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NON-AMENABLE GROUPS WITH AMENABLE ACTION AND SOME

PARADOXICAL DECOMPOSITIONS IN THE PLANE

BY

JAN MYCIELSK I (BOULDER, COLORADO)

A finitely additive non-negative (not necessarily finite) measure is called
universal iff it is defined over all subsets of the underlying space. A group
G is called amenable iff there exists a universal left invariant measure µ over
G with µ(G) = 1. If an amenable group G acts on a space X, then there
exists a universal G-invariant measure ̺ over X with ̺(X) = 1. Indeed, we
pick x0 ∈ X, define ν(Y ) = 0 if x0 6∈ Y and ν(Y ) = 1 if x0 ∈ Y for all
Y ⊆ X and define

̺(Y ) =
\
G

ν(g(Y ))µ(dg),

where µ is given by the amenability of G. It is clear that ̺ has the required
properties. In a similar way one can show that if G is amenable, then there
exists a left and right invariant universal measure µ in G with µ(G) = 1.

When G is not amenable, the theory of Hausdorff–Banach–Tarski para-
doxical decompositions gives many examples of actions of G for which no
universal invariant measures exist (see [W]). However, in the present pa-
per we will give natural examples of non-amenable group actions which
are faithful and transitive and nevertheless such that universal invariant
measures, positive and finite on appropriate sets, do exist (Theorems 1, 2
and 3). Moreover, we will prove or conjecture several facts on the exis-
tence of Hausdorff–Banach–Tarski paradoxical decompositions of sets in the
plane R2 which preclude the existence of other universal measures (Corol-
laries 1, . . . , 5 and Theorem 4). These are related to a well-known theorem
of von Neumann about paradoxical decompositions of sets in R2 (see [W],
Thm. 7.3) which will be proved again in the present paper as Corollary 3.
For related work concerning the hyperbolic plane see [M1].

We recall some results of the Banach–Tarski theory of equivalence by
finite decomposition which will be used below. If a group G acts on a space
X, then a set Y ⊆ X will be called paradoxical iff there exists a partition of
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Y into 2n disjoint subsets

Y = U1 ∪ . . . ∪ Un ∪ V1 ∪ . . . ∪ Vn,

and there exist 2n elements g1, . . . , gn, h1, . . . , hn ∈ G such that

Y = g1(U1) ∪ . . . ∪ gn(Un) = h1(V1) ∪ . . . ∪ hn(Vn).

Two sets Y1, Y2 ⊆ X are said to be equivalent by finite decomposition, in
symbols Y1 ≡ Y2, iff there exist partitions of Y1 and Y2 into the same number
n of disjoint sets,

Y1 = U1 ∪ . . . ∪ Un and Y2 = V1 ∪ . . . ∪ Vn,

and there exist n transformations g1, . . . , gn ∈ G such that gi(Ui) = Vi for
i = 1, . . . , n.

We will use the following two theorems of Banach and Tarski (see [W]).

Theorem A (A variant of the Cantor–Bernstein Theorem). If Y1 ⊆
Y2 ⊆ Y3 ⊆ X and Y1 ≡ Y3, then Y1 ≡ Y2.

Theorem B (A Cancellation Theorem). If Y1 ∪ . . . ∪ Yn = Y ⊆ X,
Y1 ≡ Y2 ≡ . . . ≡ Yn and Y is paradoxical , then each Yi is paradoxical.

Theorem A does not require the Axiom of Choice, but Theorem B ap-
parently does (see [W], Corollary 8.8). The Axiom of Choice will be freely
used in the present paper.

Z,Q and R denote the rings of integers, rational numbers and real num-
ber respectively; J = {x ∈ R : 0 < x ≤ 1}; ω = {k ∈ Z : k ≥ 0}. For any
commutative ring R with unity, SLn(R) denotes the group of n×n matrices
with entries in R and determinant 1.

Theorem 1. There exists a finitely additive measure ̺ over all bounded

subsets of Qn satisfying ̺((J∩Q)n) = 1, invariant under SLn(Z) and under

the group Qn of rational translations. Moreover , ̺(αY ) = |α|n̺(Y ) for all

α ∈ Q.

P r o o f. Let F be any non-principal ultrafilter of subsets of ω. For any
bounded function f : ω → R we define the generalized limit limk→F f(k) to
be the unique real number λ such that for every open neighborhood V of λ
we have

{k : f(k) ∈ V } ∈ F.

