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NON-AMENABLE GROUPS WITH AMENABLE ACTION AND SOME
PARADOXICAL DECOMPOSITIONS IN THE PLANE

BY

JAN MYCIELSKI (BOULDER, COLORADO)

A finitely additive non-negative (not necessarily finite) measure is called
universal iff it is defined over all subsets of the underlying space. A group
G is called amenable iff there exists a universal left invariant measure p over
G with p(G) = 1. If an amenable group G acts on a space X, then there
exists a universal G-invariant measure g over X with o(X) = 1. Indeed, we
pick zg € X, define v(Y) = 0if 29 ¢ YV and v(Y) = 1 if g € Y for all
Y C X and define

o(Y) = [ v(g(Y)) u(dg),
G

where p is given by the amenability of G. It is clear that p has the required
properties. In a similar way one can show that if G is amenable, then there
exists a left and right invariant universal measure p in G with u(G) = 1.

When G is not amenable, the theory of Hausdorff~Banach—Tarski para-
doxical decompositions gives many examples of actions of G for which no
universal invariant measures exist (see [W]). However, in the present pa-
per we will give natural examples of non-amenable group actions which
are faithful and transitive and nevertheless such that universal invariant
measures, positive and finite on appropriate sets, do exist (Theorems 1, 2
and 3). Moreover, we will prove or conjecture several facts on the exis-
tence of Hausdorff-Banach—Tarski paradoxical decompositions of sets in the
plane R? which preclude the existence of other universal measures (Corol-
laries 1,...,5 and Theorem 4). These are related to a well-known theorem
of von Neumann about paradoxical decompositions of sets in R? (see [W],
Thm. 7.3) which will be proved again in the present paper as Corollary 3.
For related work concerning the hyperbolic plane see [M;].

We recall some results of the Banach—Tarski theory of equivalence by
finite decomposition which will be used below. If a group G acts on a space
X, then a set Y C X will be called paradozical iff there exists a partition of
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Y into 2n disjoint subsets
Y=U,U...UuU, UV, U...UV,,
and there exist 2n elements g1,...,9n, h1,...,h, € G such that
Y =g (U))U...Ugn(Up) = hi(Vi)U...Uhyn (V).

Two sets Y7,Ys C X are said to be equivalent by finite decomposition, in
symbols Y7 = Y5, iff there exist partitions of Y7 and Y5 into the same number
n of disjoint sets,

Vi=UyU...UU, and Ya=V,U...UV,,

and there exist n transformations ¢i,...,g, € G such that g;(U;) = V; for
1=1,...,n.
We will use the following two theorems of Banach and Tarski (see [W]).

THEOREM A (A variant of the Cantor-Bernstein Theorem). If Y; C
Yé - Y3 - X and Y1 = Yg, then Y1 EYQ.

THEOREM B (A Cancellation Theorem). If Yy U...UY, =Y C X,
YiI=Yo=...=Y, and Y is paradozical, then each Y; is paradoxical.

Theorem A does not require the Axiom of Choice, but Theorem B ap-
parently does (see [W], Corollary 8.8). The Axiom of Choice will be freely
used in the present paper.

7Z,Q and R denote the rings of integers, rational numbers and real num-
ber respectively; J ={x € R: 0 < 2z <1}; w={k € Z: k > 0}. For any
commutative ring R with unity, SL,(R) denotes the group of n x n matrices
with entries in R and determinant 1.

THEOREM 1. There exists a finitely additive measure o over all bounded
subsets of Q™ satisfying o((JNQ)™) = 1, invariant under SLy,(Z) and under
the group Q™ of rational translations. Moreover, o(aY ') = |a|™o(Y") for all
a € Q.

Proof. Let F' be any non-principal ultrafilter of subsets of w. For any
bounded function f : w — R we define the generalized limit limy_,z f(k) to
be the unique real number A such that for every open neighborhood V of A
we have

{k:f(k)eV}eF.
Now we define an auxiliary measure v over all bounded sets Y C Q":
1 n

Yn EZ

where |U| denotes the cardinality of U. Since the lattice %Z” is invariant
under SL,,(Z), it follows that v is invariant under SL,,(Z).

v(Y) = lim (k)"

)
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Now, the multiplicative group Q* of rational numbers different from zero
is abelian and hence amenable. Let p be an invariant universal measure in
Q* given by its amenability. For all bounded Y C Q™ we define

o(Y) =\ la| "v(qY) p(dg).
Q*
It is easy to check that the integrated function is bounded and hence the
integral exists. The finite additivity of ¢ is obvious. Since v is invariant
under SL,(Z) so is p. Notice that if v € Q™ and k is large enough such that
klv € Z™, then

1 n

Hence v is invariant under the action of Q™. Thus it is easy to check that o
is also invariant under Q". It is also clear that

v(JNQ)") =1,

and hence the same is true for p. Finally, since pu(adq) = p(dq) for a € Q,
we get o(aY) = |a|"o(Y). m

1
=kI(Y +0o)NZ" = |klY NZ"| = ‘Yn —7Z"

Remark 1. Of course one can extend p from Q™ to R™ putting o(Y') =
o(Y NQ") and p still has the same invariance and homogeneity properties.
Such a g is an extension of the Jordan measure, i.e., the Lebesgue measure
restricted to bounded sets whose boundaries have measure zero.

