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Introduction. Let k be an algebraically closed field, and A be a basic
and connected finite-dimensional k-algebra (associative, with identity). We
are interested in the category modA of finitely generated right A-modules.
In [15] C. M. Ringel introduced the notion of a separating tubular family
which exists, in particular, for all tame concealed algebras. Also in [15]
C. M. Ringel introduced a notion of extension or coextension by branches
using modules from a separating tubular family and he showed that this
process preserves the existence of separating tubular families, so that the
representation-infinite tilted algebras of Euclidean type and the tubular al-
gebras also have such families. Separating tubular families may also occur
in the module categories of wild algebras, for example for all wild canonical
algebras [15].

In [2], [3] I. Assem and A. Skowroński introduced the notion of admissible
operations which generalize that of branch extension or coextension. These
operations allow one to define and describe particular components of the
Auslander–Reiten quiver, called coils and multicoils, and further a class of
algebras, called multicoil algebras. This class plays a fundamental role in
the representation theory of polynomial growth strongly simply connected
algebras established by A. Skowroński in [17]. One of the main purposes
of the present paper is to introduce new admissible operations (ad 4) and
(ad 4∗), and a component obtained from a stable tube by a sequence of
admissible operations in this larger sense will be called a generalized coil.
We shall show that, for any generalized coil, there exists a triangular algebra
(that is, an algebra having no oriented cycle in its ordinary quiver) having
this generalized coil as a standard component of its Auslander–Reiten quiver.

In [5] I. Assem, A. Skowroński and B. Tomé generalized the notion of a
separating tubular family as follows: a family of standard, pairwise orthog-
onal components T = (Ti)i∈I of the Auslander–Reiten quiver of A will be
called a weakly separating family if the indecomposable modules not in T
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split into two classes P and Q such that there is no non-zero morphism from
Q to P, from Q to T , or from T to P, while any non-zero morphism from P
to Q factors through the additive closure of T . They further defined a coil
enlargement of an algebra A using modules from T , described its module
category and proved criteria for tameness of a coil enlargement of a tame
concealed algebra.

Given a weakly separating family T in the module category modA, we
say that an algebra B is a generalized coil enlargement of the algebra A
using modules from T if B is obtained from A by an iteration of admissible
operations of types (ad 1), (ad 2), (ad 3), (ad 4), (ad 1∗), (ad 2∗), (ad 3∗),
(ad 4∗) performed either on a stable tube of T , or on a generalized coil
obtained from a stable tube of T by means of the operations done so far. We
also define numerical invariants c−B and c+B (see [5]) which count respectively
the number of corays and rays inserted in the tubes of T by this sequence
of admissible operations.

The aim of the present paper is to give a general description of the
module category of a generalized coil enlargement of an algebra. If, in par-
ticular, A is a tame concealed algebra and T is its unique P1(k)-family of
stable tubes, and B is a generalized coil enlargement of A using modules
from T , we obtain handy criteria allowing one to verify whether or not B
is tame. Namely, B admits a convex subcategory B− which is a tubular
coextension of A and a convex subcategory B+ which is a tubular extension
of A. Then B is tame if and only if B− and B+ are tame, or if and only if
the Tits form of B is weakly non-negative. Following [13] we also give some
homological properties of generalized coil enlargements of tame concealed
algebras.

In the last part of this paper we show how to iterate this process to
obtain the tame generalized coil enlargements of a tame concealed algebra.
We call these algebras tame iterated generalized coil enlargements, and we
give a description of their module categories. Additionally, generalizing the
definition given in [18] (see also [14]) we say that an algebra A has accept-
able projectives if each indecomposable projective A-module lies either in
a preprojective component without injective modules or in a standard gen-
eralized coil, and the standard generalized coils containing projectives are
ordered with respect to homomorphisms. The main result of this part is
a generalization of Theorem 4.3 from [18] stating that an algebra A with
acceptable projectives is a tame iterated generalized coil enlargement of a
tame concealed algebra if and only if A is tame, or if and only if the Tits
form of A is weakly non-negative.

The author would like to thank Andrzej Skowroński for inspiration, help-
ful suggestions and comments during the preparation of the final version of
this paper.
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1. Notation and preliminary definitions. Throughout this paper, k
will denote a fixed algebraically closed field. An algebra A will always mean
a basic, connected, associative finite-dimensional k-algebra with identity.
Thus there exists a connected bound quiver (QA, IA) and an isomorphism
A ∼= kQA/IA. Equivalently, A = kQA/IA may be considered as a k-linear
category, whose object class A0 is the set of points of QA, and whose set
of morphisms A(x, y) from x to y is the quotient of the k-vector space
kQA(x, y) of all formal linear combinations of paths in QA from x to y by
the subspace IA(x, y) = kQA(x, y) ∩ IA (see [8]). A full subcategory C of
A is called convex (in A) if any path in A with source and target in C lies
entirely in C.

By an A-module we mean a finitely generated right A-module. We denote
by modA the category of A-modules and by indA a full subcategory of
modA consisting of a complete set of representatives of the isomorphism
classes of indecomposable A-modules. For a full subcategory C of modA,
we denote by addC the additive full subcategory of modA consisting of the
direct sums of indecomposable direct summands of the objects in C. For
two full subcategories C,C ′ of modA, the notation HomA(C,C ′) = 0 means
that HomA(M,M ′) = 0 for all M in C and M ′ in C ′.