Now we define an auxiliary measure ν over all bounded sets Y ⊂ Qn:

ν(Y ) = lim
k→F

(k!)−n
∣∣∣∣Y ∩

1

k!
Zn

∣∣∣∣,

where |U | denotes the cardinality of U . Since the lattice 1

k!
Zn is invariant

under SLn(Z), it follows that ν is invariant under SLn(Z).
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Now, the multiplicative group Q∗ of rational numbers different from zero
is abelian and hence amenable. Let µ be an invariant universal measure in
Q∗ given by its amenability. For all bounded Y ⊂ Qn we define

̺(Y ) =
\

Q∗

|q|−nν(qY )µ(dq).

It is easy to check that the integrated function is bounded and hence the
integral exists. The finite additivity of ̺ is obvious. Since ν is invariant
under SLn(Z) so is ̺. Notice that if v ∈ Qn and k is large enough such that
k!v ∈ Zn, then

∣∣∣∣(Y + v) ∩
1

k!
Zn

∣∣∣∣ = |k!(Y + v) ∩ Zn| = |k!Y ∩ Zn| =

∣∣∣∣Y ∩
1

k!
Zn

∣∣∣∣.

Hence ν is invariant under the action of Qn. Thus it is easy to check that ̺
is also invariant under Qn. It is also clear that

ν((J ∩ Q)n) = 1,

and hence the same is true for ̺. Finally, since µ(αdq) = µ(dq) for α ∈ Q∗,
we get ̺(αY ) = |α|n̺(Y ).

R e m a r k 1. Of course one can extend ̺ from Qn to Rn putting ˜̺(Y ) =
̺(Y ∩ Qn) and ˜̺ still has the same invariance and homogeneity properties.
Such a ˜̺ is an extension of the Jordan measure, i.e., the Lebesgue measure
restricted to bounded sets whose boundaries have measure zero.

R e m a r k 2. We conjecture that there exists no finitely additive measure
̺ over all bounded subsets of R2 − {(0, 0)} invariant under SL2(R) with
̺(J2) = 1. Compare with Theorem 4 below.

R e m a r k 3. There exists no finitely additive measure ̺ over all bounded
subsets of R2 with ̺(J2) = 1 invariant under SL2(Z), under the group of
integer translations Z2 and any single translation τ such that τ(Q2)∩Q2 =
∅. This follows from the fact that J2 is paradoxical relative to the group
generated by the above transformations (a theorem of von Neumann, see
[W], Thm. 7.3). For another proof see Corollary 3 below.

R e m a r k 4. The set Z2 − {(0, 0)} has a paradoxical decomposition
relative to the group SL2(Z). Thus it has no universal finitely additive
measure ̺ invariant under SL2(Z) satisfying ̺(Z2 − {(0, 0)}) = 1. This fol-
lows from the observation that infinitely many disjoint copies of a quadrant
of Z2 − {(0, 0)} can be packed into Z2 − {(0, 0)} by means of this group
(see [W], Addendum to Second Printing, p. 235). For related assertions see
Corollary 4 and Theorem 4 below.

Remark 4 is related to the following problems which were already raised
in [MW], §9.
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Problem 1. Does the group of transformations of Z2 generated by
SL2(Z) and by Z2 have a free non-abelian subgroup F such that for any
x ∈ Z2 the subgroup {ϕ ∈ F : ϕ(x) = x} is cyclic?

If the answer was positive, then Z2 would be paradoxical relative to the
action of that free group. This follows from a general theorem of T. J.
Dekker (see [W], Cor. 4.12).

Problem 2. Does the group of transformations of R3 generated by
SL3(Z) and Z3 have a free non-abelian subgroup whose elements different
from the identity have no fixed point in R3?

The following remark shows that for R2 no such free group is possible.

R e m a r k 5. If A,B ∈ SL2(R), AB 6= BA, ϕ(x) = A(x)+u and ψ(x) =
B(x)+ v, where u, v ∈ R2, then at least one of the four equations ϕ(x) = x,
ψ(x) = x, ϕψ(x) = x, ϕψ−1(x) = x has a solution x ∈ R2. Indeed, if neither
ϕ(x) = x nor ψ(x) = x can be solved, then det(A − I) = det(B − I) = 0.
Hence tr(A) = tr(B) = 2, i.e., A and B are parabolic. Then it follows by an
easy calculation that since AB 6= BA either AB or AB−1 is hyperbolic, i.e.,
has trace larger than 2, and that ϕψ(x) = x or ϕψ−1(x) = x has a solution.