Remark 2. We conjecture that there exists no finitely additive measure
o over all bounded subsets of R? — {(0,0)} invariant under SLo(R) with
o(J?) = 1. Compare with Theorem 4 below.

Remark 3. There exists no finitely additive measure g over all bounded
subsets of R? with o(.J?) = 1 invariant under SLo(Z), under the group of
integer translations Z? and any single translation 7 such that 7(Q?) NQ? =
(). This follows from the fact that J? is paradoxical relative to the group
generated by the above transformations (a theorem of von Neumann, see
[W], Thm. 7.3). For another proof see Corollary 3 below.

Remark 4. The set Z? — {(0,0)} has a paradoxical decomposition
relative to the group SLo(Z). Thus it has no universal finitely additive
measure g invariant under SLy(Z) satisfying o(Z* — {(0,0)}) = 1. This fol-
lows from the observation that infinitely many disjoint copies of a quadrant
of Z* — {(0,0)} can be packed into Z? — {(0,0)} by means of this group
(see [W], Addendum to Second Printing, p. 235). For related assertions see
Corollary 4 and Theorem 4 below.

Remark 4 is related to the following problems which were already raised
in [MW], §9.
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PROBLEM 1. Does the group of transformations of Z? generated by
SLy(Z) and by Z? have a free non-abelian subgroup F such that for any
x € Z? the subgroup {p € F : p(z) = z} is cyclic?

If the answer was positive, then Z2? would be paradoxical relative to the
action of that free group. This follows from a general theorem of T. J.
Dekker (see [W], Cor. 4.12).

PROBLEM 2. Does the group of transformations of R? generated by
SL3(Z) and Z3 have a free non-abelian subgroup whose elements different
from the identity have no fixed point in R3?

The following remark shows that for R? no such free group is possible.

Remark 5. If A,B € SLy(R), AB # BA, p(z) = A(zx)+u and ¢(x) =
B(x) +v, where u,v € R?, then at least one of the four equations ¢(z) = ,
P(x) =z, pp(z) = , pyp 1 (x) = x has a solution z € R?. Indeed, if neither
o(x) = x nor YP(x) = x can be solved, then det(A — I) = det(B — I) = 0.
Hence tr(A) = tr(B) = 2, i.e., A and B are parabolic. Then it follows by an
easy calculation that since AB # BA either AB or AB~! is hyperbolic, i.e.,
has trace larger than 2, and that ¢v(r) = x or gy~ !(z) = z has a solution.

For other remarks about Problems 1 and 2, see [MW], §9. See also [K],
[B] and [S].

Remark 6. Let SA,(R) denote the group of transformations of R"
generated by SL,(R) and by R™. Then a generic element of SA,(R) has
exactly one fixed point in R™. The proof is similar to the argument in
Remark 8 below.

For generic isometries of R™ and of the spheres S"~! the situation may
be different depending on the parity of n. The following remarks describe
this situation.

Remark 7. All the elements of SOy, 11(R) have eigenvectors in R?"+1
but the generic orientation-preserving isometries of R?"*! have no fixed
points. Indeed, for all A € SOs,.1(R) we have det(A — I) = 0, whence
A(x) + v has no fixed points unless v is in the (proper) linear subspace
(A _ I) [R2n+1] of RQnJrl'

Remark 8. For even dimensions the situation is the opposite. The
generic elements of SOy, (R) have no eigenvectors in R?™, but generic isome-
tries of R?” have single fixed points. Indeed, for generic A € SO,, (R) we
have det(A — I) # 0. Hence A(z) + v has one fixed point in R?".

Remarks 7 and 8 suggest further problems.

PROBLEM 3. Does the group SO3,(Q) (n > 1) have a free non-abelian
subgroup whose elements other than unity have no fixed points in Q?" —{0}?
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For n even the answer is yes. This was shown recently by Kenzi Sato, by
an adaptation of a proof of T. J. Dekker (see [W], proof of Theorem 5.2).
Thus it is easy to see that Problem 3 fully reduces to the case n = 3.

PROBLEM 4. Does the group SOs,+1(Q) (n > 1) have a free non-abelian
subgroup F whose elements other than unity have no fixed points in the
rational unit sphere in Q?>**! and such that for all z € Q?"*! — {0} the
subgroup {p € F : p(x) =z} is cyclic?

