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Abstract. A necessary and sufficient condition is given for the carrying simplex of
a dissipative totally competitive system of three ordinary differential equations to have a
peak singularity at an axial equilibrium. For systems of Lotka–Volterra type that result
translates into a simple condition on the coefficients.

1. Introduction. An n-dimensional system of C1 ordinary differential
equations (ODEs)

(Sn) ẋ[i] = x[i]f [i](x),

where f = (f [1], . . . , f [n]) : K → Rn, K := {x = (x[1], . . . , x[n]) ∈ Rn :
x[i] ≥ 0 for i = 1, . . . , n} is called totally competitive if

∂f [i]

∂x[j]
(x) < 0

for all x ∈ K, i, j = 1, . . . , n. We write F = (F [1], . . . , F [n]) with F [i](x) =
x[i]f [i](x). The symbol DF (x) denotes the Jacobian matrix of the vector
field F at x ∈ K, DF (x) = [(∂F [i]/∂x[j])(x)]ni,j=1. Let K◦ stand for the

interior of K in Rn, K◦ = {x ∈ K : x[i] > 0 for all i = 1, . . . , n}.
We say that system (Sn) is dissipative if there is a compact invariant

set Γ ⊂ K attracting all bounded subsets of K. A compact invariant set
A ⊂ K is a repeller if α(B) ⊂ A for some neighborhood B of A in K.
(For the definitions of concepts from the theory of dynamical systems see
Hale [5].)

M. W. Hirsch proved in [6] the following result.

Theorem 1.1. Assume that (Sn) is a dissipative n-dimensional totally
competitive system of ODEs having {0} as a repeller. Then there exists a
compact invariant set Σ with the following properties:
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(i) Σ is homeomorphic via radial projection to the standard (n − 1)-
dimensional probability simplex {x ∈ K :

∑n
i=1 x

[i] = 1}.
(ii) For each v ∈ V with positive components the restriction Pv|Σ of the

orthogonal projection Pv along v is a Lipeomorphism onto its image.

(iii) For each x ∈ K \ {0}, ω(x) ⊂ Σ.

We call Σ the carrying simplex for (Sn) (after M. L. Zeeman [13]).

In the aforementioned paper Hirsch asked about smoothness of Σ. The
problem for Σ∩K◦ was considered by P. Brunovský [3], I. Tereščák [12] and
M. Benäım [2]. The present author in [8], [9] gave criteria for (the whole of)
Σ to be a neatly embedded C1 manifold-with-corners, whereas in [10] he
presented (for n = 3) an example of a carrying simplex which is not of class
C1 on a part of its boundary. On the other hand, for n = 2 the carrying
simplex is always a C1 manifold-with-boundary, diffeomorphic to the real
interval [0, 1] (Mierczyński [11]).

In this paper we investigate the situation (for the system (S3)) when at
some point the carrying simplex has a peak, which means that the tangent
cone of Σ is a halfline.

2. Preliminaries. We specialize to n = 3. For the remainder of the
paper the standing assumption is:

(S3) is a dissipative three-dimensional totally competitive system of ODEs
having {0} as a repeller.

The symbol V := {v = (v[1], v[2], v[3])} stands for the vector space of
all three-vectors, with the Euclidean norm ‖ · ‖. For I ⊂ {1, 2, 3} we write
V I := {v ∈ V : v[i] = 0 for i ∈ I}, and KI := {x ∈ K : x[i] = 0 for i ∈ I}.
We also use a dual notation: VI means V {1,2,3}\I . Denote the ith vector
of the standard basis of V by ei. Further, ΣI := Σ ∩KI , ΣI := Σ ∩KI ,
Σ◦ := Σ ∩K◦.

For a closed set A ⊂ R3 and x ∈ A, Cx(A) denotes the tangent cone of A
at x, Cx(A) := {αv : α ≥ 0, there is a sequence {xk} ⊂ A \ {x}, xk → x as
k → ∞, such that (xk − x)/‖xk − x‖ → v}. The cone Cx(A) is closed, and
if x is not isolated in A then Cx(A) 6= ∅.

For further reference we restate Hirsch’s result:

Theorem 2.1. There exists a compact invariant set Σ with the following
properties:

(a) Σ is homeomorphic via radial projection to the standard two-dimen-

sional probability simplex {x ∈ K :
∑3
i=1 x

[i] = 1}.
(b) For each v ∈ V with positive components the mapping Pv|Σ is a

Lipeomorphism onto its image.
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(c) Let v ∈ V i with v[j] > 0 for both j 6= i. Then the mapping Pv|Σ∩Ki

is a Lipeomorphism onto its image.

