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1. Introduction and statement of results. The circle number π was
already investigated by the ancients (particularly by Greeks like Archime-
des), and everyone knows that the old problem of squaring the circle was
answered in the negative by C. L. F. von Lindemann in 1882 [10], [15].
He proved that π is transcendental; 9 years before, Ch. Hermite [9] was
the first to demonstrate the transcendence of e (see also [15]). Up till now
we know much about e and π, but nevertheless there are still a lot of un-
solved problems concerning these numbers. For instance, it follows from
the famous theorem of A. O. Gelfond and T. Schneider [14] (Satz 14) that

eπ = (−1)
−i

(i2 = −1) is transcendental, but nobody knows whether the
numbers π+ e and πe are transcendental. Since both the roots of the poly-
nomial x2 − (π + e)x + πe = (x − π)(x − e) are transcendental, it is clear
that π + e and πe cannot both be algebraic.

In the theory of diophantine approximations much work has been done
to investigate rational approximations to π. Lower bounds of the form∣∣∣∣π − p

q

∣∣∣∣ > 1

qα
(p, q ∈ Z, q > 0 sufficiently large)

are known, where α = 42 (K. Mahler) [11], [14] (p. 109), α = 13.398
(M. Hata) [7], [8]. The crux is that the continued fraction expansion of π,

π = 〈3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, . . .〉,
seems not to satisfy any algebraic rule. But it is a well-known fact from the
theory of continued fractions (see e.g. [13]) that

(1.1) e = 〈2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .〉 = 〈2; 1, 2k, 1〉k≥1 =: 〈c0; c1, c2, . . .〉.
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The continued fraction expansions of e and of some related numbers
have fascinated many mathematicians before. For instance, the expansion
of (m/n)e1/q was investigated by K. R. Matthews and R. F. C. Walters [12],
and H. Alzer [1] found sharp upper and lower bounds for |e− p/q|. Let

pn
qn

:= 〈c0; c1, c2, . . . , cn〉 (n = 0, 1, . . .)

denote the convergents of e with positive coprime integers pn and qn. Then∣∣∣∣e− p3k+1

q3k+1

∣∣∣∣ < 1

c3k+2q23k+1

=
1

2(k + 1)q23k+1

(k = 0, 1, . . .),(1.2) ∣∣∣∣e− pn
qn

∣∣∣∣ > 1

(2 + cn+1)q2n
=

1

3q2n
(n ≥ 0, n ≡ 0, 2 mod 3).(1.3)

Put

Pk := p3k+1, Qk := q3k+1 (k = 0, 1, 2, . . .);

(1.4) P0 := 3, P−1 := 1, P−2 := 1, Q0 := 1, Q−1 := 1, Q−2 := −1;

P−k := Pk−3, Q−k := −Qk−3 (k = 3, 4, 5, . . .).

In this paper we investigate the sequences (Pn) and (Qn) (n ∈ Z) defined
by (1.4). In view of (1.2) we may regard Pn/Qn for n ≥ 0 as the “best
rational approximations” to Euler’s number e. We have

(Pn)n∈Z = (. . . , 193, 19, 3, 1, 1, P0 = 3, 19, 193, 2721, . . .),

(Qn)n∈Z = (. . . ,−71,−7,−1,−1, 1, Q0 = 1, 7, 71, 1001, . . .).

In the theorems and corollaries below we collect together some surprising
arithmetical properties of these sequences of integers.

Theorem 1.1. For every integer n we have

Pn+2 = 2(2n+ 5)Pn+1 + Pn, Qn+2 = 2(2n+ 5)Qn+1 +Qn.

Corollary 1.1. For every integer n we have

Pn−1Qn − PnQn−1 = (−1)
n+1

2, Pn−2Qn − PnQn−2 = (−1)
n
4(2n+ 1).

Corollary 1.2.

e =
3

1 +
2

19 +
3

10 +
1

14 +
1

18 + . . .
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The partial quotients of this continued fraction are exactly the rationals
Pn/Qn (n = 0, 1, . . .). This corollary is just a special instance of a result
of O. Perron according to which the set of numbers such that the partial
quotients are finite unions of arithmetic progressions is stable under

x 7→ αx+ β

γx+ δ
,

where α, β, γ, δ ∈ Z.
Moreover, it follows from Corollary 1.2 that

3− e
7e− 19

= 〈10; 14, 18, 22, . . .〉 = 〈4k + 2〉k=2,3,...,

or
e+ 1

e− 1
= 〈4k + 2〉k=0,1,....