For n = 1 the answer is yes. This follows easily from a recent theorem of
Kenzi Sato [S]. And if the answer to Problem 3 is yes, then the answer to
Problem 4 is also yes with the only possible exception for the case n = 2.

PROBLEM 5. Does the group of isometries of Q3 have a free non-abelian
subgroup whose elements other than unity have no fixed points in Q3?

Problems 3 and 5 have positive solutions/if Q is replaced by R, see [DS],
[B] and a theorem of Dekker, Mycielski and Swierczkowski ([W], Thm. 5.7).

THEOREM 2. There exists a finitely additive measure o over all bounded
subsets of R™ which is invariant under SL,(Z), satisfies o(J") = 1 and
o(aY) = |a|"o(Y) for all a € R.

Proof. The proof is very similar to that of Theorem 1, only integration
over Q* should be replaced by integration over R* (the multiplicative group
of non-zero real numbers). m

Remark 9. The measure g of Theorem 2 is an extension of the Jordan
measure.

PROBLEM 6. Unlike in Theorem 1 we do not know if Theorem 2 can
be strengthened by requiring also the invariance of ¢ under some group of
translations, e.g., under Z".

THEOREM 3. There exists a universal measure o over the rational torus
(Q/Z)™ which is invariant under the natural action of SL,(Z) and of Q",
and such that o((Q/Z)") = 1.

Proof. This follows from Theorem 1. It suffices to identify (Q/Z)" with
(JNQ)™ and to treat the transformations of SL,(Z) and Q™ over (Q/Z)"
as unions of finitely many restrictions of appropriate transformations of the
space Q™ to appropriate disjoint subsets of (JNQ)". m

LEMMA 1. (i) If A € SLa(R) and tr(A) # 2, then A(z) # x for all
z € R?—{(0,0)}.

(ii) If A € SLy(Z) and tr(A) # 2, then A(z) # z for all z € (R/Z)? —
(Q/Z)%.

Proof. (i) It is easy to check that if A € SLy(R) and tr(A) # 2, then
det(A—1) # 0. Hence, if A(x) = x, then (A—I)z = 0 and = = (0,0) follows.
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(ii) We show in the same way that det(A — I) # 0. Thus if A(z) = z for
x =1/Z? then A(T)—7 € Z%. Hence (A—I1)7 € Z?> and T € (A—1)"1[Z?] C
Q2. Thus x € Q?/Z%. w

COROLLARY 1. SLy(Z) has free non-abelian subgroups whose elements
other than unity act without fived point on R? — {(0,0)} and on (R/Z)* —

Q/z)*.
Proof. It is known that SLs(Z) has free non-abelian subgroups all

of whose elements other than unity are hyperbolic, i.e., have traces larger
than 2. The pair of matrices

(2) = (31)

generates such a subgroup (a theorem of B. H. Neumann, see [W], p. 86
and references therein). Hence Corollary 1 follows from Lemma 1. m

COROLLARY 2. J? — Q? is paradoxical relative to the group of transfor-
mations of R? generated by SLy(Z) and by 72, and also relative to SLo(7Z)
acting on (R/Z)?.

Proof. This follows from the second conclusion of Corollary 1 and
the general theory of equivalence by finite decompositions (see [W], Corol-
lary 4.12). m

COROLLARY 3. J? is paradozical relative to the group of transformations
of R? generated by SLy(Z), by Z and by any single translation T of R? such
that 7(Q*) N Q? = 0.

Proof. This follows from Corollary 2 and the fact that 7(J?) = J?
relative to the group Z2. m

COROLLARY 4. If A, B C R? are two bounded sets with non-empty in-
teriors, then A = B relative to the group of transformations of R? gen-
erated by SLo(Z), by Q% and by any single translation T of R? such that

(@) NQ2%=0.

Proof. It follows from Theorem B and Corollary 3 that for every posi-
tive integer k the square (%J )2 is paradoxical relative to this group. Since

A and B have interior points, there are translations 71,7 € Q? and a k such
that (%J)2 C 71(A) N 73(B). Hence there are sets A” and B’ [containing
sufficiently many disjoint translates of (%J )2] such that A = A’ O B and
B = B’ O A. Thus, by the Cantor—Bernstein theorem (Theorem A at the
beginning of this paper), we have A= B. =

LEMMA 2. If A,B € SLs(R) and A(x) = B(xz) = x for some x €
R? — {(0,0)}, then AB = BA.
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Proof. Choose an orthonormal basis zg,z; in R? such that A(zg) =
B(xg) = z¢. Then, relative to this basis,

1 a 1 b
A—<O 1) and B—<O 1),

for some a,b € R. Thus

(1 a+0b\ _
am= (3 4T 2 pa

COROLLARY 5. R%Z — {(0,0)} is paradozical relative to every free non-
abelian subgroup of SLa(R).

