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SOLUTIONS WITH BIG GRAPH OF ITERATIVE
FUNCTIONAL EQUATIONS OF THE FIRST ORDER

BY

LECH BARTLOMIEJCZYK (KATOWICE)

Abstract. We obtain a result on the existence of a solution with big graph of func-
tional equations of the form g(z, p(z), ¢(f(z))) = 0 and we show that it is applicable to
some important equations, both linear and nonlinear, including those of Abel, Bottcher
and Schroder. The graph of such a solution ¢ has some strange properties: it is dense and
connected, has full outer measure and is topologically big.

1. Introduction. Let X and Y be two sets and R be a family of subsets
of X xY. We say that ¢: X — Y has a big graph with respect to R if the
graph Gr ¢ of ¢ meets every set of R. We are interested in finding conditions
under which the iterative functional equation of the form

(1) 9(@, (), o(f(x))) =0

has a solution ¢ with big graph with respect to a sufficiently large family.
Well known results on solutions of the Cauchy equation with big graph are
due to F. B. Jones [8] (see also [11]). Observe, however, that the latter
equation is not of the iterative type. What concerns iterative functional
equations, solutions with big graph were obtained in [9], [2] and [4] for
equations of invariant curves, in [1] for some homogeneous equations, and
in [3] for the equation of iterative roots.

2. Main result. Let X and Y be two nonempty sets, let T' be a set
with a distinguished element 0 and let g: X xY xY =T, f: X — X be
two given functions. The set of all periodic points of f with period p will be
denoted by Per(f,p), i.e.,

Per(f,p)={z e X : fP(zx) ==z, ffx)#zforke{l,...,p—1}};
moreover we put
Per f = U Per(f,p).

p=1
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Our general assumptions read:

(Hy) The set X is uncountable.
(H) For every z € X the set f~!({x}) is countable and

card Per f < card X.

(Hg) For every p € N and = € Per(f,p) there exists (y1,...,yp) € Y7
such that for every k € {1,...,p — 1} we have

(2) 9(f* (@), Y, Y1) = 0
and
3) 9(x, yp, y1) = 0.
(Hy) For every x € X and y € Y there exists a z € Y such that
(4) 9(z,y,2) =0,

and for every z € X and z € Y there exists a y € Y such that (4) holds.

Note that if ¢: X — Y is a solution of (1) and x € X is periodic with
period p, then putting

e = o(f*(x))
for k € {1,...,p} we have (2) and (3). Hence (Hs) is necessary for (1) to
have a solution.
Let m: X x Y — X be the projection. The following is the main result
of this paper.

THEOREM 1. Assume (Hy)—(Hy) and let R be a family of subsets of
X XY such that

(5) card R < card X
and
(6) cardm(R) = card X  for every R € R.

Then there exists a solution ¢ : X — Y of (1) with big graph with respect
to R.

Proof. Let ~ be the standard equivalence relation defining orbits of f,
ie. (cf. [10, p. 14], [16, (1.1.2)]),

x~ys fM(x) = f"(y) for some m,n € Ny,
and denote by C(x) the equivalence class (orbit) of z € X i.e.,

UUf {f™ (@)}

n=0m=0
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The family C of all orbits is a partition of X and a function ¢: X — Y is
a solution of (1) iff so is ¢|¢ for every C' € C. This allows us to define a
solution of (1) by defining it on each orbit.
In the sequel we shall consider two families of orbits:
Ci={CeC:CNnPerf=0}, Co={CeC:CnNPerf+0D}.
Since card Cy < card Per f, from the second part of (Hz) it follows that
(7) card Cy < card X.

Let v be the smallest ordinal such that its cardinal 7 equals that of R and
let (R, : o < 7y) be a one-to-one transfinite sequence of all elements of R.
Using transfinite induction we shall define a sequence ((Zq,¥ys) @ @ < 7y) of
elements of X x Y such that, for all o < 7,

(8) (xaaya) S Ra

and
9) =z, € (UCl OW(RQ)> \U{C €C:xp € C for some 3 < a}.

Suppose a < 7 and that we have already defined (zg,yg) for < a. It
follows from (6) and (7) that card(m(Ry) NJC1) = card X whereas (Hy)
and (5) give

card CelC:xg e for some f < al <Ny-a=max{Ry,a} < card X.
B

Consequently, the set in (9) is nonempty; choose a point x, from it. In
particular, z, € 7(R,) and so there exists a y, such that (8) holds.