Recall that the Auslander–Reiten quiver ΓA of an algebra A is the trans-
lation quiver whose vertices are the members of indA, the arrows are rep-
resentatives of the irreducible morphisms in indA and the translation is
the Auslander–Reiten translation τA = DTr. Let Γ be a component of ΓA.
We denote by indΓ the full subcategory of modA whose objects are the
vertices of Γ , and we say that Γ is standard if indΓ is equivalent to the
mesh-category k(Γ ) of Γ (see [15]).

Given a standard component Γ of ΓA, and an indecomposable module X
in Γ , the support S(X) of the functor HomA(X,−) |Γ is the k-linear category
defined as follows [4]. Let HX denote the full subcategory of Γ consisting
of the indecomposable modules M in Γ such that HomA(X,M) 6= 0, and
IX denote the ideal of HX consisting of the morphisms f : M → N (with
M,N inHX) such that HomA(X, f) = 0. We define S(X) to be the quotient
category HX/IX . We usually identify the k-linear category S(X) with its
quiver.

A translation quiver Γ is called a tube [10], [15] if it contains a cyclic path
and if its underlying topological space is homeomorphic to S1×R+. A tube
has only two types of arrows: arrows pointing to infinity and arrows point-
ing to the mouth. Tubes containing neither projective vertices nor injective
vertices are called stable. A stable tube is of the form ZA∞/(τ r), r ≥ 1, and
is said to be of rank r. Recall that a path x0 → x1 → . . .→ xr in Γ is called
sectional if xi−2 6= τxi for each i, 2 ≤ i ≤ r. If there exists a unique infinite
sectional path in Γ starting at x (respectively, ending with x) it will be
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called a ray (respectively, a coray). It follows from [6] that the composition
of morphisms lying on a sectional path in ΓA is non-zero.

A path in modA is a sequence of non-zero non-isomorphisms

X0 → X1 → . . .→ Xr,

where the Xi are indecomposable. Such a path is called a cycle if X0
∼= Xr.

An indecomposable A-module X is called directing if it does not lie on any
cycle in modA.

The one-point extension of an algebra A by an A-module X is the matrix
algebra

A[X] =
[
A 0
X k

]
with the usual addition and multiplication of matrices. The quiver of A[X]
contains QA as a convex subquiver and there is an additional (extension)
point which is a source. The A[X]-modules are usually identified with the
triples (V,M,ϕ), where V is a k-vector space, M an A-module and ϕ :
V → HomA(X,M) is a k-linear map. An A[X]-linear map (V,M,ϕ) →
(V ′,M ′, ϕ′) is then identified with a pair (f, g), where f : V → V ′ is k-
linear, g : M →M ′ is A-linear and ϕ′f = HomA(X, g)ϕ. One defines dually
the one-point coextension [X]A of A by X (see [15]).

Following [9], we say that an algebra A is tame if, for any dimension d,
there exists a finite number of k[X]-A-bimodules Mi, 1 ≤ i ≤ nd, which are
finitely generated and free as left k[X]-modules, and all but finitely many
isomorphism classes of indecomposable A-modules of dimension d are of the
form

k[X]/(X − λ)⊗k[X] Mi

for some λ ∈ k and some i. Let µA(d) be the least number of bimodules
Mi such that the above conditions for d are satisfied. Then A is called of
polynomial growth (respectively, linear growth, domestic) if there is a positive
integer m such that µA(d) ≤ dm (respectively, µA(d) ≤ md, µA(d) ≤ m) for
all d ≥ 1 (see [16]).

For each vertex x ∈ (QA)0, where (QA)0 is the set of vertices of QA, we
denote by Sx the corresponding simple A-module, and by Px (respectively,
Ix) the projective cover (respectively, the injective envelope) of Sx. The
dimension vector of a module M is the vector

dimM = (dimk HomA(Px,M))x∈(QA)0 .

The support Supp(d) of a vector d = (dx)x∈(QA)0 is the full subcategory
of A with the objects {x ∈ (QA)0 | dx 6= 0}. The support Supp(M) of a
module M is the support of its dimension vector dimM . A module M is
called sincere if its support is equal to A.
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Recall that, if A = kQA/IA, then the Tits form qA of A is the integral
quadratic form qA : Zn → Z, n = |(QA)0|, defined by

qA(x) =
∑

i∈(QA)0

x2
i −

∑
(i→j)∈(QA)1

xixj +
∑

i,j∈(QA)0

r(i, j)xixj ,

where r(i, j) is the cardinality of R∩ I(i, j) for a minimal set of generators
R ⊂

⋃
i,j∈(QA)0

I(i, j) of the ideal IA (see [7]). A quadratic form qA is called
weakly non-negative if qA(x) ≥ 0 whenever x has non-negative coordinates.
We denote by (−,−)A the symmetric bilinear form associated with qA.

Assume that (QA)0 = {1, . . . , n}. The Cartan matrix CA of A is the
n× n matrix whose ij-entry is dimk HomA(Pi, Pj). If the global dimension
of A is finite (for instance, if A is triangular), then CA is invertible and we
can define the Euler characteristic on Z(QA)0 by

〈x, y〉A = xC−tA yt.

It has the following homological interpretation:

〈dimX, dimY 〉A =
∞∑
i=0

(−1)idimk ExtiA(X,Y )

for any two A-modules X,Y . The Euler form χA of A is defined by χA(z) =
〈z, z〉A. If gl.dimA ≤ 2 then qA and χA coincide [7].