For other remarks about Problems 1 and 2, see [MW], §9. See also [K],
[B] and [S].

R e m a r k 6. Let SAn(R) denote the group of transformations of Rn

generated by SLn(R) and by Rn. Then a generic element of SAn(R) has
exactly one fixed point in Rn. The proof is similar to the argument in
Remark 8 below.

For generic isometries of Rn and of the spheres Sn−1 the situation may
be different depending on the parity of n. The following remarks describe
this situation.

R e m a r k 7. All the elements of SO2n+1(R) have eigenvectors in R2n+1,
but the generic orientation-preserving isometries of R2n+1 have no fixed
points. Indeed, for all A ∈ SO2n+1(R) we have det(A − I) = 0, whence
A(x) + v has no fixed points unless v is in the (proper) linear subspace
(A− I)[R2n+1] of R2n+1.

R e m a r k 8. For even dimensions the situation is the opposite. The
generic elements of SO2n(R) have no eigenvectors in R2n, but generic isome-
tries of R2n have single fixed points. Indeed, for generic A ∈ SO2n(R) we
have det(A− I) 6= 0. Hence A(x) + v has one fixed point in R2n.

Remarks 7 and 8 suggest further problems.

Problem 3. Does the group SO2n(Q) (n > 1) have a free non-abelian
subgroup whose elements other than unity have no fixed points in Q2n−{0}?
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For n even the answer is yes. This was shown recently by Kenzi Satô, by
an adaptation of a proof of T. J. Dekker (see [W], proof of Theorem 5.2).
Thus it is easy to see that Problem 3 fully reduces to the case n = 3.

Problem 4. Does the group SO2n+1(Q) (n ≥ 1) have a free non-abelian
subgroup F whose elements other than unity have no fixed points in the
rational unit sphere in Q2n+1 and such that for all x ∈ Q2n+1 − {0} the
subgroup {ϕ ∈ F : ϕ(x) = x} is cyclic?

For n = 1 the answer is yes. This follows easily from a recent theorem of
Kenzi Satô [S]. And if the answer to Problem 3 is yes, then the answer to
Problem 4 is also yes with the only possible exception for the case n = 2.

Problem 5. Does the group of isometries of Q3 have a free non-abelian
subgroup whose elements other than unity have no fixed points in Q3?

Problems 3 and 5 have positive solutions if Q is replaced by R, see [DS],
[B] and a theorem of Dekker, Mycielski and Świerczkowski ([W], Thm. 5.7).

Theorem 2. There exists a finitely additive measure ̺ over all bounded

subsets of Rn which is invariant under SLn(Z), satisfies ̺(Jn) = 1 and

̺(αY ) = |α|n̺(Y ) for all α ∈ R.

P r o o f. The proof is very similar to that of Theorem 1, only integration
over Q∗ should be replaced by integration over R∗ (the multiplicative group
of non-zero real numbers).

R e m a r k 9. The measure ̺ of Theorem 2 is an extension of the Jordan
measure.

Problem 6. Unlike in Theorem 1 we do not know if Theorem 2 can
be strengthened by requiring also the invariance of ̺ under some group of
translations, e.g., under Zn.

Theorem 3. There exists a universal measure ̺ over the rational torus

(Q/Z)n which is invariant under the natural action of SLn(Z) and of Qn,
and such that ̺((Q/Z)n) = 1.

P r o o f. This follows from Theorem 1. It suffices to identify (Q/Z)n with
(J ∩ Q)n and to treat the transformations of SLn(Z) and Qn over (Q/Z)n

as unions of finitely many restrictions of appropriate transformations of the
space Qn to appropriate disjoint subsets of (J ∩ Q)n.

Lemma 1. (i) If A ∈ SL2(R) and tr(A) 6= 2, then A(x) 6= x for all

x ∈ R2 − {(0, 0)}.
(ii) If A ∈ SL2(Z) and tr(A) 6= 2, then A(x) 6= x for all x ∈ (R/Z)2 −

(Q/Z)2.

