ArticleOriginal scientific text

Title

Flat semilattices

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
  2. C.N.R.S., Université de Caen, Campus II, Département de Mathématiques, B.P. 5186, 14032 Caen Cedex, France

Keywords

antitone, lattice, flat, semilattice, tensor product

Bibliography

  1. J. Anderson and N. Kimura, The tensor product of semilattices, Semigroup Forum 16 (1978), 83-88.
  2. G. Fraser, The tensor product of semilattices, Algebra Universalis 8 (1978), 1-3.
  3. K. R. Goodearl and F. Wehrung, Representations of distributive semilattices by dimension groups, regular rings, C-algebras, and complemented modular lattices, submitted for publication, 1997.
  4. G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, Basel, 1998.
  5. G. Grätzer, H. Lakser and R. W. Quackenbush, The structure of tensor products of semilattices with zero, Trans. Amer. Math. Soc. 267 (1981), 503-515.
  6. G. Grätzer and F. Wehrung, Tensor products of semilattices with zero, revisited, J. Pure Appl. Algebra, to appear.
  7. G. Grätzer and F. Wehrung, Tensor products and transferability of semilattices, submitted for publication, 1998.
  8. P. Pudlák, On congruence lattices of lattices, Algebra Universalis 20 (1985), 96-114.
  9. R. W. Quackenbush, Non-modular varieties of semimodular lattices with a spanning M3, Discrete Math. 53 (1985), 193-205.
  10. E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20.
Pages:
185-191
Main language of publication
English
Received
1998-06-18
Published
1999
Exact and natural sciences