2. Construction of standard components. In [2] I. Assem and A.
Skowroński introduced admissible operations (ad 1), (ad 2), (ad 3), (ad 1∗),
(ad 2∗), (ad 3∗) (see also [3]). Among other things they described com-
ponents of the Auslander–Reiten quiver, called coils. In this section, we
shall introduce new admissible operations (ad 4), (ad 4∗) and show that
under reasonable assumptions, these preserve the standardness of compo-
nents. Throughout this section, let A be an algebra, and Γ be a standard
component of ΓA.

(ad 4) Assume that S(X) consists of an infinite sectional path starting
at X (then X is called an (ad 4)-pivot):

X = X0 → X1 → X2 → . . .

Moreover, assume that SuppHomA(Y,−) consists of a finite sectional
path starting at Y :

Y = Y1 → Y2 → . . .→ Yt

consisting of directing modules.
We define the modified algebra A′ of A to be the one-point extension

A′ = A[X ⊕ Y ], and the modified component Γ ′ of Γ to be
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where

M • N

EE ""xxx
;;

FFF ## yy
<<

denotes that M is injective and N is projective, Zij =
(
k,Xi ⊕ Yj ,

(
1
1

))
for i ≥ 0, 1 ≤ j ≤ t, X ′

i = (k,Xi, 1) and the morphisms are obvious
ones. The translation τ ′ of Γ ′ is defined as follows: τ ′Zij = Zi−1,j−1 if
i ≥ 2, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2, P = Z01 is
projective, τ ′X ′

0 = Yt, τ ′X ′
i = Zi−1,t if i ≥ 1, τ ′(τ−1Xi) = X ′

i provided
Xi is not injective in Γ , otherwise X ′

i is injective in Γ ′. For the remaining
vertices of Γ ′, τ ′ coincides with the translation of Γ .

A finite sectional path Y1 → Y2 → . . . → Yt (occurring in (ad 4) and
(ad 4∗)) consisting of arrows pointing to infinity (respectively, to the mouth)
will be called a finite ray (respectively, a finite coray). The dual operation
to (ad 4) will be denoted by (ad 4∗).

Note that a pivot X in (ad 4) (respectively, (ad 4∗)) is not necessarily
injective (respectively, projective).
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The integer t ≥ 1 has the property that the number of infinite sectional
paths parallel to X0 → X1 → X2 → . . . in the inserted rectangle equals t+1.
Just as for an admissible operation of type (ad 1), (ad 2), (ad 3), (ad 1∗),
(ad 2∗) or (ad 3∗) (see [5, 2.2]), we call t the parameter of the operation.

Lemma 2.1. In the case (ad 4), the component of ΓA′ containing X
(considered as an A′-module) is equal to Γ ′. Further , if the subquiver of Γ
obtained by deleting the arrows Yi → τ−1

A Yi−1 (if they exist) has the property
that its connected component Γ ∗ containing X does not contain any of the
τ−1
A Yi−1, then Γ ′ is standard.

P r o o f. The morphisms

Y1 → Y2 → . . .→ Yt and X0 → X1 → X2 → . . .

in modA remain irreducible in modA′ (see [3, 2.2]).
By construction P is the only indecomposable projective A′-module

which is not an indecomposable projective A-module. Also, there are in-
clusion morphisms of X and Y as summands of radP , which are therefore
irreducible in modA′. Moreover, the right minimal almost split morphisms
ending at the Xi’s and Yi’s in modA remain so in modA′. Computing in-
ductively Auslander–Reiten sequences, we prove, as in [3, 2.2], that Γ ′ is
indeed the component of ΓA′ containing X.

In our proof of the standardness of Γ ′ we must consider two cases. We
present our proof in case when Γ ∗ = Γ , because the second case (Γ ∗ ⊂ Γ
and Γ ∗ 6= Γ ) will follow by replacing Γ by Γ ∗.

Let Φ : k(Γ ) → indΓ and Φ′ : k(Γ ′) → indΓ ′ denote the canonical
functors. We want to show that Φ′ is an equivalence, on the assumption
that Φ is. Naturally Φ′ is dense, so we must prove that it is full and faith-
ful, that is, for all M,N ∈ indΓ , the functor Φ′ induces an isomorphism
Homk(Γ ′)(M,N) ∼−→ HomA′(M,N).

Let F : k(Γ ) → k(Γ ′) denote the k-linear embedding which is the iden-
tity on all objects and all arrows except arrows of the form Xi → τ−1

A Xi−1,
the image of which is the corresponding sectional path. Let F ′ : indΓ →
indΓ ′ be the functor induced by F . We have a commutative diagram:

k(Γ ) k(Γ ′)

indΓ indΓ ′

F //

Φ

��
Φ′

��
F ′ //

In particular, if M,N ∈ indΓ , then

Homk(Γ ′)(M,N) = HomA′(M,N).
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If M = Yi (respectively, N = Yi) and HomA′(M,N) 6= 0, then N = Zij
(respectively, M is an A-module). Hence, if M or N is of the form Yi, then
Φ′ induces the required isomorphism Homk(Γ ′)(M,N) ∼−→ HomA′(M,N).
We may thus assume that M 6= Yi and N 6= Yi for all 1 ≤ i ≤ t.