P r o o f. (i) It is easy to check that if A ∈ SL2(R) and tr(A) 6= 2, then
det(A−I) 6= 0. Hence, if A(x) = x, then (A−I)x = 0 and x = (0, 0) follows.
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(ii) We show in the same way that det(A− I) 6= 0. Thus if A(x) = x for
x = x̃/Z2, then A(x̃)−x̃ ∈ Z2. Hence (A−I)x̃ ∈ Z2 and x̃ ∈ (A−I)−1[Z2] ⊆
Q2. Thus x ∈ Q2/Z2.

Corollary 1. SL2(Z) has free non-abelian subgroups whose elements

other than unity act without fixed point on R2 − {(0, 0)} and on (R/Z)2 −
(Q/Z)2.

P r o o f. It is known that SL2(Z) has free non-abelian subgroups all
of whose elements other than unity are hyperbolic, i.e., have traces larger
than 2. The pair of matrices

(
1 1
1 2

)
and

(
5 2
2 1

)

generates such a subgroup (a theorem of B. H. Neumann, see [W], p. 86
and references therein). Hence Corollary 1 follows from Lemma 1.

Corollary 2. J2 − Q2 is paradoxical relative to the group of transfor-

mations of R2 generated by SL2(Z) and by Z2, and also relative to SL2(Z)
acting on (R/Z)2.

P r o o f. This follows from the second conclusion of Corollary 1 and
the general theory of equivalence by finite decompositions (see [W], Corol-
lary 4.12).

Corollary 3. J2 is paradoxical relative to the group of transformations

of R2 generated by SL2(Z), by Z and by any single translation τ of R2 such

that τ(Q2) ∩ Q2 = ∅.

P r o o f. This follows from Corollary 2 and the fact that τ(J2) ≡ J2

relative to the group Z2.

Corollary 4. If A,B ⊆ R2 are two bounded sets with non-empty in-

teriors, then A ≡ B relative to the group of transformations of R2 gen-

erated by SL2(Z), by Q2 and by any single translation τ of R2 such that

τ(Q2) ∩ Q2 = ∅.

P r o o f. It follows from Theorem B and Corollary 3 that for every posi-

tive integer k the square
(

1

k
J
)2

is paradoxical relative to this group. Since
A and B have interior points, there are translations τ1, τ2 ∈ Q2 and a k such

that
(

1

k
J
)2

⊆ τ1(A) ∩ τ2(B). Hence there are sets A′ and B′
[
containing

sufficiently many disjoint translates of
(

1

k
J
)2]

such that A ≡ A′ ⊇ B and
B ≡ B′ ⊇ A. Thus, by the Cantor–Bernstein theorem (Theorem A at the
beginning of this paper), we have A ≡ B.

Lemma 2. If A,B ∈ SL2(R) and A(x) = B(x) = x for some x ∈
R2 − {(0, 0)}, then AB = BA.
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P r o o f. Choose an orthonormal basis x0, x1 in R2 such that A(x0) =
B(x0) = x0. Then, relative to this basis,

A =

(
1 a
0 1

)
and B =

(
1 b
0 1

)
,

for some a, b ∈ R. Thus

AB =

(
1 a+ b
0 1

)
= BA.

Corollary 5. R2 − {(0, 0)} is paradoxical relative to every free non-

abelian subgroup of SL2(R).

P r o o f. By Lemma 2 and the general decomposition theorem of Dekker
(see [W], Thm. 4.12).

For related theorems about Rn, see [M2] and [W].
Corollaries 2–5 suggest the problem if there are any natural bounded sets

in R2 − {(0, 0)} which are paradoxical relative to the group SL2(R). The
problem remains unsolved but I will reduce it to a certain conjecture (C)
and will explain why I believe that (C) is true. (The idea of the reduction
is similar to that in [M1].)

Let D = {(x, y) ∈ R2 : x2 +y2 ≤ r2}, and f↾Y = f ∩(Y ×X) for Y ⊆ X,
f : X → X.

Lemma 3. For any ϕ ∈ SL2(R) there exists a rotation ̺ϕ ∈ SO2(R)
such that

D − ϕ(D) = ̺ϕ(D − ϕ−1(D)).

P r o o f. This follows since the ellipses ϕ(D) and ϕ−1(D) are congruent.

From now on our arguments are incomplete in the sense that they depend
on the following conjecture.