This expansion of (e+ 1)/(e− 1) was already known to L. Euler (see [5]).

Theorem 1.2. For every integer r ≥ 0 we have
r∑
t=0

PtQr−t
t!(r − t)!

= (r + 1)(2r + 3)4r.

Corollary 1.3. For every prime p > 2 we have
p∑
t=0

PtQp−t
t!(p− t)!

≡ 12 mod p,

in particular the left-hand side of the congruence represents an integer.

We denote by ‖α‖ the distance of a real number α to the nearest integer.
From (1.2) it can easily be seen that

lim inf
q≥1

q‖qe‖ = 0,

where q runs through all positive integers. But much more is true:

Theorem 1.3. Let a and s be arbitrary positive integers. Then

lim inf
q≥1

q≡amod s

q‖qe‖ = 0.

A famous result of S. Uchiyama [16] states that for every real irrational
α, any integers a, b and s > 0 there are infinitely many pairs u and v 6= 0
of integers such that

(1.5)

∣∣∣∣α− u

v

∣∣∣∣ < s2

4v2

and

u ≡ a mod s, v ≡ b mod s,
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provided that a and b are not both divisible by s. In 1949, S. Hartman [6] was
the first to introduce such congruence conditions. He proved a correspond-
ing result with 2s2/v2 instead of s2/(4v2) on the right-hand side of (1.5).
Recently, the author [4] has shown that the factor 1/4 on the right-hand
side of (1.5) is best possible in general.

Let k ≥ 1 and (b1, . . . , bk) be a k-tuple of integers (1). For some integer
s ≥ 1 we write

(b1, . . . , bk) mod s

to denote the k-tuple (b1, . . . , bk) with bi ≡ bi mod s and 0 ≤ bi < s for
i = 1, . . . , k.

Theorem 1.4. For every integer s > 2 the sequence ((Pn, Qn) mod s)
(n ∈ Z) is periodic, and

|{(Pn, Qn) mod s : n ∈ Z}| ≤
{

1 + s if s 6≡ 0 mod 8,
s/2 if s ≡ 0 mod 8,

and for every integer s ≥ 2 one has Pn ≡ Qn ≡ 1 mod s for infinitely
many n.

Some general results concerning approximation of real irrationals by ra-
tionals u/v with u ≡ v mod s can be found in [2] and [3]. Theorem 1.4 may
be regarded as the main theorem of this paper. Its proof yields the following

Theorem 1.5. For every integer n > 0 we have

Qn ≡


(−1)n mod n,
(−1)n+1 mod n+ 1,
(−1)n+1 mod n+ 2,
(−1)n mod n+ 3,

Pn ≡


3 mod n,
1 mod n+ 1,
1 mod n+ 2,
3 mod n+ 3.

2. Proof of Theorems 1.1, 1.2 and of their corollaries

Proof of Theorem 1.1. It suffices to deduce the recurrence formula for
the sequence (Qn) (n ∈ Z), since the arguments for (Pn) (n ∈ Z) are the
same. First one gets, using (1.1),

q3n−1 = 2nq3n−2 + q3n−3 (n ≥ 1),

q3n = q3n−1 + q3n−2 (n ≥ 1),(2.1)

q3n+1 = q3n + q3n−1 (n ≥ 0).

(1) In this paper the usual notation for the greatest common divisor of some integers
does not appear.
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By induction, it can easily be seen that

q3n−1 ≤ (2n)! (n ≥ 3),

q3n ≤ (2n)! (n ≥ 3),

q3n+1 ≤ (2n)! (n ≥ 4).

These inequalities imply the convergence of the generating functions

F (x) :=

∞∑
n=1

q3n−1
(2n)!

x2n, G(x) :=

∞∑
n=0

q3n+1

(2n+ 1)!
x2n+1,

H(x) :=

∞∑
n=0

q3n
(2n+ 2)!

x2n+2

at least for |x| < 1. Applying (2.1) again, we get a system of differential
equations for the functions F , G and H:

F = xG+H, G′ = F +H ′′, H ′′′ = F ′ +G.

The first equation yields H ′′ = F ′′−2G′−xG′′ and H ′′′ = F ′′′−3G′′−xG′′′.
Putting the expressions for H ′′ and H ′′′ into the second and third equations,
one gets

(2.2) F ′′ + F = xG′′ + 3G′

and

(2.3) F ′′′ − F ′ = xG′′′ + 3G′′ +G.