Observe that the morphisms Zij → X ′
i in modA′ induced by the cor-

responding sectional path in Γ ′ are surjective. Moreover, if τ−1
A Xi−1 6= 0,

then the irreducible morphism Xi → τ−1
A Xi−1 in modA is surjective and

hence so is the irreducible morphism X ′
i → τ−1

A Xi−1 in modA′.
Let M 6∈ indΓ and N ∈ indΓ . Then M = Zij or M = X ′

i for some
i, j. A non-zero morphism f : M → N in modA′ can always be written as
f = gh, where h : M → τ−1

A Xi−1 is induced by the corresponding sectional
path in Γ ′. The morphism h belongs to the image of Φ′. By commuta-
tivity of the above diagram we infer that the morphism g belongs to the
image of the functor Φ′, too. So Φ′ induces a surjection Homk(Γ ′)(M,N) →
HomA′(M,N). On the other hand, h is an epimorphism in modA′ (by the
above observations) and F ′ is faithful. Consequently, the above surjection
is an isomorphism.

Similarly, if f : M → N is non-zero morphism in modA′ with M ∈
indΓ and N 6∈ indΓ , then f can be written as f = uv, for some v :
M → Xi and u : Xi → N induced by the corresponding sectional paths.
Since u is a monomorphism (now N is of the form Zij or X ′

i), it follows
from the commutativity of the above diagram that Φ′ induces the required
isomorphism Homk(Γ ′)(M,N) ∼−→ HomA′(M,N).

It remains to consider the case when M,N 6∈ indΓ . In this case, a non-
zero morphism f : M → N in modA′ can be written as f = pqr+s, where r :
M → τ−1

A Xi−1 and p : Xj → N are induced by the corresponding sectional
paths, q : τ−1

A Xi−1 → Xj and s is zero or a composition of irreducible
morphisms corresponding to arrows belonging to the support of the functor
Homk(Γ ′)(Z01,−). Since r, p and s belong to the image of Φ′, and so does q
(by the previous considerations), Φ′ induces a surjection Homk(Γ ′)(M,N) →
HomA′(M,N). Now s is non-zero in modA′ if and only if it is non-zero in
k(Γ ′). Similarly, since r is surjective and p is injective in modA′ and F is
faithful, pqr is non-zero in modA′ if and only if it is non-zero in k(Γ ′). So,
any non-zero morphism f : M → N in k(Γ ′) can be written as f = pqr + s
with r, q, p, s as above. Thus Φ′(f) = 0 implies 0 6= Φ′(s) = −Φ′(pqr). But
s does not factor through modules in Γ , while q does. This contradiction
shows that Φ′ induces an isomorphism Homk(Γ ′)(M,N) ∼−→ HomA′(M,N).
The proof is now complete.

As we are going to show, a new admissible operation (ad 4) (or (ad 4∗))
gives two possible shapes of the modified component Γ ′ depending on the
position of the finite sectional path Y1 → Y2 → . . .→ Yt in Γ .
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Example 2.2. Consider the algebra A given by the quiver

1◦ 4◦

◦
3

6 ◦ ◦
2

◦
5

◦
7

◦
8

α
��~~
~β__@@@

δ��~~
~λ

wwooo
ooo

o
γ

__@@@
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__@@@

ν
oo

bound by αλ = 0, γλ = 0. The Auslander–Reiten quiver ΓA has a standard
component which is a tube of the form (see [4])
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|
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where the indecomposables are represented by their dimension vectors and
one identifies along the vertical dotted lines to form the tube.

We can apply (ad 4) with pivot the idecomposable A-module X with

dimension vector
0 0
1
00 0
0 0

and with a finite sectional path Y1 → Y2, where

Y1, Y2 are the A-modules with the dimension vectors respectively
0 0
0
00 0
1 0

,
0 0
0
00 0
1 1

,

or with the dimension vectors
0 0
0
00 0
1 1

and
0 0
0
00 0
0 1

. In the first case, the modified

algebra A1 = A[X ⊕ Y ] is given by the quiver



66 P. MALICKI
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bound by αλ = 0, γλ = 0, %λ = 0, σµ = 0, %β = 0, %δ = 0. The Auslander–
Reiten quiver ΓA1 has a standard component which is the modified compo-
nent Γ1 of Γ , of the form

V

1 1
1
01 10
0 0

0 0
1
10 00
0 0

U
0 0
0
00 00
1 1

0 0
1
00 01
0 0

1 1
1
01 10
0 0

|
1 1
2
11 10
0 0

U
0 0
0
00 00
1 0

0 0
1
00 01
1 1

1 1
2
01 11
0 0

|

1 1
3
11 11
0 0

1 1
2
11 10
1 0

V
0 0
1
00 01
1 0

1 1
2
01 11
1 1

1 1
3
11 11
0 0

|
1 1
2
11 10
1 1

0 0
1
00 00
0 0

1 1
2
01 11
1 0

|

|
1 1
2
01 10
0 0

1 1
2
01 10
0 0

|

| |

| |

7777 ��

7777 ��

7777 ��

7777 ��

CC����

7777 ��

7777 ��

7777 ��

CC����

7777 ��

7777 ��

CC����

7777 ��

CC����

7777 ��

CC����

7777 ��

CC����

7777 ��

CC����

7777 ��

7777 ��

CC����

7777 ��

CC����

......
......

CC����

7777 ��

CC����

7777 ��

CC����

7777 ��

CC����

......

CC����

......

......

CC����

7777 ��

CC����

7777 ��

CC����

.........

......

CC����

......
......

