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A CONSEQUENCE OF AN EFFECTIVE FORM
OF THE abc-CONJECTURE

BY

JERZY B R O W K I N (WARSZAWA)

Abstract. T. Cochrane and R. E. Dressler [CD] proved that the abc-conjecture implies
that, for every ε > 0, the gap between two consecutive numbers A < C having the same
prime factors is � A1/2−ε. In the present paper, from a weak effective form of the abc-
conjecture we deduce that A− C > A0.4 with two exceptions given in Table 2.

1. Introduction. T. Cochrane and R. E. Dressler [CD] asked if the gap
between consecutive positive integers A,C with the same sets of prime divi-
sors can be small, e.g. less than A1/3. They deduced from the abc-conjecture
that for every ε > 0 the inequality C−A < A1/2−ε has only a finite number
of solutions in A,C as above.

In the present paper assuming an effective weak variant of the abc-conjec-
ture we prove that C −A > A0.4 holds with two exceptions given explicitly.

2. Notations. For a positive integer n let r(n) be its radical, i.e. the
product of distinct prime divisors of n.

We shall consider triples (a, b, c) of positive integers satisfying

(1) a+ b = c, a < b, gcd(a, b, c) = 1.

For such a triple let

L = L(a, b, c) =
log c

log r(abc)
.

Then c = r(abc)L.
We shall also consider pairs (A,C) of positive integers satisfying

C −A < A < C, r(A) = r(C).

We call such a pair admissible.
For an admissible pair (A,C) we define

α = α(A,C) =
log(C −A)

logA
.

Then C −A = Aα.
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For a prime number p and positive integers k, n the notation pk ‖n means
that pk |n and pk+1 -n. If pk ‖n we write vp(n) = k.

3. Lemmas. First we prove several lemmas on admissible pairs.

Lemma 1. If (A,C) is an admissible pair then, for every positive integer
d, the pair (Ad,Cd) is also admissible, and

α(A,C) < α(Ad,Cd) for d > 1.

Moreover , limd→∞ α(Ad,Cd) = 1.

P r o o f. From r(A) = r(C) it follows that, for every prime number p, we
have p |Ad if and only if p |Cd. Thus the pair (Ad,Cd) is admissible.

Moreover, since d > 1 and C −A < A we get

α(Ad,Cd) =
log(Cd−Ad)

log(Ad)
=

log d+ log(C −A)

log d+ logA
>

log(C −A)

logA
= α(A,C).

The last part of the lemma follows at once taking d → ∞ in the above
formula.

We say that the admissible pair (A,C) is reduced if, for every prime p |A,
the pair (A/p,C/p) is not admissible.

Lemma 2. (i) The admissible pair (A,C) is reduced if and only if for
every prime number p |A we have

(2) p ‖A, p2 |C or p ‖C, p2 |A.
(ii) For every admissible pair (A,C) there exists a unique d such that

d | gcd(A,C) and the pair (A/d,C/d) is admissible and reduced.

P r o o f. (i) Suppose that the admissible pair (A,C) is reduced and p |A.
If p ‖A and p ‖C, then the pair (A/p,C/p) is admissible, since r(A/p) =

r(A)/p = r(C)/p = r(C/p).
If p2 |A and p2 |C, then the pair (A/p,C/p) is admissible, since r(A/p) =

r(A) = r(C) = r(C/p).
Thus in both cases we get a contradiction with the assumption that the

pair (A,C) is reduced.
Conversely, suppose that the admissible pair (A,C) is not reduced. Then

for some prime number p |A the pair (A/p,C/p) is admissible, i.e. r(A/p) =
r(C/p).

If p ‖A, then p - r(A/p) = r(C/p), hence p ‖C.
If p2 |A, then p | r(A/p) = r(C/p), hence p2 |C.
Thus in both cases we get a contradiction with (2).
(ii) For every p |A let

sp =

{
min(vp(A), vp(C))− 1 if vp(A) 6= vp(C),
vp(A) if vp(A) = vp(C),
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and define

d =
∏
p|A

psp .

We shall prove that this d satisfies the conditions of the lemma.
Evidently, for every prime number p |A, we have

vp(d) = sp ≤ min(vp(A), vp(C)),

hence d | gcd(A,C).
From the definition of d we get, for p |A:
If vp(A) < vp(C), then vp(d) = vp(A) − 1. Hence vp(A/d) = 1 and

vp(C/d) ≥ 2. Similarly, if vp(A)>vp(C), then vp(C/d) = 1 and vp(A/d)≥ 2.
If vp(A) = vp(C), then vp(d) = vp(A). Hence vp(A/d) = vp(C/d) = 0.
Thus we have proved that the pair (A/d,C/d) is admissible and it is

reduced by the first part of the lemma.
The uniqueness of d is evident.

4. Admissible reduced pairs and triples. For an admissible and
reduced pair (A,C) we define the triple (a, b, c) as follows:

(3) a = (C −A)/r(A), b = A/r(A), c = C/r(A).

For a triple (a, b, c) satisfying (1) we define the pair (A,C) as follows:

(4) A = b r(bc), C = c r(bc).

Then C −A = a r(bc).

Lemma 3. (i) The triple (a, b, c) defined by (3) satisfies (1).
(ii) The pair (A,C) defined by (4) is admissible and reduced.
(iii) The formulas (3) and (4) give 1-1 correspondence between the set of

admissible and reduced pairs and the set of triples satisfying (1).

P r o o f. (i) From (3) we get a + b = c, and a < b since C − A < A by
assumption.

Suppose that a prime number p divides b and c. Then p2 |A and p2 |C
in view of (3). This contradicts the fact that the pair (A,C) is reduced, in
view of Lemma 2(i). Hence gcd(b, c) = 1 and consequently gcd(a, b, c) = 1.