Now we start to define, for each C' € C, a solution ¢c: C — Y of (1).
To this end we shall decompose the orbit depending on whether it is in C;
or in Co. However, we begin with the general case. Fix x € X and put

A= Uf ({2}), Ao ={f*(x): k € N},

U FRE A @D\ (@)})  forneN.

Then

(10) Clx)= |J An
n=—1

Assume that C(z) € C;. We show that

(11) AnNA, =10

for m # n. Suppose that m and n are positive integers, m < n and

2€ Ay N Ay, Then fM1(2)=f"(z), fF(2)# [ (x) and f™*(2) = f"(2),
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for some nonnegative integers k, [, whence f**1(2) = f(z) = firHHn—m(2).
Consequently, since z, as a member of C'(x), is aperiodic and so is any of its
iterates, k=[0+mn —m and "~ 1(z)=fF+m=1=1(z)= f*(2), a contradiction.
In the remaining cases we argue similarly. Analogously, for every n € N and
k,l € Ng with k& # [ we have

(12) @) # @), Flaehnf{a}) =0

and

13) SR @D @D 0 T @D\ (@) ) =0
Fix now an orbit C € C;. If the set
(14) CNn{zy: <~}
is nonempty, then, according to (9), it consists of exactly one point z, and
we put
(15) (2,9) = (Ta, Ya)-
Otherwise we choose (x,y) €C x Y arbitrarily. In both cases C'=C/(z) and
we can use all the facts established in the preceding paragraph.
The decomposition (10) jointly with (11)—(13) allows us to define a so-
lution pc: C — Y of (1) by putting
(16) polz) =y
and defining it on each A,’s inductively using the following observation.

Having a u € C and ¢¢ defined at u or at f(u), according to (H4) we can
define it at the other element in such a manner that

(17) 9(u, oc(u), po(f(u))) = 0.

Hence for every orbit C' € C; we have a solution ¢ : C — Y of (1) such
that if z, € C, then 9o (x,) = yo. But, according to (9), for every a < 7y
we have C(z,) € C1. Consequently, by (15) and (16),

(18) PC(wa)(Ta) = Yo for a <7.

Consider now an orbit C' € C3. Thus C = C(z) with « € Per(f,p) for
some p € N. In this case Ay = {f(z),..., fP(z)} and

(19) C(x) = U A,.
n=0

By standard calculations the summands Ag, A1, ..., A4, of (19) are pairwise
disjoint and (13) holds for n€{1,...,p} and k,l €Ny with k # [. A solution
pc: C — Y of (1) may now be defined as follows. Fix a sequence (y1,...,¥p)
of elements of YV satisfying (2) and (3) and put

po(f (@) = yn
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for k € {1,...,p}. Then define pc on each of Ay,..., A, inductively (in
such a manner that (17) holds).

Hence for every orbit C' a suitable solution ¢c: C — Y of (1) has been
constructed. Put ¢ = J¢e ¢c. Clearly, ¢ is a solution of (1). According to
(18) we also have ¢(z4) = Yo for a <y, which jointly with (8) shows that
© has a big graph with respect to R and ends the proof.

REMARK 1. Instead of equation (1) we can consider a relation

(20) 9(x,(x), o(f(x))) € To

where T} is a fixed subset of T'. Replacing, in the hypotheses (H3) and (Hy),
every expression of the form g(u,v,w) =0 by g(u,v,w) € Ty we can obtain
an analogue of Theorem 1 on existence of a solution ¢ : X — Y of (20)
which has a big graph with respect to the family R.

In order to apply the above analogue of Theorem 1 to the equation

(21) o(f(x) = g(z, ()
with given f : X — Y and g : X XY — Y we make the following hypotheses.

(H%) For every p € N and x € Per(f, p) there exists a y € Y such that for
the sequence yo, . . ., y,—1 defined by yo = y, yr+1 = g(f* (), yx), we have

yo = g(f* (@), yp-1)-
(H}) For every x € X the function g(x,-) maps Y onto Y.
THEOREM 2. Assume (Hy), (Hg), (H5) and (H}) and let R be a family

of subsets of X xY such that (5) and (6) hold. Then there exists a solution
v: X =Y of (21) with big graph with respect to R.