CC����

......

where U =
0 0
1
10 00
1 0

, V =
0 0
1
10 00
1 1

, and where we identify the two copies with

dimension vector U and also the two copies with dimension vector V .
In the second case, the modified algebra A2 = A[X ⊕ Y ] is given by the

quiver
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bound by αλ = 0, γλ = 0, %λ = 0, %β = 0, %δ = 0, σνµ = 0. The Auslander–
Reiten quiver ΓA2 has a standard component which is the modified compo-
nent Γ2 of Γ , of the form
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denotes that X is injective and Y is projective.
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Let Γ be a component obtained from a stable tube T by an admissible
operation of type (ad 1), (ad 2), (ad 3), (ad 1∗), (ad 2∗) or (ad 3∗). It
is known that in this case the fundamental group π1(T ) does not change,
namely π1(Γ ) = π1(T ) = Z. It is easily seen that if Γ ′ is a component
obtained from T by an admissible operation of type (ad 4) or (ad 4∗), then
π1(Γ ′) = Z ? Z is the non-commutative, free group with two generators.
As we can see in the above example the reason lies in the appearance of a
hole and a Möbius strip on the periphery of the component Γ ′ or of a hole
(depending on occurrence of a finite ray or a finite coray).

3. Weakly separating families of generalized coils. In this section,
we recall the definition of weakly separating families which was introduced
in [5]. We shall introduce generalized coil enlargements as a straightforward
generalization of the definition of coil enlargements in [5].

Definition 3.1. Let A be an algebra. A family T = (Ti)i∈I of compo-
nents of ΓA is called a weakly separating family in mod A if the idecompos-
able A-modules not in T split into two classes P and Q such that:

(i) The components (Ti)i∈I are standard and pairwise orthogonal.
(ii) HomA(Q,P) = HomA(Q, T ) = HomA(T ,P) = 0.
(iii) Any morphism from P to Q factors through add T .

Lemma 3.2. Let A be an algebra, and T be a weakly separating family in
modA, separating P from Q. Then P and Q are uniquely determined by T .

P r o o f. See [5, 2.1].

Definition 3.3. A translation quiver Γ is called a generalized coil if
there exists a sequence of translation quivers Γ0, Γ1, . . . , Γm = Γ such that
Γ0 is a stable tube and, for each 0 ≤ i < m, Γi+1 is obtained from Γi by
an admissible operation of type (ad 1), (ad 2), (ad 3), (ad 4) or (ad 1∗),
(ad 2∗), (ad 3∗), (ad 4∗).

Proposition 3.4. Let Γ be a generalized coil. There exists a triangular
algebra A such that Γ is a standard component of ΓA.

P r o o f. Let Γ0, Γ1, . . . , Γm=Γ be a sequence of translation quivers as in
the Definition 3.3. Naturally, there exists a tame hereditary algebra B having
the stable tube Γ0 as a standard component. Inductively, we construct a
sequence of algebras B = A0, A1, . . . , Am = A such that Ai+1 is obtained
from Ai by the admissible operation of type (ad 1), (ad 2), (ad 3), (ad 4) or
their duals (ad 1∗), (ad 2∗), (ad 3∗), (ad 4∗) with pivot in Γi such that the
component of ΓAi+1 containing the pivot is Γi+1. It is easily seen that the
condition for standardness in Lemma 2.1 is satisfied at each step. This shows
that Γ is a standard component of ΓA. The triangularity of the algebra A
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follows from the fact that A is obtained from a tame hereditary algebra by
a sequence of one-point extensions and coextensions.

Definition 3.5. Let A be an algebra, and T be a weakly separating
family of stable tubes of ΓA. An algebra B is called a generalized coil en-
largement of A using modules from T if there is a finite sequence of algebras
A = A0, A1, . . . , Am = B such that, for each 0 ≤ j < m,Aj+1 is obtained
from Aj by an admissible operation of type (ad 1), (ad 2), (ad 3), (ad 4) or
one of their duals with pivot either on a stable tube of T or on a generalized
coil of ΓAj

, obtained from a stable tube of T by means of the sequence of
admissible operations done so far. The sequence A = A0, A1, . . . , Am = B
is then called an admissible sequence.

Definition 3.6. Let B be a generalized coil enlargement of A using
modules from the weakly separating family T = (Ti)i∈I of stable tubes. The
generalized coil type cB = (c−B , c

+
B) of B is a pair of functions c−B , c

+
B : I → N

defined by induction on 0 ≤ j < m, where A = A0, A1, . . . , Am = B is an
admissible sequence.

(i) cA = c0 = (c−0 , c
+
0 ) is the pair of functions c−0 = c+0 such that, for

each i ∈ I, the common value of c−0 (i) and c+0 (i) is the rank of the stable
tube Ti.

(ii) Assume cAj−1 = cj−1 = (c−j−1, c
+
j−1) is known, and let tj be the

parameter of the admissible operation leading from Aj−1 to Aj , then cAj =
cj = (c−j , c

+
j ) is the pair of functions defined by:

c−j (i) =


c−j−1(i) + tj + 1 if the operation is (ad 1∗), (ad 2∗), (ad 3∗) or

(ad 4∗) with pivot in the generalized coil of
ΓAj−1 arising from Ti,

c−j−1(i) otherwise,

and

c+j (i) =


c+j−1(i) + tj + 1 if the operation is (ad 1), (ad 2), (ad 3) or

(ad 4) with pivot in the generalized coil of
ΓAj−1 arising from Ti,

c+j−1(i) otherwise.

