^{[2]} \ge 0, v^{[3]} \ge 0$.

Proof. The last two inequalities follow by the definition of \mathcal{C} and the fact that $(x-y)^{[2]} \geq 0$ and $(x-y)^{[3]} \geq 0$ for any $x \in K$. Suppose first that there is $v \in \mathcal{C}$ with $v^{[1]} > 0$. As a consequence of the definition of \mathcal{C} there is a point $x \in \Sigma$ such that $x^{[1]} > y^{[1]}, x^{[2]} \geq y^{[2]}$ and $x^{[3]} \geq y^{[3]}$. If $x^{[2]} > y^{[2]}$ and $x^{[3]} > y^{[3]}$ then the restriction $P_{x-y}|_{\Sigma}$ of the orthogonal projection along x - y is not injective, which contradicts Theorem 2.1(b). If $x^{[2]} > y^{[2]}$ and $x^{[3]} = y^{[3]}$ then $x \in \Sigma^3 \subset K^3$ and $P_{x-y}|_{\Sigma^3}$ is not injective, which is in contradiction with Theorem 2.1(c). The case $x^{[2]} = y^{[2]}$ and $x^{[3]} > y^{[3]}$ is treated in an analogous way. If $x^{[2]} = y^{[2]}$ and $x^{[3]} = y^{[3]}$ then $y \in \Sigma_1$ and the radial projection of Σ is not injective, contrary to Theorem 2.1(a).

Suppose now that there is a nonzero $v \in C$ with $v^{[1]} = 0$. Then at least one of the remaining components of v is positive. We have

$$\left. \frac{d}{dt} (e^{tA} v)^{[1]} \right|_{t=0} = (Av)^{[1]} = d_{12} v^{[2]} + d_{13} v^{[3]} < 0,$$

from which it follows that $(e^{-tA}v)^{[1]} > 0$ for t > 0 sufficiently close to 0. As $e^{-tA}v \in \mathcal{C}$ for all $t \in \mathbb{R}$, this is in contradiction to the above paragraph.

Denote by λ_1 the internal eigenvalue at v, and by λ_2 [resp. λ_3] the external eigenvalue at v in K^2 [resp. in K^3]. The symbol w_j , j = 2, 3, stands for the unit external eigenvector corresponding to λ_j (provided it exists) having positive first component.

Suppose that $u \in \mathcal{C}^{\mathbb{N}} \setminus \text{span } e$. The idea of the proof is to find a vector in \mathcal{C} with first component positive, contradicting Lemma 3.2.

We consider four cases (up to relabeling).

CASE I: $\lambda_1 > \lambda_2 > \lambda_3$. For the flow ψ the set $\{w_3, -w_3\}$ is a repeller, its dual attractor being $V^2 \cap \mathbb{S}$. The flow ψ restricted to $V^2 \cap \mathbb{S}$ has repeller $\{w_2, -w_2\}$ with $\{e, -e\}$ as its dual attractor (for those concepts see Conley [4] or Akin [1]).

Therefore, if $u \notin V^2$ (notice that in such a case $u^{[2]} > 0$) then $\psi_{-t}u$ converges, as $t \to \infty$, to either w_3 or $-w_3$. The latter case is impossible, since as $u^{[2]} > 0$ and $(-w_3)^{[2]} < 0$ (Lemma 3.1(i)), the image of the mapping $\mathbb{R} \ni t \mapsto \psi_t u$ would meet $V^2 \cap \mathbb{S} = \{v \in \mathbb{S} : v^{[2]} = 0\}$, which is invariant under ψ . By the closedness of the tangent cone we have $w_3 \in \mathcal{C}^N$, which contradicts Lemma 3.2.

Similarly, if $u \in V^2$ (notice that in such a case $u^{[3]} > 0$) then $\psi_{-t}u$ converges, as $t \to \infty$, to either w_2 or $-w_2$. The latter case is impossible, since as $u^{[3]} > 0$ and $(-w_2)^{[3]} < 0$ (Lemma 3.1(i)), the image of the mapping $\mathbb{R} \ni t \mapsto \psi_t u$ would meet $V^3 \cap \mathbb{S} = \{v \in \mathbb{S} : v^{[3]} = 0\}$, which is invariant under ψ . By the closedness of the tangent cone, $w_2 \in \mathcal{C}^N$, contradicting Lemma 3.2.

CASE II: $\lambda_1 = \lambda_2 > \lambda_3$. The set $\{w_3, -w_3\}$ is a repeller, with dual attractor $V^2 \cap \mathbb{S}$. If $u \notin V^2$ the proof goes along the lines of Case I.

On $V^2 \cap \mathbb{S}$, $\{e, -e\}$ is the set of equilibria, and for $u \in V^2$ we have $\psi_t u \to e$ or $\psi_{-t} u \to e$ as $t \to \infty$ (compare the proof of Lemma 2 in [11]). By the closedness of the tangent cone, $e \in \mathcal{C}$, which is impossible.

CASE III: $\lambda_1 > \lambda_2 = \lambda_3$. The flow ψ has a repeller, span $\{w_2, w_3\} \cap \mathbb{S}$, consisting of fixed points. Its dual attractor is $\{e, -e\}$.

