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SOLUTIONS WITH BIG GRAPH OF ITERATIVE
FUNCTIONAL EQUATIONS OF THE FIRST ORDER

BY

LECH B A R T  L O M I E J C Z Y K (KATOWICE)

Abstract. We obtain a result on the existence of a solution with big graph of func-
tional equations of the form g(x, ϕ(x), ϕ(f(x))) = 0 and we show that it is applicable to
some important equations, both linear and nonlinear, including those of Abel, Böttcher
and Schröder. The graph of such a solution ϕ has some strange properties: it is dense and
connected, has full outer measure and is topologically big.

1. Introduction. Let X and Y be two sets andR be a family of subsets
of X × Y . We say that ϕ : X → Y has a big graph with respect to R if the
graph Grϕ of ϕ meets every set ofR. We are interested in finding conditions
under which the iterative functional equation of the form

(1) g(x, ϕ(x), ϕ(f(x))) = 0

has a solution ϕ with big graph with respect to a sufficiently large family.
Well known results on solutions of the Cauchy equation with big graph are
due to F. B. Jones [8] (see also [11]). Observe, however, that the latter
equation is not of the iterative type. What concerns iterative functional
equations, solutions with big graph were obtained in [9], [2] and [4] for
equations of invariant curves, in [1] for some homogeneous equations, and
in [3] for the equation of iterative roots.

2. Main result. Let X and Y be two nonempty sets, let T be a set
with a distinguished element 0 and let g : X × Y × Y → T , f : X → X be
two given functions. The set of all periodic points of f with period p will be
denoted by Per(f, p), i.e.,

Per(f, p) = {x ∈ X : fp(x) = x, fk(x) 6= x for k ∈ {1, . . . , p− 1}};
moreover we put

Per f =

∞⋃
p=1

Per(f, p).
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Our general assumptions read:

(H1) The set X is uncountable.

(H2) For every x ∈ X the set f−1({x}) is countable and

card Per f < cardX.

(H3) For every p ∈ N and x ∈ Per(f, p) there exists (y1, . . . , yp) ∈ Y p
such that for every k ∈ {1, . . . , p− 1} we have

(2) g(fk(x), yk, yk+1) = 0

and

(3) g(x, yp, y1) = 0.

(H4) For every x ∈ X and y ∈ Y there exists a z ∈ Y such that

(4) g(x, y, z) = 0,

and for every x ∈ X and z ∈ Y there exists a y ∈ Y such that (4) holds.

Note that if ϕ : X → Y is a solution of (1) and x ∈ X is periodic with
period p, then putting

yk = ϕ(fk(x))

for k ∈ {1, . . . , p} we have (2) and (3). Hence (H3) is necessary for (1) to
have a solution.

Let π : X × Y → X be the projection. The following is the main result
of this paper.

Theorem 1. Assume (H1)–(H4) and let R be a family of subsets of
X × Y such that

(5) cardR ≤ cardX

and

(6) cardπ(R) = cardX for every R ∈ R.

Then there exists a solution ϕ : X → Y of (1) with big graph with respect
to R.

P r o o f. Let ∼ be the standard equivalence relation defining orbits of f ,
i.e. (cf. [10, p. 14], [16, (1.1.2)]),

x ∼ y ⇔ fm(x) = fn(y) for some m,n ∈ N0,

and denote by C(x) the equivalence class (orbit) of x ∈ X, i.e.,

C(x) =

∞⋃
n=0

∞⋃
m=0

f−n({fm(x)}).
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The family C of all orbits is a partition of X and a function ϕ : X → Y is
a solution of (1) iff so is ϕ|C for every C ∈ C. This allows us to define a
solution of (1) by defining it on each orbit.

In the sequel we shall consider two families of orbits:

C1 = {C ∈ C : C ∩ Per f = ∅}, C2 = {C ∈ C : C ∩ Per f 6= ∅}.
Since card C2 ≤ card Per f , from the second part of (H2) it follows that

(7) card C2 < cardX.

Let γ be the smallest ordinal such that its cardinal γ equals that ofR and
let (Rα : α < γ) be a one-to-one transfinite sequence of all elements of R.
Using transfinite induction we shall define a sequence ((xα, yα) : α < γ) of
elements of X × Y such that, for all α < γ,

(8) (xα, yα) ∈ Rα
and

(9) xα ∈
(⋃

C1 ∩ π(Rα)
)
\
⋃
{C ∈ C : xβ ∈ C for some β < α}.

Suppose α < γ and that we have already defined (xβ , yβ) for β < α. It
follows from (6) and (7) that card(π(Rα) ∩

⋃
C1) = cardX whereas (H1)

and (5) give

card
⋃
{C ∈ C : xβ ∈ C for some β < α} ≤ ℵ0 · α = max{ℵ0, α} < cardX.

Consequently, the set in (9) is nonempty; choose a point xα from it. In
particular, xα ∈ π(Rα) and so there exists a yα such that (8) holds.