(d) For each x ∈ K \ {0}, ω(x) ⊂ Σ.

An equilibrium is called axial if only one of its coordinates is positive.
By Theorem 2.1(a) there are precisely three axial equilibria yi ∈ Ki, and
Σi = {yi}.

We say Σ has a peak singularity at y ∈ Σ if there is a nonzero vector
p ∈ V such that Cy(Σ) = {αp : α ≥ 0}.

Proposition 2.2. If Σ has a peak singularity at y then y is an axial
equilibrium.

P r o o f. Suppose first that y ∈ Σ◦, that is, all three coordinates of y
are positive. Denote by P the orthogonal projection along v = (1, 1, 1) on
S := {x ∈ R3 : x[1] + x[2] + x[3] = 0}. Theorem 2.1(b) states that P |Σ
is a Lipeomorphism (hence a homeomorphism) onto its image. Put L to
be a Lipschitz constant of the inverse (P |Σ)−1. The projection P takes
the set Σ ∩ K◦ onto the interior of PΣ in S. Consequently, the tangent
cone CPy(PΣ) is the (two-dimensional) tangent space of S at Py, that is,
CPy(PΣ) = {v ∈ V : v[1] + v[2] + v[3] = 0}.

Take a unit vector r ∈ CPy(PΣ). There is a sequence {xk}⊂Σ◦\{y} such
that limk→∞ xk = y and limk→∞(Pxk−Py)/‖Pxk−Py‖ = r. By choosing
a subsequence if necessary, we can assume limk→∞(xk − y)/‖xk − y‖ = q.
As the derivative of P at y is equal to P , one has Pq = βr. We claim that
β 6= 0. Indeed,

‖Pq‖ = lim
k→∞

∥∥∥∥P xk − y
‖xk − y‖

∥∥∥∥ = lim
k→∞

‖Pxk − Py‖
‖xk − y‖

≥ 1

L
.

We have thus proved that P takes Cy(Σ) onto CPy(PΣ). Therefore Cy(Σ)
contains two noncollinear vectors, so Σ cannot have a peak singularity at y.

Suppose now that only one of the coordinates of y is zero, say y ∈
Σ3 \ (Σ1 ∪ Σ2). Thm. 1 in Mierczyński [11] yields that Σ3 is a C1 one-
dimensional manifold-with-boundary containing y in its (manifold) interior
Σ3 \ (Σ1 ∪Σ2). Hence Cy(Σ3) ⊂ Cy(Σ3) is a one-dimensional vector space.
Therefore Σ does not have a peak singularity at y.

For an axial equilibrium yi the Jacobian matrix DF (yi) leaves both the
two-dimensional vector subspaces V j , j 6= i, as well as their one-dimensional
intersection Vi, invariant. As Vi = span ei, ei is an eigenvector of DF (yi).
Adapting the terminology from Mierczyński [9] we will call the eigenvalue
of DF (yi) corresponding to ei the internal eigenvalue at yi. By the external
eigenvalue at yi in Kj , j 6= i, we mean the (unique) eigenvalue of the quotient
linear mapping (DF (yi)|V j )/Vi. An eigenvector for DF (yi) belonging to an
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external eigenvalue is called an external eigenvector (such an eigenvector
need not exist, see Lemma 3.1(iii)).

We are now ready to formulate our principal result.

Main Theorem. The carrying simplex Σ has a peak singularity at an
axial equilibrium yi if and only if the internal eigenvalue at yi is larger than
or equal to the maximum external eigenvalue at yi. In that case, Cyi(Σ) =
{−αei : α ≥ 0}.

3. Proof of the Main Theorem. To streamline the argument and
limit the number of indices we assume in the present section that the axial
equilibrium under consideration is y = y1. Similarly, we write e = e1.

Lemma 3.1. (i) If the internal eigenvalue at y is larger than the external
eigenvalue at y in K3 [resp. in K2] then there is an external eigenvector in
V 3 [resp. in V 2] of the form (1, a2, 0) with a2 > 0 [resp. of the form (1, 0, a3)
with a3 > 0].

(ii) If the internal eigenvalue at y is smaller than the external eigenvalue
at y in K3 [resp. in K2] then there is an external eigenvector in V 3 [resp.
in V 2] of the form (1,−b2, 0) with b2 > 0 [resp. of the form (1, 0,−b3) with
b3 > 0].

(iii) If the internal eigenvalue at y is equal to the external eigenvalue at
y in K3 [resp. in K2] then there are no external eigenvectors in V 3 [resp.
in V 2].

P r o o f. It suffices to observe that the matrix of the restriction of DF (y)

to Kj , j = 2, 3, has the form
[
a b
0 c

]
with a < 0 and b < 0, and compute

eigenvectors (compare Lemma 2 in [11]).