From (2.3) we subtract the derivative of (2.2); this gives F ′ = G′′/2−G/2,
F ′′′ = G(4)/2−G′′/2, and finally, by (2.3),

(2.4) G(4) − 2xG′′′ − 8G′′ −G = 0.

Putting in the series of G and standard arguments yield

q3n+7

(2n+ 1)!
− 2q3n+4

(2n)!
− 8q3n+4

(2n+ 1)!
− q3n+1

(2n+ 1)!
= 0 (n ≥ 0),

respectively

q3(n+2)+1 = (4n+ 10)q3(n+1)+1 + q3n+1 (n ≥ 0).

Using the notation introduced in (1.4), we have

Qn+2 = 2(2n+ 5)Qn+1 +Qn (n ≥ 0).

The recurrence formula also holds for n < 0. This follows from the defi-
nition of the sequence (Qn) (n ∈ Z) in (1.4), and the assertion is proved.

The identities of Corollary 1.1 follow from Theorem 1.1 by induction.
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Proof of Corollary 1.2. Let

a0 := 0, an := Pn−1 (n ≥ 1),

b0 := 2/3, bn := Qn−1 (n ≥ 1),

B1 := 19/3, Bn := 4n+ 2 (n > 1).

Then Theorem 1.1 implies for n ≥ 1 the identities

an+1 −Bnan − an−1 = 0, bn+1 −Bnbn − bn−1 = 0.

Hence,

an+1

bn+1
=
Bnan + an−1
Bnbn + bn−1

=
a1

b1 +
2

3

1

B1 +
1

B2 +
1

. . .+
1

Bn

(n ≥ 1).

The assertion of the corollary follows from

an+1

bn+1
=
Pn
Qn
→ e (n→∞).

From the proof of Theorem 1.1 we know that Qn = q3n+1 ≤ (2n)! for n ≥ 4.
Using the recurrence formula itself from Theorem 1.1, one gets the sharper
bound

Qn ≤ 4n(n+ 1)! (n ≥ 0),

which is easily proved by induction. From (1.2) it follows at once that

Pn ≤ 3 · 4n(n+ 1)! (n ≥ 0).

Hence, the generating functions

(2.5) J(x) :=

∞∑
n=0

Qn
n!
xn and K(x) :=

∞∑
n=0

Pn
n!
xn

both exist at least for |x| < 1/4.

Lemma 2.1. The functions J(x) and K(x) are both solutions of the dif-
ferential equation

(4x− 1)y′′ + 10y′ + y = 0 (|x| < 1/4).

P r o o f. Note that

J ′′ = Q2 +
∞∑
n=1

Qn+2

n!
xn, J ′ = Q1 +

∞∑
n=1

Qn+1

n!
xn,

xJ ′′ =

∞∑
n=1

nQn+1

n!
xn
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and Qn+2 = 4nQn+1 + 10Qn+1 +Qn (n ≥ 1). One gets

J ′′ −Q2 = 4xJ ′′ + 10(J ′ −Q1) + (J −Q0),

from which the assertion for J(x) follows since Q2 − 10Q1 −Q0 = 0.

Lemma 2.2. For |x| < 1/4 we have

J(x) =

(
2√

(1− 4x)
3
− 1

1− 4x

)
e−1/2+

√
1−4x/2,

K(x) =

(
2√

(1− 4x)
3

+
1

1− 4x

)
e1/2−

√
1−4x/2.

P r o o f. By straightforward computations it can easily be seen that both
of the functions on the right-hand side satisfy the differential equation from
the preceding lemma. Then the identities follow from

J(0) = Q0 = 1, J ′(0) = Q1 = 7,

K(0) = P0 = 3, K ′(0) = P1 = 19.

Proof of Theorem 1.2. Cauchy’s product formula and Lemma 2.2 yield,
for any real number |x| < 1/4,

∞∑
r=0

( r∑
t=0

PtQr−t
t!(r − t)!

)
xr = J(x)K(x)

=
4

(1− 4x)
3 −

1

(1− 4x)
2 =

∞∑
r=0

{
4

(
2 + r

r

)
−
(

1 + r

r

)}
(4x)

r
,

which gives the result.

3. Proof of the remaining results. First, Theorems 1.4 and 1.5 are
proved. The assertion of Theorem 1.5 holds for n = 1, 2, 3, 4.

Case 1: Let n ≥ 5 be some odd integer. Put

(3.1)
N :=

n− 3

2
,

am := 4(N +m− 2) + 10 ≡ 4m− 4 mod n (m ∈ Z).