We write u as $\alpha e + \beta \tilde{u}$, where \tilde{u} is a unit vector in span $\{w_2, w_3\}$ such that $\tilde{u}^{[2]} \geq 0$ and $\tilde{u}^{[3]} \geq 0$ (at least one of these components must be positive). Such a \tilde{u} is unique. Writing $\tilde{u} = \gamma w_2 + \delta w_3$ and observing that w_2 has sign pattern (+, 0, +) and w_3 has sign pattern (+, +, 0) (Lemma 3.1(i)) we have $\tilde{u}^{[1]} > 0$. The vector subspace $U := \text{span}\{e, \tilde{u}\}$ is invariant under A, hence $U \cap \mathbb{S}$ is invariant under ψ . The flow ψ restricted to $U \cap \mathbb{S}$ has repeller $\{\tilde{u}, -\tilde{u}\}$ with dual attractor $\{e, -e\}$. Consequently, $\psi_{-t}u \to \tilde{u}$ or $\psi_{-t}u \to -\tilde{u}$ as $t \to \infty$ (in fact, the former is the case, but we do not need it here). By Lemma 3.2 neither \tilde{u} nor $-\tilde{u}$ can belong to \mathcal{C} , a contradiction. CASE IV: $\lambda_1 = \lambda_2 = \lambda_3$. In this case we will investigate the action of e^{tA} on V rather than the action of ψ on S. The matrix of A can be written as

$$\begin{bmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$

with a < 0, b < 0 and c < 0. Consequently,

$$e^{tA}u = e^{at} \begin{bmatrix} 1 & bt & ct \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u^{[1]} \\ u^{[2]} \\ u^{[3]} \end{bmatrix} = e^{at} \begin{bmatrix} u^{[1]} + btu^{[2]} + ctu^{[3]} \\ u^{[2]} \\ u^{[3]} \end{bmatrix}.$$

As, by Lemma 3.2, $u^{[2]} \ge 0$ and $u^{[3]} \ge 0$, and by hypothesis, one of these components is positive (recall that $u \notin \operatorname{span} e$), one has $(e^{-tA}u)^{[1]} > 0$ for t sufficiently large, which contradicts Lemma 3.2.

It would be perhaps interesting to look at the action of ψ in the last case. There is a two-dimensional vector subspace $W = \text{span}\{e, \tilde{w}\}, \tilde{w} = (0, 1, -b/c)$, such that $W \cap \mathbb{S}$ consists of the fixed points for the flow ψ . For any $v \in \mathbb{S} \setminus W$ one finds that $\psi_t v$ converges to e (or -e) as $t \to \infty$ (and similarly as $t \to -\infty$, with changed sign).

4. Lotka–Volterra systems. Now we apply our Main Theorem to three-dimensional systems (S_3) of Lotka–Volterra type, that is, to systems

(4.1)
$$\dot{x}^{[i]} = b_i x^{[i]} \left(1 - \sum_{j=1}^3 a_{ij} x^{[j]} \right)$$

where $a_{ij} > 0$ and $b_i > 0$.

It is straightforward that for system (4.1),

$$y_1 = (1/a_{11}, 0, 0), \quad y_1 = (0, 1/a_{22}, 0), \quad y_1 = (0, 0, 1/a_{33}).$$

At y_i the internal eigenvalue equals $-b_i$, whereas the external eigenvalue in V^j is equal to $b_k(1 - a_{ki}/a_{ii})$, with $k \neq i$, $k \neq j$. As a consequence of the Main Theorem we obtain the following.

THEOREM 4.1. For system (4.1) the carrying simplex Σ has a peak singularity at y_i if and only if

$$a_{ii}(b_i + b_j) \le b_j a_{ji}$$

for both $j \neq i$.

REFERENCES

- E. Akin, The General Topology of Dynamical Systems, Grad. Stud. Math. 1, Amer. Math. Soc., Providence, RI, 1993.
- M. Benaïm, On invariant hypersurfaces of strongly monotone maps, J. Differential Equations 137 (1997), 302-319.
- P. Brunovský, Controlling nonuniqueness of local invariant manifolds, J. Reine Angew. Math. 446 (1994), 115–135.
- [4] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math. 38, Amer. Math. Soc., Providence, RI, 1978.
- [5] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs 25, Amer. Math. Soc., Providence, RI, 1988.
- [6] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity 1 (1988), 51–71.
- [7] M. W. Hirsch, C. C. Pugh and M. Shub, *Invariant Manifolds*, Lecture Notes in Math. 583, Springer, Berlin, 1977.
- [8] J. Mierczyński, The C¹ property of carrying simplices for a class of competitive systems of ODEs, J. Differential Equations 111 (1994), 385–409.
- [9] —, On smoothness of carrying simplices, Proc. Amer. Math. Soc. 127 (1999), 543– 551.
- [10] —, Smoothness of carrying simplices for three-dimensional competitive systems: A counterexample, Dynam. Contin. Discrete Impuls. Systems 6 (1999), 149–154.
- [11] —, Smoothness of unordered invariant curves for two-dimensional strongly competitive systems, Appl. Math. (Warsaw) 25 (1999), 449–455.
- [12] I. Tereščák, Dynamics of C^1 smooth strongly monotone discrete-time dynamical systems, preprint.
- [13] M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems 8 (1993), 189–217.

Institute of Mathematics Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland E-mail: mierczyn@banach.im.pwr.wroc.pl Web: http://www.im.pwr.wroc.pl/~mierczyn/

Received 8 March 1999