(ii) Since a < b and a + b = c, we get c − b < b < c, and hence
C −A < A < C by (4).

From (4) it follows that r(A) = r(b r(bc)) = r(bc) = r(c r(bc)) = r(c),
i.e. the pair (A,C) is admissible.

To prove that the pair (A,C) is reduced let us observe that for every
prime p we have in view of (4):

p | b iff p2 |A and p ‖C
and
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p | c iff p2 |C and p ‖A.

Thus the claim follows from Lemma 2(i).

(iii) We shall prove that from (3) (as well from (4)) it follows that

(5) r(A) = r(bc).

Assume (3). Then for every prime number p |A we have p3 |AC in view
of Lemma 2(i), and evidently p ‖ r(A). Consequently, in view of (3),

r(bc) = r

(
AC

r(A)2

)
= r(AC) = r(A).

Similarly, from (4) we get

r(A) = r(b r(bc)) = r(bc).

Now, from (3)–(5) the claim follows easily.

5. Conjectures

Conjecture 1 (The abc-conjecture). For every real number q > 1
there are only a finite number of triples (a, b, c) satisfying (1) such that
L(a, b, c)>q.

E.g., for q = 1.5, only 11 such triples are known (see [B]):

Table 1

No. a b c L(a, b, c)

1. 2 310 · 109 235 1.629912
2. 112 32 · 56 · 73 221 · 23 1.625991
3. 19 · 1307 7 · 292 · 318 28 · 322 · 54 1.623490
4. 283 511 · 132 28 · 38 · 173 1.580756
5. 1 2 · 37 54 · 7 1.567887
6. 73 310 211 · 29 1.547075
7. 72 · 412 · 3113 1116 · 132 · 79 2 · 33 · 523 · 953 1.544434
8. 53 29 · 317 · 132 115 · 17 · 313 · 137 1.536714
9. 13 · 196 230 · 5 313 · 112 · 31 1.526999
10. 318 · 23 · 2269 173 · 29 · 318 210 · 52 · 715 1.522160
11. 239 58 · 173 210 · 374 1.502839

Conjecture 2. The above table contains all triples (a, b, c) satisfying
(1) and L(a, b, c) > 1.5.

Evidently neither Conjecture 1 implies Conjecture 2, nor conversely.
From Conjecture 1 it follows only that there is a finite set of triples (a, b, c)
with L(a, b, c) > 1.5. Thus Conjecture 2 can be considered as an effective
weak version of Conjecture 1.



THE abc-CONJECTURE 83

Conjecture 3. For every real number t with 0 < t < 1/2 there are only
a finite number of admissible pairs (A,C) such that α(A,C) < t.

Conjecture 4. The only admissible pairs (A,C) satisfying α(A,C) <
0.4 are given in the following table.

Table 2

No. A C α(A,C)

1. 311 · 23 · 1092 3 · 236 · 109 0.390953
2. 22 · 38 · 5 · 7 2 · 3 · 55 · 72 0.389431

6. Main results

Theorem 1. For an admissible and reduced pair (A,C) let (a, b, c) be
the triple defined by (3). If α = α(A,C) < t < 1/2, then

L = L(a, b, c) >
1− t
t

= 1 +
2

t

(
1

2
− t
)
> 1.

P r o o f. Let us recall the basic relations:

c = r(abc)L, C −A = Aα, r(A) = r(bc).

Hence in view of (3) we get

ar(A) = C −A = Aα = (b r(A))α,

i.e. a1−αr(A)1−α < ar(A)1−α = bα, so a r(A) ≤ bα/(1−α).
Consequently,

c1/L = r(abc) = r(a) r(bc) = r(a) r(A) ≤ a r(A) ≤ bα/(1−α) < cα/(1−α).

Therefore
1

L
<

α

1− α
, i.e. L >

1− α
α

.

Remark 1. If we put t = 1/2 − ε > 0 in Theorem 1, we get L >
1 + 2ε/t. Therefore from the abc-conjecture and Lemma 3 it follows that
there are only a finite number of admissible reduced pairs (A,C) satisfying
α(A,C) < 1/2−ε. The number of all admissible pairs (A,C) (not necessarily
reduced) satisfying the above inequality is also finite in view of the last part
of Lemma 1.

Thus we proved once more the result of Cochrane and Dressler (see [CD])
that the abc-conjecture implies Conjecture 3.

Corollary 1. Conjecture 2 implies Conjecture 4.

P r o o f. Put t = 0.4 in Theorem 1. Then we get L > 3/2. Thus the
admissible reduced pairs (A,C) satisfying α(A,C) < 0.4 lead to triples
(a, b, c) given in Table 1.
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One can verify that only triples of No. 1 and No. 5 in the table give the
pairs (A,C) satisfying this inequality. They are listed in Table 2.

One should also consider the nonreduced admissible pairs (Ad,Cd) cor-
responding to these two triples, where d = 2, 3, . . .

Yet

α(2A, 2C) < α(3A, 3C) < . . . ,

and one can easily verify that α(2A, 2C) > 0.4 for the two pairs (A,C) in
question.

Corollary 2. If there exists an admissible pair (A′, C ′) such that
α(A′, C ′) < 1/3, then one can find a triple (a, b, c) satisfying (1) such that
L(a, b, c) > 2.

P r o o f. In view of Lemma 2(ii) for some d | gcd(A′, C ′) the pair (A,C) =
(A′/d, C ′/d) is admissible and reduced. Then α(A,C) < α(A′, C ′) < 1/3.

Let (a, b, c) be the triple corresponding to the pair (A,C) defined by (4).
Then by Theorem 1 we have

L(a, b, c) >
1− 1/3

1/3
= 2.
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