The arguments of Case 1 are based on the important congruence

(3.2) QN+k ≡ QN−k mod n (k ≥ 0).

There is nothing to prove for k = 0. Let k ≥ 1 and assume (3.2) to be
proved for 1, . . . , k − 1. Applying k times the recurrence formula for Qn+2

from Theorem 1.1, one gets

(3.3) QN+k =
k−1∑
ν=0

ak−2νQN+k−(2ν+1) +QN−k =: Sk +QN−k.
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Let k be even. Then

Sk =
( k/2−1∑

ν=0

+

k−1∑
ν=k/2

)
ak−2νQN+k−(2ν+1)

=

k/2−1∑
ν=0

(ak−2νQN+k−2ν−1 + a−k+2ν+2QN−k+2ν+1).

In this formula, the indices satisfy 1 ≤ k−2ν−1 ≤ k−1; hence the induction
hypothesis may be applied. It follows that

Sk ≡
k/2−1∑
ν=0

(ak−2ν + a−k+2ν+2)QN+k−2ν−1

(3.1)

≡
k/2−1∑
ν=0

(4(k − 2ν)− 4 + 4(−k + 2ν + 2)− 4)QN+k−2ν−1

= 0 mod n,

and we conclude QN+k ≡ QN−k mod n from (3.3). It remains to consider
the case where k is some odd integer. Clearly, S1 = a1QN ≡ 0 mod n by
(3.1). Let k ≥ 3. Then

Sk =
( (k−3)/2∑

ν=0

+

k−1∑
ν=(k+1)/2

)
ak−2νQN+k−2ν−1 + a1QN

≡
(k−3)/2∑
ν=0

(ak−2ν + a−k+2ν+2)QN+k−2ν−1 mod n.

Since 2 ≤ k− 2ν− 1 ≤ k− 1, the last congruence follows from the induction
hypothesis. Again, we get QN+k ≡ QN−k mod n, and (3.2) is proved.

In what follows we take special values for k in (3.2):

k = (n+ 3)/2 : N + k = n, N − k = −3;

Qn ≡ Q−3 = −1 mod n (n ≥ 5, odd).

k = (n+ 1)/2 : N + k = n− 1, N − k = −2;

Qn−1 ≡ Q−2 = −1 mod n (n ≥ 5, odd),

or Qn ≡ −1 mod n+ 1 (n ≥ 4, even).

k = (n− 1)/2 : N + k = n− 2, N − k = −1;

Qn−2 ≡ Q−1 = 1 mod n (n ≥ 5, odd),

or Qn ≡ 1 mod n+ 2 (n ≥ 3, odd).

k = (n− 3)/2 : N + k = n− 3, N − k = 0;

Qn−3 ≡ Q0 = 1 mod n (n ≥ 5, odd),

or Qn ≡ 1 mod n+ 3 (n ≥ 2, even).
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From Theorem 1.1 one also gets

(3.4) PN+k ≡ PN−k mod n (k ≥ 0),

which implies
Pn ≡ 3 mod n (n ≥ 5, odd),

Pn ≡ 1 mod n+ 1 (n ≥ 4, even),

Pn ≡ 1 mod n+ 2 (n ≥ 3, odd),

Pn ≡ 3 mod n+ 3 (n ≥ 2, even).

Hence, half of the assertions of Theorem 1.5 are proved.
Now consider the sequence

(3.5) Wm := (Qm, Qm−1, Pm, Pm−1) mod s (m ∈ Z),

where s > 2 denotes some odd integer. We already know that

(3.6) Ws ≡ (−1,−1, 3, 1) ≡ (−Q0,−Q−1, P0, P−1) mod s

holds for odd integers s ≥ 3. Hence, from the recurrence formulas in Theo-
rem 1.1 it can easily be seen that

(3.7) W2s ≡ (Q0, Q−1, P0, P−1) mod s,

which implies

(3.8) Wm+2s ≡Wm mod s

for all integers m and every odd integer s ≥ 3. We consider the following 2s
successive elements of the sequence (Wm) (m ∈ Z):

Wni , where n1 := −s+ 1

2
, n2 := −s− 1

2
, . . . , ns :=

s− 3

2︸ ︷︷ ︸
sectionA: s elements

;

ns+1 :=
s− 1

2
, . . . , n2s :=

3s− 3

2︸ ︷︷ ︸
sectionB: s elements

.