Since many important equations, e.g., Abel’s, Béttcher’s, Schroder’s, are
of the form (21) with g depending only on the second variable, we also
formulate a suitable corollary concerning the equation

(22) o(f(x)) = g(p(x)).

COROLLARY 1. Assume (Hy), (Ha), let g map Y onto Y, and suppose
that for every p € N we have

Per(f,p) # 0 = Per(g,k) # 0 for some k|p.

Let R be a family of subsets of X XY such that (5) and (6) hold. Then
there exists a solution ¢: X — Y of (22) with big graph with respect to R.

The following remark gives some sufficient conditions for (Hz) to hold.

REMARK 2. If X is a real interval, then each of the following two condi-
tions (i), (ii) guarantees that (Hg) holds:

(i) f is piecewise polynomial and the degree of each polynomial is greater
than 1,
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(ii) f is piecewise monotonic and on each monotonicity interval we have
|f(@) = f(y)| > |z =yl for x # y (or |f(z) — f(y)| < |z —y| for z # y).

Using Sharkovskii’s Theorem on cycles ([16, (8.2.1)], [12, Theorem 1.1.3])
we obtain the following.

REMARK 3. Let X be a real interval and f be a continuous self-mapping
of X. If Per(f,1) is countable and f?(z) # z for x € X \ Per(f, 1), then
Per f = Per(f,1); consequently, Per f is countable.

3. Properties of functions with big graph. Given two topological
spaces X and Y, consider the family

(23) {R € B(X xY):m(R) is uncountable},

where B(X x Y') denotes the o-algebra of all Borel subsets of X x Y. The
following simple observation (cf. [11, p. 289]) shows that if a function ¢ :
X — Y has a big graph with respect to the family (23), then its graph is
big from the topological point of view.

PROPOSITION 1. Assume X is a T1-space and has no isolated point. If
¢ : X =Y has a big graph with respect to the family (23), then (X xY)\Gr ¢
contains no subset of X XY of second category having the property of Baire.

Such a graph is also big from the point of view of measure theory:

PROPOSITION 2. Assume X is a Ti-space and X\ is a measure on
B(X xY) vanishing on all vertical lines {x} xY, x € X. If ¢ : X =Y has
a big graph with respect to the family (23), then (X x Y)\ Grp contains no
Borel subset of X XY of positive A\-measure.

In other words A, ((X xY')\ Gr¢) = 0 and, consequently, \*(BNGr¢) =
A(B) for every B € B(X xY). Here A, and \* denote the inner and outer
measures, respectively, generated by the Borel measure A; cf. [7, Sec. 14].

It is worth-while to mention that if X is a Polish space and has no
isolated point then there are a lot of measures on B(X) vanishing on all
singletons [15, p. 55, Corollary 8.1] and if p is such a measure and v is any
measure on B(Y') then the product measure p x v vanishes on all vertical
lines.

Assume now that X and Y are abelian Polish groups. Following
J. P. R. Christensen ([5], [6, p. 115]) we say that a Borel subset R of X xY
is a Haar zero set if there exists a probability measure A on B(X x Y') such
that A\(R + z) = 0 for every z € X x Y. We have the following analogue of
the above propositions.

ProOPOSITION 3. Assume X and Y are abelian Polish groups and X
has no isolated point. If ¢ : X — Y has a big graph with respect to the
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family (23), then (X xY)\ Gro contains no Borel subset of X XY which
s not a Haar zero set.

Finally, we return to topological properties of functions with big graph.
Applying Lemmas 1 and 2 of [13] we obtain

PROPOSITION 4. Assume that X and Y are connected topological spaces
and every non-empty open subset of X is uncountable. If ¢: X — Y has a
big graph with respect to the family (23) then Gr is dense and connected
in X xY.

REMARK 4. If X and Y are Polish spaces and X is uncountable, then ac-
cording to [7, Sec. 5, Exercise 9] and to the theorem of Alexandrov-Hausdorff
([14, p. 427]) we have

card B(X xY) <c¢=card X

and card 7(R) = ¢ for every Borel subset R of X x Y with uncountable ver-
tical projection; in particular, the family (23) satisfies all the requirements
of the theorems.
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