Proof. By Lemma 2 and the general decomposition theorem of Dekker
(see [W], Thm. 4.12). m

For related theorems about R™, see [Mz] and [W].

Corollaries 2-5 suggest the problem if there are any natural bounded sets
in R? — {(0,0)} which are paradoxical relative to the group SLz(R). The
problem remains unsolved but I will reduce it to a certain conjecture (C)
and will explain why I believe that (C) is true. (The idea of the reduction
is similar to that in [M;].)

Let D = {(z,y) e R? : 22 +3? <r?},and f|Y = fN(Y xX) for Y C X,
f:X—-X.

LEMMA 3. For any ¢ € SLa(R) there exists a rotation o, € SOz(R)
such that

D = ¢(D) = g,(D = ¢~ (D)).
Proof. This follows since the ellipses ¢(D) and ¢~ (D) are congruent. m

From now on our arguments are incomplete in the sense that they depend
on the following conjecture.

(C)  There exists a free non-abelian group F acting on D such that if f €
F—{e} andx € D—{(0,0)}, then f(z) # x, and for every f € F' there
exists a finite partition D = Dy U ... U D, and ¢1,...,p, € SLy(R)
such that fID; = p;[D; fori=1,...,n.

An incomplete argument supporting this conjecture (on the basis of
Lemma 1(i) and Lemma 3) will be given at the end of this paper.

LEMMA 4 (Assuming (C)). The punctured disk D—{(0,0)} is paradoxical
relative to the group SLa(R).

Proof. This follows by (C) and the general decomposition theorem (see
[W], Cor. 4.12). =

LEMMA 5 (Assuming (C)). If Dy and Dy are two disks both with center
(0,0), then Dy = Dy relative to SLa(R).
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Proof. Let radius D; < radius Dy. A transformation in SLo(R) can
turn D into an ellipse ££ whose long axis is longer than the diameter of
Dy. Then finitely many rotations of E can cover Dy. Hence, by Lemma
4, Dy = D) for some set D), C D;. Of course, D1 C Dsy. Hence by the
Cantor—Bernstein Theorem (Theorem A) we have Dy = Ds. =

LEMMA 6 (Assuming (C)). If A C R? is a bounded set which contains a
neighborhood of (0,0), then A = D relative to SLo(R).

Proof. There are disks D; and D5 centered at (0,0) such that D; C
A C D5. Thus Lemma 6 follows from Lemma 5 and the Cantor-Bernstein
Theorem. =

LEMMA 7 (Assuming (C)). If T is an open triangle in R* which has a
vertex at (0,0), then T = D — {(0,0)} relative to SLy(R).

Proof. A union of finitely many rotations of T' covers a punctured
disk Dy — {(0,0)}. Hence, by the Cancellation Theorem (Theorem B) and
Lemmas 4 and 5, T is paradoxical. Thus there exists a set S =T such that
S contains Dy — {(0.0)}. And by Lemma 6, =D — {(0,0)}. =

THEOREM 4 (Assuming (C)). If A, B C R? — {(0,0)} are bounded sets
and either («) both A and B include open triangles with one vertex at (0,0),
or () both A and B have non-empty interior and both distances from (0,0)
to A and from (0,0) to B are positive, then A = B relative to the group
SLy(R).

Proof. Case (a). This case follows immediately from Lemmas 5 and
7, and the Cantor—Bernstein Theorem.

Case (). Instead of disks we have to work with annuli {z € R? : r; <
|lz|| < 72}, and prove for them lemmas similar to Lemmas 4, ...,7. We omit
these proofs as they are quite similar to the previous ones. m

Incomplete argument for the conjecture (C). Using Lemma 3 for all ¢ €
SLy(R) and all z € D we define

N p(x) if p(x) € D,
Plz) = {aw) if p(z) & D.

Thus ¢ : D — D is a piecewise linear bijection. It is easy to check that there
are three nonempty open sets A, B,C C SLy(R) such that if (p,9,x) €
A x B x C then the composed map @1X has the following property:

(P)  For every x € D, @Z/Z)\S(\(:L') = fgh(x), where
(f7g> h) € {(107 Qtp} X {ZZJ) Qil)} X {X7 QX} - {(Qt,m O QX)}
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Thus out of the eight possible forms of @@i(m) only seven involving at least
one of the functions ¢, or x may actually occur (although those forms
which occur depend on ¢, 1, x and on z).

Now the conjecture (C) reduces to the following more specific conjecture:
There exist two triples (1, %1, X1), (¥2,12, X2) € A x B x C such that the
pair of transformations 4,/51151 X1, (ﬁg{/;g)’{g : D — D generates a free group as
required in (C). I feel that (P) and Lemma 1(i) suggest that (C) is true.

[B]
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