Now we start to define, for each C ∈ C, a solution ϕC : C → Y of (1).
To this end we shall decompose the orbit depending on whether it is in C1
or in C2. However, we begin with the general case. Fix x ∈ X and put

A−1 =

∞⋃
k=0

f−k({x}), A0 = {fk(x) : k ∈ N},

An =

∞⋃
k=0

f−k(f−1({fn(x)}) \ {fn−1(x)}) for n ∈ N.

Then

(10) C(x) =

∞⋃
n=−1

An.

Assume that C(x) ∈ C1. We show that

(11) Am ∩An = ∅
for m 6= n. Suppose that m and n are positive integers, m < n and
z∈Am ∩ An. Then fk+1(z)=fn(x), fk(z) 6=fn−1(x) and f l+1(z)=fm(x),
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for some nonnegative integers k, l, whence fk+1(z) = fn(x) = f l+1+n−m(z).
Consequently, since z, as a member of C(x), is aperiodic and so is any of its
iterates, k= l+ n−m and fn−1(x)=fk+m−l−1(x)=fk(z), a contradiction.
In the remaining cases we argue similarly. Analogously, for every n ∈ N and
k, l ∈ N0 with k 6= l we have

(12) fk(x) 6= f l(x), f−k({x}) ∩ f−l({x}) = ∅
and

(13) f−k(f−1({fn(x)})\{fn−1(x)}) ∩ f−l(f−1({fn(x)})\{fn−1(x)})=∅.
Fix now an orbit C ∈ C1. If the set

(14) C ∩ {xα : α < γ}
is nonempty, then, according to (9), it consists of exactly one point xα and
we put

(15) (x, y) = (xα, yα).

Otherwise we choose (x, y)∈C × Y arbitrarily. In both cases C=C(x) and
we can use all the facts established in the preceding paragraph.

The decomposition (10) jointly with (11)–(13) allows us to define a so-
lution ϕC : C → Y of (1) by putting

(16) ϕC(x) = y

and defining it on each An’s inductively using the following observation.
Having a u ∈ C and ϕC defined at u or at f(u), according to (H4) we can
define it at the other element in such a manner that

(17) g(u, ϕC(u), ϕC(f(u))) = 0.

Hence for every orbit C ∈ C1 we have a solution ϕC : C → Y of (1) such
that if xα ∈ C, then ϕC(xα) = yα. But, according to (9), for every α < γ
we have C(xα) ∈ C1. Consequently, by (15) and (16),

(18) ϕC(xα)(xα) = yα for α < γ.

Consider now an orbit C ∈ C2. Thus C = C(x) with x ∈ Per(f, p) for
some p ∈ N. In this case A0 = {f(x), . . . , fp(x)} and

(19) C(x) =

p⋃
n=0

An.

By standard calculations the summands A0, A1, . . . , Ap of (19) are pairwise
disjoint and (13) holds for n∈{1, . . . , p} and k, l∈N0 with k 6= l. A solution
ϕC : C → Y of (1) may now be defined as follows. Fix a sequence (y1, . . . , yp)
of elements of Y satisfying (2) and (3) and put

ϕC(fk(x)) = yk
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for k ∈ {1, . . . , p}. Then define ϕC on each of A1, . . . , Ap inductively (in
such a manner that (17) holds).

Hence for every orbit C a suitable solution ϕC : C → Y of (1) has been
constructed. Put ϕ =

⋃
C∈C ϕC . Clearly, ϕ is a solution of (1). According to

(18) we also have ϕ(xα) = yα for α < γ, which jointly with (8) shows that
ϕ has a big graph with respect to R and ends the proof.

Remark 1. Instead of equation (1) we can consider a relation

(20) g(x, ϕ(x), ϕ(f(x))) ∈ T0
where T0 is a fixed subset of T . Replacing, in the hypotheses (H3) and (H4),
every expression of the form g(u, v, w) = 0 by g(u, v, w) ∈ T0 we can obtain
an analogue of Theorem 1 on existence of a solution ϕ : X → Y of (20)
which has a big graph with respect to the family R.

In order to apply the above analogue of Theorem 1 to the equation

(21) ϕ(f(x)) = g(x, ϕ(x))

with given f : X → Y and g : X×Y → Y we make the following hypotheses.

(H′3) For every p ∈ N and x ∈ Per(f, p) there exists a y ∈ Y such that for
the sequence y0, . . . , yp−1 defined by y0 = y, yk+1 = g(fk(x), yk), we have

y0 = g(fp−1(x), yp−1).

(H′4) For every x ∈ X the function g(x, ·) maps Y onto Y .

Theorem 2. Assume (H1), (H2), (H′3) and (H′4) and let R be a family
of subsets of X×Y such that (5) and (6) hold. Then there exists a solution
ϕ : X → Y of (21) with big graph with respect to R.

Since many important equations, e.g., Abel’s, Böttcher’s, Schröder’s, are
of the form (21) with g depending only on the second variable, we also
formulate a suitable corollary concerning the equation

(22) ϕ(f(x)) = g(ϕ(x)).