3.1. Necessity. Suppose by way of contradiction that the internal eigen-
value at y is smaller than the external eigenvalue at y in, say, K3. By Mier-
czyński [11] , Σ3 = Σ∩K3 is a C1 one-dimensional manifold-with-boundary.
By the theory of invariant manifolds (see e.g. Hirsch, Pugh and Shub [7])
any locally invariant C1 one-dimensional submanifold passing through y is
tangent either to e or to another eigenvector of DF (y)|V 3 (not collinear with
e); moreover, in the former case the submanifold is locally unique. As K1

is an invariant one-dimensional submanifold tangent at y to e, Σ3 cannot
be locally equal to it, since otherwise the radial projection of Σ would not
be injective (Theorem 2.1(a)). Consequently, Σ3 is tangent at y to the vec-
tor (1,−b2, 0) with nonzero second component (by Lemma 3.1(ii)). Hence
Cy(Σ) ⊃ Cy(Σ3) contains (1,−b2, 0). On the other hand, any vector in
Cy(Σ3) ⊂ Cy(Σ) has zero second component (and Cy(Σ3) 6= {0}). There-
fore Cy(Σ) contains two noncollinear vectors, so Σ does not have a peak
singularity at y.
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3.2. Sufficiency. Put C := Cy(Σ). We write A for the linear operator
DF (y). In the standard basis, A has the matrix d11 d12 d13

0 d22 0
0 0 d33


with

d11 = y[1]
∂f [1]

∂x[1]
(y) < 0, d12 = y[1]

∂f [1]

∂x[2]
(y) < 0, d13 = y[1]

∂f [1]

∂x[3]
(y) < 0,

d22 = f [2](y), d33 = f [3](y).

We will prove sufficiency by carefully analyzing the action of the group
{etA}t∈R on the tangent cone C.

As y ∈ Σ is an equilibrium andΣ is invariant, each of the linear operators
etA leaves C invariant.

Put CN := C ∩ S, where S := {v ∈ V : ‖v‖ = 1} is the unit sphere in V .
For t ∈ R define the mapping ψt : S→ S as

ψtv :=
etAv

‖etAv‖
.

The family ψ = {ψt}t∈R is the solution flow of the system of ODEs

v̇ = Av − 〈Av, v〉v,
where 〈·, ·〉 denotes the standard inner product on R3. The flow ψ leaves CN
invariant.

Lemma 3.2. For any nonzero v ∈ C we have v[1] < 0, v[2] ≥ 0, v[3] ≥ 0.

P r o o f. The last two inequalities follow by the definition of C and the
fact that (x− y)[2] ≥ 0 and (x− y)[3] ≥ 0 for any x ∈ K. Suppose first that
there is v ∈ C with v[1] > 0. As a consequence of the definition of C there is a
point x ∈ Σ such that x[1] > y[1], x[2] ≥ y[2] and x[3] ≥ y[3]. If x[2] > y[2] and
x[3] > y[3] then the restriction Px−y|Σ of the orthogonal projection along
x − y is not injective, which contradicts Theorem 2.1(b). If x[2] > y[2] and
x[3] = y[3] then x ∈ Σ3 ⊂ K3 and Px−y|Σ3 is not injective, which is in
contradiction with Theorem 2.1(c). The case x[2] = y[2] and x[3] > y[3] is
treated in an analogous way. If x[2] = y[2] and x[3] = y[3] then y ∈ Σ1 and
the radial projection of Σ is not injective, contrary to Theorem 2.1(a).

Suppose now that there is a nonzero v ∈ C with v[1] = 0. Then at least
one of the remaining components of v is positive. We have

d

dt
(etAv)[1]

∣∣∣∣
t=0

= (Av)[1] = d12v
[2] + d13v

[3] < 0,

from which it follows that (e−tAv)[1] > 0 for t > 0 sufficiently close to 0. As
e−tAv ∈ C for all t ∈ R, this is in contradiction to the above paragraph.
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Denote by λ1 the internal eigenvalue at v, and by λ2 [resp. λ3] the exter-
nal eigenvalue at v in K2 [resp. in K3]. The symbol wj , j = 2, 3, stands for
the unit external eigenvector corresponding to λj (provided it exists) having
positive first component.

Suppose that u ∈ CN \ span e. The idea of the proof is to find a vector
in C with first component positive, contradicting Lemma 3.2.

We consider four cases (up to relabeling).