(C) There exists a free non-abelian group F acting on D such that if f ∈
F−{e} and x ∈ D−{(0, 0)}, then f(x) 6= x, and for every f ∈ F there

exists a finite partition D = D1 ∪ . . . ∪Dn and ϕ1, . . . , ϕn ∈ SL2(R)
such that f↾Di = ϕi↾Di for i = 1, . . . , n.

An incomplete argument supporting this conjecture (on the basis of
Lemma 1(i) and Lemma 3) will be given at the end of this paper.

Lemma 4 (Assuming (C)). The punctured disk D−{(0, 0)} is paradoxical

relative to the group SL2(R).

P r o o f. This follows by (C) and the general decomposition theorem (see
[W], Cor. 4.12).

Lemma 5 (Assuming (C)). If D1 and D2 are two disks both with center

(0, 0), then D1 ≡ D2 relative to SL2(R).
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P r o o f. Let radiusD1 ≤ radiusD2. A transformation in SL2(R) can
turn D1 into an ellipse E whose long axis is longer than the diameter of
D2. Then finitely many rotations of E can cover D2. Hence, by Lemma
4, D2 ≡ D′

2 for some set D′

2 ⊆ D1. Of course, D1 ⊆ D2. Hence by the
Cantor–Bernstein Theorem (Theorem A) we have D1 ≡ D2.

Lemma 6 (Assuming (C)). If A ⊆ R2 is a bounded set which contains a

neighborhood of (0, 0), then A ≡ D relative to SL2(R).

P r o o f. There are disks D1 and D2 centered at (0, 0) such that D1 ⊆
A ⊆ D2. Thus Lemma 6 follows from Lemma 5 and the Cantor–Bernstein
Theorem.

Lemma 7 (Assuming (C)). If T is an open triangle in R2 which has a

vertex at (0, 0), then T ≡ D − {(0, 0)} relative to SL2(R).

P r o o f. A union of finitely many rotations of T covers a punctured
disk D0 − {(0, 0)}. Hence, by the Cancellation Theorem (Theorem B) and
Lemmas 4 and 5, T is paradoxical. Thus there exists a set S ≡ T such that
S contains D0 − {(0.0)}. And by Lemma 6, T ≡ D − {(0, 0)}.

Theorem 4 (Assuming (C)). If A,B ⊆ R2 − {(0, 0)} are bounded sets

and either (α) both A and B include open triangles with one vertex at (0, 0),
or (β) both A and B have non-empty interior and both distances from (0, 0)
to A and from (0, 0) to B are positive, then A ≡ B relative to the group

SL2(R).

P r o o f. Case (α). This case follows immediately from Lemmas 5 and
7, and the Cantor–Bernstein Theorem.

Case (β). Instead of disks we have to work with annuli {x ∈ R2 : r1 ≤
‖x‖ ≤ r2}, and prove for them lemmas similar to Lemmas 4, . . . , 7. We omit
these proofs as they are quite similar to the previous ones.

Incomplete argument for the conjecture (C). Using Lemma 3 for all ϕ ∈
SL2(R) and all x ∈ D we define

ϕ̂(x) =

{
ϕ(x) if ϕ(x) ∈ D,
̺ϕ(x) if ϕ(x) 6∈ D.

Thus ϕ̂ : D → D is a piecewise linear bijection. It is easy to check that there
are three nonempty open sets A,B,C ⊆ SL2(R) such that if (ϕ,ψ, χ) ∈

A×B × C then the composed map ϕ̂ψ̂χ̂ has the following property:

(P) For every x ∈ D, ϕ̂ψ̂χ̂(x) = fgh(x), where

(f, g, h) ∈ {ϕ, ̺ϕ} × {ψ, ̺ψ} × {χ, ̺χ} − {(̺ϕ, ̺ψ , ̺χ)}.
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Thus out of the eight possible forms of ϕ̂ψ̂χ̂(x) only seven involving at least
one of the functions ϕ,ψ or χ may actually occur (although those forms
which occur depend on ϕ,ψ, χ and on x).

Now the conjecture (C) reduces to the following more specific conjecture:
There exist two triples (ϕ1, ψ1, χ1), (ϕ2, ψ2, χ2) ∈ A×B ×C such that the

pair of transformations ϕ̂1ψ̂1χ̂1, ϕ̂2ψ̂2χ̂2 : D → D generates a free group as
required in (C). I feel that (P) and Lemma 1(i) suggest that (C) is true.
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