It is easy to see that the generalized coil type of a generalized coil en-
largement B of A does not depend on the sequence of admissible operations
leading from A to B since, for each i ∈ I, the integers c−B(i) and c+B(i) mea-
sure the rank of Ti plus, respectively, the total numbers of corays and rays
inserted in Ti by the sequence of admissible operations.

Note that in Example 2.2 we have cA = ((2, 2, 5), (2, 2, 2)), cA1 = cA2 =
((2, 2, 5), (2, 2, 5)), cB = ((2, 2, 5), (2, 2, 7)).
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Let B be a generalized coil enlargement of an algebra A having a weakly
separating family of stable tubes. Its type cB=(c−B , c

+
B) is called tame if each

of the sequences c−B and c+B equals up to permutation one of the following:
(p, q), 1 ≤ p ≤ q, (2, 2, r), 2 ≤ r, (2, 3, 3), (2, 3, 4), (2, 3, 5) or (3, 3, 3), (2, 4, 4),
(2, 3, 6), (2, 2, 2, 2).

Lemma 3.7. Let A be an algebra, Γ be a standard component of ΓA and
X ∈ Γ be an (ad 4) or (ad 4∗)-pivot. Let A′ be the modified algebra and Γ ′

be the modified component. Any indecomposable A′-module whose restriction
to A has an indecomposable direct summand of the form Xi, for some i ≥ 0,
belongs to Γ ′.

P r o o f. Similar to the proof of [5, 2.4].

Lemma 3.8. Let A be an algebra with a family T of generalized coils
weakly separating P from Q, Γ be a generalized coil in T and X be an
(ad 4)-pivot in Γ . Let A′ = A[X ⊕ Y ], where e denotes the extension point.
Let P ′, T ′,Q′ be the classes in indA′ defined as follows:

(i) P ′ = P.
(ii) T ′ consists of all indecomposables MA′ such that Me = 0 and M =

M|A is in (T \Γ )∪Γ ∗ (where Γ ∗ is as in Lemma 2.1), or Me 6= 0 and M|A
has an indecomposable direct summand of the form Xi, for some i ≥ 0.

(iii) Q′ consists of all indecomposables MA′ such that Me = 0 and M =
M |A is in Q ∪ (Γ \ Γ ∗) , or M = (k, 0, 0), or Me 6= 0 and indecomposable
direct summands of M |A belong either to the set {Y1, Y2, . . . , Yt} or to the
support of HomA(X,−)|Q.

Then indA′ = P ′ ∨ T ′ ∨Q′, and T ′ separates weakly P ′ from Q′.
P r o o f. Similar to the proof of [5, 2.5 and 2.6], involving additionally

Lemmas 2.1 and 3.7.

Theorem 3.9. Let A be an algebra with a family T of stable tubes weakly
separating P from Q, and let B be a generalized coil enlargement of A using
modules from T . Then modB has a family T ′ of generalized coils, weakly
separating P ′ from Q′.

P r o o f. Let A = A0, A1, . . . , Am = B be an admissible sequence. We
prove the statement by induction on 0 ≤ i ≤ m. It holds for i = 0 by the
hypothesis on A. Assume that it holds for some 0 ≤ i < m. That it also
holds for i+ 1 follows from [5, 2.7], and from Lemma 3.8 and its dual.

4. Maximal branch enlargements inside a generalized coil en-
largement. Let A be an algebra with a weakly separating family T of stable
tubes and B be a generalized coil enlargement of A using modules from T .
By Theorem 3.9, indB = P ′ ∨ T ′ ∨ Q′, where T ′ is a family of generalized



COIL ENLARGEMENTS 71

coils weakly separating P ′ from Q′. We want to describe the full subcate-
gories P ′ and Q′ of indB. For this purpose, we will show (similarly to [5])
that the admissible sequence leading from A to B can be replaced by an-
other admissible sequence, which consists of a block of operations of type
(ad 1∗), followed by a block of operations of types (ad 1), (ad 2), (ad 3),
(ad 4), and the dual fact.

Lemma 4.1. Let A be an algebra with a weakly separating family T of
generalized coils, and A′ be obtained from A by applying one of the following
pairs of admissible operations: (ad 4) and (ad 1∗), (ad 4) and (ad 2∗), (ad 4)
and (ad 3∗), (ad 4) and (ad 4∗), (ad 3) and (ad 4∗), (ad 2) and (ad 4∗) or
(ad 1) and (ad 4∗) using modules from T . Suppose that :

(i) the pivot of the second operation belongs to no ray , or coray , inserted
by the first ; and

(ii) in case the second operation is of type (ad 3) or (ad 3∗) and is applied
first to A, the pivot of the first still belongs to the family of generalized coils
obtained from T .

Then, denoting by A′′ the algebra obtained from A by applying the two
operations in reverse order , we have A′ ∼= A′′.

P r o o f. Since the admissible operations (ad 1), (ad 2), (ad 3), (ad 4)
and their duals consist of one-point extensions or coextensions, it is easily
seen that both algebras have the same bound quiver.

Lemma 4.2. Let A be an algebra with a weakly separating family T of
generalized coils, and X be an indecomposable in a generalized coil of T
which is an (ad 1) and (ad 1∗)-pivot. Let c be the root of a branch of length t,
and let K,K ′ be the branches constructed as follows: K consists of a root a,
the branch in c and an arrow a→ c, while K ′ consists of a root b, the branch
in c and an arrow c → b. Then [X ⊕ Y ](A[X,K]) ∼= ([K ′, X]A)[X ⊕ Y ],
where Y = Y1 is the first module which belongs to a finite sectional path (as
in definition of (ad 4) and (ad 4∗)).