From (3.2) and (3.4) we conclude that the congruence

Wns = (Qns , Qns−1, Pns , Pns−1) ≡ (Qns , Qns+1, Pns , Pns+1)

holds for Wns from section A, whereas we have

Wns+1 = (Qns+1, Qns , Pns+1, Pns)

for Wns+1 from section B. Similarly, we have

Wns−1 = (Qns−1, Qns−2, Pns−1, Pns−2) ≡ (Qns+1, Qns+2, Pns+1, Pns+2)

and Wns+2 = (Qns+2, Qns+1, Pns+2, Pns+1);

. . .

Wn1
= (Qn1

, Qn1−1, Pn1
, Pn1−1) ≡ (Qn2s−1, Qn2s

, Pn2s−1, Pn2s
)

and Wn2s
= (Qn2s

, Qn2s−1, Pn2s
, Pn2s−1),
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where all the congruences hold modulo s. Collecting together pairs (Pj , Qj)
mod s from every quadruplet Wni , we get two such pairs from Wn1

at the
beginning, namely (Pn1

, Qn1
) mod s and (Pn1−1, Qn1−1) mod s. Proceeding

from Wni to Wni+1, we find at most one new pair (Pni+1, Qni+1) mod s of
residue classes modulo s. As was shown, there is a one-to-one correspon-
dence between pairs from quadruplets belonging to section A to those from
quadruplets of section B. By (3.8), it follows that for every odd integer s ≥ 3,

(3.9) |{(Pm, Qm) mod s : m ∈ Z}| ≤ 2 + (s− 1) = s+ 1.

Example (s = 3).

{(Pm, Qm) mod 3 : m ∈ Z} = {(0, 1), (0, 2), (1, 1), (1, 2) mod 3}.

Case 2: n ≥ 4, even.

Case 2.1: n ≡ 2 mod 4; n = 2u, where u ≥ 3 (odd). From (3.5)–(3.7) in
the preceding case we conclude that

(3.10) Qm+2u ≡ Qm mod u and Pm+u ≡ Pm mod u

hold for every integer m. Since n = 2u, one gets the congruences

(3.11)

Qn ≡ Q0 = 1, Pn ≡ P0 = 3,

Qn−1 ≡ Q−1 = 1, Pn−1 ≡ P−1 = 1,

Qn−2 ≡ Q−2 = −1, Pn−2 ≡ P−2 = 1,

Qn−3 ≡ Q−3 = −1, Pn−3 ≡ P−3 = 3

for the modulus u. It can easily be seen by (1.4) that all the integers Pm
and Qm are odd; hence the congruences in (3.11) also hold modulo 2. Since
2 and u are coprime, the modulus in (3.11) may be taken to be n = 2u. By
the substitutions n → n + 1, n + 2, n + 3 (see the corresponding argument
in Case 1) we have thus proved Theorem 1.5 in the following cases: the first
congruences for n ≡ 2 and 6 mod 8, the second ones for n ≡ 1 and 5 mod 8,
the third ones for n ≡ 0 and 4 mod 8, the fourth ones for n ≡ 3 and 7 mod 8.
Moreover, the congruences (3.10) may be considered with respect to the
modulus n, and writing s for n, we conclude that

(3.12) Wm+s ≡Wm mod s

holds for all integers m and every even integer s ≥ 2, s ≡ 2 mod 4.

Case 2.2: n ≡ 0 mod 4; n = 2αu, where α ≥ 2, u ≥ 1 (odd). Again we
may assume the modulus u in (3.11) (see Case 2.1). Therefore it suffices to
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show that

(3.13)

Qn ≡ 1, Pn ≡ 3,

Qn−1 ≡ 1, Pn−1 ≡ 1,

Qn−2 ≡ −1, Pn−2 ≡ 1,

Qn−3 ≡ −1, Pn−3 ≡ 3

hold modulo 2α.

Case 2.2.1: α = 2. Theorem 1.1 implies Qm+2 ≡ 2Qm+1 + Qm mod 4
and Pm+2 ≡ 2Pm+1 + Pm mod 4. It follows that

Qm+4 ≡ Qm mod 4, Pm+4 ≡ Pm mod 4 (m ∈ Z),

and thus (3.13) holds modulo 4 (since n ≡ 0 mod 4). Hence Theorem 1.5
is true for: n ≡ 4 mod 8 (first congruences), n ≡ 3 mod 8 (second congru-
ences), n ≡ 2 mod 8 (third congruences), n ≡ 1 mod 8 (fourth congruences).
Moreover,

(3.14) Wm+s ≡Wm mod s

is true for all integers m and every positive integer s ≡ 4 mod 8.