Corollary 1. Assume (H1), (H2), let g map Y onto Y , and suppose
that for every p ∈ N we have

Per(f, p) 6= ∅ ⇒ Per(g, k) 6= ∅ for some k | p.
Let R be a family of subsets of X × Y such that (5) and (6) hold. Then
there exists a solution ϕ : X → Y of (22) with big graph with respect to R.

The following remark gives some sufficient conditions for (H2) to hold.

Remark 2. If X is a real interval, then each of the following two condi-
tions (i), (ii) guarantees that (H2) holds:

(i) f is piecewise polynomial and the degree of each polynomial is greater
than 1,
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(ii) f is piecewise monotonic and on each monotonicity interval we have
|f(x)− f(y)| > |x− y| for x 6= y (or |f(x)− f(y)| < |x− y| for x 6= y).

Using Sharkovskĭı’s Theorem on cycles ([16, (8.2.1)], [12, Theorem 1.1.3])
we obtain the following.

Remark 3. Let X be a real interval and f be a continuous self-mapping
of X. If Per(f, 1) is countable and f2(x) 6= x for x ∈ X \ Per(f, 1), then
Per f = Per(f, 1); consequently, Per f is countable.

3. Properties of functions with big graph. Given two topological
spaces X and Y , consider the family

(23) {R ∈ B(X × Y ) : π(R) is uncountable},
where B(X × Y ) denotes the σ-algebra of all Borel subsets of X × Y . The
following simple observation (cf. [11, p. 289]) shows that if a function ϕ :
X → Y has a big graph with respect to the family (23), then its graph is
big from the topological point of view.

Proposition 1. Assume X is a T1-space and has no isolated point. If
ϕ : X → Y has a big graph with respect to the family (23), then (X×Y )\Grϕ
contains no subset of X×Y of second category having the property of Baire.

Such a graph is also big from the point of view of measure theory:

Proposition 2. Assume X is a T1-space and λ is a measure on
B(X × Y ) vanishing on all vertical lines {x}×Y, x ∈ X. If ϕ : X → Y has
a big graph with respect to the family (23), then (X ×Y ) \Grϕ contains no
Borel subset of X × Y of positive λ-measure.

In other words λ∗((X×Y )\Grϕ) = 0 and, consequently, λ∗(B∩Grϕ) =
λ(B) for every B ∈ B(X × Y ). Here λ∗ and λ∗ denote the inner and outer
measures, respectively, generated by the Borel measure λ; cf. [7, Sec. 14].

It is worth-while to mention that if X is a Polish space and has no
isolated point then there are a lot of measures on B(X) vanishing on all
singletons [15, p. 55, Corollary 8.1] and if µ is such a measure and ν is any
measure on B(Y ) then the product measure µ × ν vanishes on all vertical
lines.

Assume now that X and Y are abelian Polish groups. Following
J. P. R. Christensen ([5], [6, p. 115]) we say that a Borel subset R of X ×Y
is a Haar zero set if there exists a probability measure λ on B(X × Y ) such
that λ(R + z) = 0 for every z ∈ X × Y . We have the following analogue of
the above propositions.

Proposition 3. Assume X and Y are abelian Polish groups and X
has no isolated point. If ϕ : X → Y has a big graph with respect to the
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family (23), then (X × Y ) \Grϕ contains no Borel subset of X × Y which
is not a Haar zero set.

Finally, we return to topological properties of functions with big graph.
Applying Lemmas 1 and 2 of [13] we obtain

Proposition 4. Assume that X and Y are connected topological spaces
and every non-empty open subset of X is uncountable. If ϕ : X → Y has a
big graph with respect to the family (23) then Grϕ is dense and connected
in X × Y .

Remark 4. If X and Y are Polish spaces and X is uncountable, then ac-
cording to [7, Sec. 5, Exercise 9] and to the theorem of Alexandrov–Hausdorff
([14, p. 427]) we have

cardB(X × Y ) ≤ c = cardX

and cardπ(R) = c for every Borel subset R of X ×Y with uncountable ver-
tical projection; in particular, the family (23) satisfies all the requirements
of the theorems.
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& Uniw. Śla̧ski, Warszawa–Kraków–Katowice, 1985.

[12] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Ency-
clopedia Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990.



230 L. BART lOMIEJCZYK

[13] W. Kulpa, On the existence of maps having graphs connected and dense, Fund.
Math. 76 (1972), 207–211.

[14] K. Kuratowski and A. Mostowski, Set Theory , Stud. Logic Found. Math. 86,
PWN and North-Holland, Warszawa–Amsterdam, 1976.

[15] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press,
New York, 1967.

[16] Gy. Targonsk i, Topics in Iteration Theory , Vandenhoeck & Ruprecht, Göttingen,
1981.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: lech@gate.math.us.edu.pl

Received 27 August 1998;
revised 1 July 1999