P r o o f. Let A1 be an algebra with a weakly separating family T of
generalized coils, and X be an indecomposable in a generalized coil Γ of
T which is an (ad 4∗)-pivot. We assume for the time being that A1 was
obtained from an algebra A by applying r consecutive operations of type
(ad 1), the first of which had X as a pivot, and these operations built up a
branch K in A1 with points a, a1, . . . , as, thus A1 = A[X,K] and X is an
indecomposable A[X,K]-module. Let A2 = [X ⊕ Y ]A1, where Y = Y1 as
in the definition of (ad 4∗), and let b denote the coextension point of A2.
The bound quiver of A2 is of the following form: the point a is a source of
two arrows, one of them goes to QA, and the other goes to a1 ∈ K. The
point b is a target of two arrows, one of them comes from QA, and the other
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comes from a1 ∈ K, with A2(a, b) one-dimensional. Let A′ be the convex
subcategory of A2 consisting of all points except a. Then A′ ∼= [K ′, X]A,
where K ′ is the branch with points b, a1, . . . , as and A2 = A′[X ⊕ Y ].

Because we have two possibilities for choosing a finite sectional path, we
must choose in (ad 4) and (ad 4∗) the corresponding cases. For example, if
we have executed operations of type (ad 1) and (ad 4∗) and in the last one
we have chosen a finite ray then in operation (ad 4) which will come after
(ad 1∗) we must choose a finite coray. The claim of the lemma follows from
the shape of the bound quiver of A′.

From the above lemma we see that the sequence of operations of type
(ad 1) that builds up K followed by (ad 4∗) (with pivot X) can be replaced
by the sequence of operations of type (ad 1∗) that builds up K ′ followed by
(ad 4) (with pivot X).

Theorem 4.3. Let A be an algebra with a weakly separating family T of
stable tubes, and B be a generalized coil enlargement of A using modules
from T . Then:

(i) There is a unique maximal branch coextension B− of A which is a
convex subcategory of B, and c−B is the coextension type of B−.

(ii) There is a unique maximal branch extension B+ of A which is a
convex subcategory of B, and c+B is the extension type of B+.

P r o o f. We will only prove (i), because the proof of (ii) is dual. We first
prove that the admissible sequence leading from A to B can be replaced by
another one consisting of block of operations of type (ad 1∗) followed by
a block of operations of type (ad 1), (ad 2), (ad 3), (ad 4). This is done
by induction on the number n of operations in this admissible sequence.
If n = 0, there is nothing to prove. Assume that n > 0, and let A =
A0, A1, . . . , An = B be the corresponding sequence of algebras. We assume
that the statement holds for An−1. If the nth operation is of type (ad 1),
(ad 2), (ad 3) or (ad 4), there is nothing to show. If it is of type (ad 1∗),
(ad 2∗) or (ad 3∗) we are able, by Lemma 4.1 and [5, 3.5], to replace the
given sequence by one of the required form. It remains to consider the case
where the nth operation is of type (ad 4∗). In the sequence there must be an
operation of type (ad 1) that gives rise to the pivot X of (ad 4∗). In this case
we apply Lemma 4.1 as long as (ad 4∗) will be after (ad 1) and then, using
Lemma 4.2, replace these two operations by one of type (ad 1∗) followed by
one of type (ad 4). Using again Lemma 4.1 we are able to replace the given
sequence by one of the required form.

Let now B− be the branch coextension of A determined by the block
of operations of type (ad 1∗) in the new admissible sequence. Since the
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remaining block in the sequence consists of operations of types (ad 1), (ad 2),
(ad 3), (ad 4), that is, one-point extensions or, in the case (ad 1), branch
extensions, it is clear that B− is a branch coextension of A maximal with
respect to the property of being a convex subcategory of B. Furthermore,
c−B is the coextension type of B− because, if T = (Ti)i∈I , then, for each
i ∈ I, c−B(i) equals the rank of Ti plus the number of corays inserted in Ti
by the sequence of admissible operations of type (ad 1∗).

The proof of uniqueness of B− is identical as in [5, 3.5]. We shall repeat
it here for the convenience of the reader. Let B∗ be a branch coextension of
A inside B. We first note that, by construction of B−, all the coextension
points of A inside B must belong to B−. Now, if b is a point in B∗, it must
belong to a coextension branch of A inside B, hence, since the root of this
branch belongs to B−, the point b itself must belong to B− (by construction
of the latter). This shows that B∗ is contained in B− and completes our
proof.

Example 4.4. Let B be the algebra given by the quiver
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bound by αλ = 0, γλ = 0, %λ = 0, σµ = 0, %β = 0, %δ = 0, ϕνµ = 0. Then
the algebra B is obtained from A1 by an admissible operation of type (ad 1)

with pivot the indecomposable A1-module with dimension vector
0 0
0
00 00
1 1

, and

with parameter t = 1. The algebra B− coincides with the algebra A from
Example 2.2. The algebra B+ is given by the convex subcategory of B
consisting of all the points except 6.