Case 2.2.2: α>2. The basic idea in this case arises from the congruences

(3.15)
Q2α−1−1 ≡ 1 mod 2α, Q2α−1 ≡ 1 mod 2α,

P2α−1−1 ≡ 1 mod 2α, P2α−1 ≡ 3 mod 2α.

The proof by induction begins with the observation that

Q3 = 1001 ≡ 1 mod 8, Q4 = 18089 ≡ 1 mod 8,

P3 = 2721 ≡ 1 mod 8, P4 = 49171 ≡ 3 mod 8.

Let α ≥ 4 and assume the assertion to be true for α−1. It suffices to explain
the arguments for the Q’s. By the induction hypothesis, there are integers
g1 and g2 such that

(3.16) Q2α−2−1 = 1 + g12α−1 and Q2α−2 = 1 + g22α−1.

In what follows the 2α−2 integers Q2α−2+1, Q2α−2+2, . . . , Q2α−1 are consid-
ered modulo 2α. Theorem 1.1 yields

Q2α−2+1 = (4(2α−2 − 1) + 10)Q2α−2 +Q2α−2−1

≡ 6Q2α−2 +Q2α−2−1 = 7 + 6g22α−1 + g12α−1

≡ Q1 + g12α−1 mod 2α,

and similarly, mod 2α,

Q2α−2+2 ≡ Q2 + g22α−1, Q2α−1−1 ≡ Q2α−2−1 + g12α−1,

Q2α−2+3 ≡ Q3 + g12α−1, Q2α−1 ≡ Q2α−2 + g22α−1.

Q2α−2+4 ≡ Q4 + g22α−1, . . .
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Putting the representations of Q2α−2−1 resp. Q2α−2 from (3.16) into the last
two congruences proves the assertion for the Q’s in (3.15).

Repeating the arguments, it can be seen that both the sequences ((Qm)
mod 2α) and ((Pm) mod 2α) (m ∈ Z) are periodic, and 2α−1 successive
numbers Q resp. P represent a period.

Since n = 2αu is divisible by 2α−1, we have, mod 2α,

Qn ≡ Q0 = 1, Qn−2 ≡ Q−2 = −1,

Qn−1 ≡ Q−1 = 1, Qn−3 ≡ Q−3 = −1.

This proves (3.13), and similar arguments for the P ’s prove Theorem 1.5
upon verifying all the remaining cases: the first congruences for n ≡ 0 mod 8,
the second ones for n ≡ 7 mod 8, the third ones for n ≡ 6 mod 8, the fourth
ones for n ≡ 5 mod 8. Additionally, (3.11) and the arguments from Case 1
are used.

To complete the proof of Theorem 1.4, we finally investigate the sequence
(Wm) (m ∈ Z) for the modulus s = 2αu, where α ≥ 3 and u ≡ 1 mod 2.

We have

(3.17) Wm+s/2 ≡Wm mod s (m ∈ Z).

Proof of (3.17). For u = 1, the assertion follows from s/2 = 2α−1 and
the result of Case 2.2.2.

If u > 1, then by (3.10), 2u successive elements of (Wm) mod u represent
a period. Moreover, 2α−1 successive elements of (Wm) mod 2α also represent
a period. From 2u | (s/2) and 2α−1 | (s/2) the assertion of (3.17) follows.

Collecting together (3.9), (3.12), (3.14) and (3.17), and counting pairs
(Pm, Qm) mod s as demonstrated in the proof of (3.9), we finish the proof
of Theorem 1.4.

Proof of Theorem 1.3. We know from Theorem 1.4 that there are in-
finitely many integers m ≥ 0 such that

(3.18) Qm ≡ 1 mod s

for every integer s ≥ 2. For s = 1 the assertion of Theorem 1.3 follows
directly from (1.2). So we may assume that s ≥ 2. Let a > 0 denote some
integer. For every integer m > 0 satisfying (3.18) put

Am := aPm, Bm := aQm.

Then Bm ≡ a mod s, and also∣∣∣∣e− Am
Bm

∣∣∣∣ =

∣∣∣∣e− Pm
Qm

∣∣∣∣ (1.2)

<

1

2(m+ 1)Q2
m

=
a2

2(m+ 1)B2
m

.

Hence for m→∞ the assertion follows from

0 < Bm|eBm −Am| <
a2

2(m+ 1)
→ 0.
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