Case I: λ1 > λ2 > λ3. For the flow ψ the set {w3,−w3} is a repeller,
its dual attractor being V 2 ∩ S. The flow ψ restricted to V 2 ∩ S has re-
peller {w2,−w2} with {e,−e} as its dual attractor (for those concepts see
Conley [4] or Akin [1]).

Therefore, if u 6∈ V 2 (notice that in such a case u[2] > 0) then ψ−tu
converges, as t → ∞, to either w3 or −w3. The latter case is impossible,
since as u[2] > 0 and (−w3)[2] < 0 (Lemma 3.1(i)), the image of the mapping
R 3 t 7→ ψtu would meet V 2 ∩ S = {v ∈ S : v[2] = 0}, which is invariant
under ψ. By the closedness of the tangent cone we have w3 ∈ CN, which
contradicts Lemma 3.2.

Similarly, if u ∈ V 2 (notice that in such a case u[3] > 0) then ψ−tu
converges, as t → ∞, to either w2 or −w2. The latter case is impossible,
since as u[3] > 0 and (−w2)[3] < 0 (Lemma 3.1(i)), the image of the mapping
R 3 t 7→ ψtu would meet V 3 ∩ S = {v ∈ S : v[3] = 0}, which is invariant
under ψ. By the closedness of the tangent cone, w2 ∈ CN, contradicting
Lemma 3.2.

Case II: λ1 = λ2 > λ3. The set {w3,−w3} is a repeller, with dual
attractor V 2 ∩ S. If u 6∈ V 2 the proof goes along the lines of Case I.

On V 2 ∩ S, {e,−e} is the set of equilibria, and for u ∈ V 2 we have
ψtu → e or ψ−tu → e as t → ∞ (compare the proof of Lemma 2 in [11]).
By the closedness of the tangent cone, e ∈ C, which is impossible.

Case III: λ1 > λ2 = λ3. The flow ψ has a repeller, span{w2, w3} ∩ S,
consisting of fixed points. Its dual attractor is {e,−e}.

We write u as αe+βũ, where ũ is a unit vector in span{w2, w3} such that
ũ[2] ≥ 0 and ũ[3] ≥ 0 (at least one of these components must be positive).
Such a ũ is unique. Writing ũ = γw2 + δw3 and observing that w2 has
sign pattern (+, 0,+) and w3 has sign pattern (+,+, 0) (Lemma 3.1(i)) we
have ũ[1] > 0. The vector subspace U := span{e, ũ} is invariant under A,
hence U ∩S is invariant under ψ. The flow ψ restricted to U ∩S has repeller
{ũ,−ũ} with dual attractor {e,−e}. Consequently, ψ−tu→ ũ or ψ−tu→−ũ
as t → ∞ (in fact, the former is the case, but we do not need it here). By
Lemma 3.2 neither ũ nor −ũ can belong to C, a contradiction.
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Case IV: λ1 = λ2 = λ3. In this case we will investigate the action of etA

on V rather than the action of ψ on S. The matrix of A can be written as a b c
0 a 0
0 0 a


with a < 0, b < 0 and c < 0. Consequently,

etAu = eat

 1 bt ct
0 1 0
0 0 1

u[1]u[2]

u[3]

 = eat

u[1] + btu[2] + ctu[3]

u[2]

u[3]

 .
As, by Lemma 3.2, u[2] ≥ 0 and u[3] ≥ 0, and by hypothesis, one of these
components is positive (recall that u 6∈ span e), one has (e−tAu)[1] > 0 for t
sufficiently large, which contradicts Lemma 3.2.

It would be perhaps interesting to look at the action of ψ in the last
case. There is a two-dimensional vector subspace W = span{e, w̃}, w̃ =
(0, 1,−b/c), such that W ∩ S consists of the fixed points for the flow ψ. For
any v ∈ S \W one finds that ψtv converges to e (or −e) as t → ∞ (and
similarly as t→ −∞, with changed sign).

4. Lotka–Volterra systems. Now we apply our Main Theorem to
three-dimensional systems (S3) of Lotka–Volterra type, that is, to systems

(4.1) ẋ[i] = bix
[i]
(

1−
3∑
j=1

aijx
[j]
)

where aij > 0 and bi > 0.

It is straightforward that for system (4.1),

y1 = (1/a11, 0, 0), y1 = (0, 1/a22, 0), y1 = (0, 0, 1/a33).

At yi the internal eigenvalue equals −bi, whereas the external eigenvalue in
V j is equal to bk(1 − aki/aii), with k 6= i, k 6= j. As a consequence of the
Main Theorem we obtain the following.

Theorem 4.1. For system (4.1) the carrying simplex Σ has a peak sin-
gularity at yi if and only if

aii(bi + bj) ≤ bjaji

for both j 6= i.
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