5. The module category of a generalized coil enlargement. We
now complete the description of the module category of a generalized coil
enlargement of an algebra having a weakly separating family of stable tubes.
Let K be a branch in a (see [15]), and A = kQA/IA be any k-algebra and
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E ∈ modA. Recall that the branch extension A[E,K] by the branch K
is constructed in the following way: to the one-point extension A[E] with
extension vertex w (that is, radPw = E) we add the branch K by identifying
the vertices a and w. If E1, . . . , En ∈ modA and K1, . . . ,Kn is a set of
branches, then the branch extension A[Ei,Ki]ni=1 is defined inductively as
A[Ei,Ki]ni=1 = (A[Ei,Ki]n−1

i=1 )[En,Kn]. The concept of branch coextension
is defined dually.

Following [15, 4.7] let

R(K) = {M ∈ indK | 〈lK ,dimM〉 > 0},
L(K) = {M ∈ indK | 〈dimM, lK〉 > 0},

where K is a branch and lK is the branch length function (see [15, 4.4]).
The main result of this section generalizes [5, 4.1].

Theorem 5.1. Let A be an algebra with a family T = (Ti)i∈I of stable
tubes weakly separating P from Q. Let B be a generalized coil enlargement
of A using modules from T , and B− = s

j=1[K
∗
j , E

∗
j ]A,B

+ = A[Ei,Ki]ri−1.
Let P ′ be the class of all indecomposable B-modules M such that either
M |A is non-zero and in P, or else SuppM is contained in some K∗

j and
M ∈ L(K∗

j ). Let Q′ be the class of all indecomposable B-modules N such
that either N |A is non-zero and in Q, or else SuppN is contained in some
Ki and N ∈ R(Ki). Then there exists a family T ′ = (T ′i )i∈I of generalized
coils in ΓB such that indB = P ′∨T ′∨Q′, P ′ consists of B−-modules, and
Q′ consists of B+-modules.

P r o o f. Following the proof of [5, 4.1], we have to use additionally two
properties of the admissible operations of types (ad 4) and (ad 4∗):

(i) The sequence of admissible operations leading from A to B can be
replaced by a sequence consisting of a block of operations of type (ad 1∗)
followed by a block of operations of types (ad 1), (ad 2), (ad 3), (ad 4) (and
its dual), a fact which follows from the proof of Theorem 4.3.

(ii) Theorem 3.9.

Corollary 5.2. Let A be a tame concealed algebra and T be its unique
P1(k)-family of stable tubes. Let B be a generalized coil enlargement of A
using modules from T . The following conditions are equivalent :

(a) B is tame,
(b) B− and B+ are tame,
(c) B is of polynomial growth,
(d) B is of linear growth,
(e) cB is tame,
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(f) The Tits form qB of B is weakly non-negative.

Moreover , B is domestic if and only if both B− and B+ are tilted algebras
of Euclidean type.

P r o o f. (a)⇒(b). Clear, since B− and B+ are full convex subcategories
of B.

(b)⇒(d). By [1, 2.3] and [11, 2.1], B− and B+ are both of linear growth.
Applying Theorem 5.1, B itself is of linear growth.

(c)⇒(a). Trivial.
(d)⇒(c). Trivial.
(a)⇒(f). Follows from [12, 1.3].
(f)⇒(e). Because B− and B+ are full convex subcategories of B, each

of the Tits forms qB− and qB+ is weakly non-negative, and by [14, 3.3], cB
is tame.

(e)⇒(b). This follows from [15, 4.9, (2), and 5.2, (4)].
The last assertion follows from [4, 2.3], and [15, 4.9, (1)].

To end this section we describe some homological properties of general-
ized coil enlargements of tame concealed algebras. Analogous facts about
coil enlargements of tame concealed algebras have been proved by J. A. de
la Peña and A. Skowroński in [13] (Proposition 1.2, Corollaries 1.3 and 1.4).
We formulate the relevant facts without proofs, because the proofs from
[13] can be easily extended to the case of a generalized coil enlargement.
The most important ingredient in these proofs is the existence of both a
unique maximal tubular extension B+ of A and unique maximal tubular
coextension B− of A (which follows from Theorem 4.3).

As we have shown, for a generalized coil enlargement B of A, the Auslan-
der–Reiten quiver ΓB of B contains a family T ′ = (T ′λ)λ∈P1(k) of generalized
coils obtained from the family T = (Tλ)λ∈P1(k) of stable tubes of ΓA by the
corresponding sequence of admissible operations. If B is tame, we say that
B is a generalized coil algebra.

Proposition 5.3. Let B be a generalized coil enlargement of a tame
concealed algebra A and X be an indecomposable B-module lying in a gen-
eralized coil T ′λ of T ′. Then:

(i) pdB X ≤ 2 and idB X ≤ 2.
(ii) ExtrB(X,X) = 0 for r ≥ 2.

Corollary 5.4. Let B be a generalized coil enlargement of a tame con-
cealed algebra A. Then gl.dimB ≤ 3 and for any indecomposable B-module
X, either pdB X ≤ 2 or idB X ≤ 2.
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Corollary 5.5. Let B be a generalized coil algebra and X be an inde-
composable B-module. Then ExtrB(X,X) = 0 for any r ≥ 2.

6. Construction of the tame iterated generalized coil enlarge-
ments. In [18] B. Tomé described algebras obtained by iteration of the pro-
cess given in [5] for defining the tame coil enlargements of a tame concealed
algebra, and called the resulting class of algebras iterated coil enlargements.
She also gave a complete description of their module categories.

In this section we show how to iterate the procedure described in Sec-
tion 3 of this paper, in the spirit of [18] (compare also with [14]), in order to
obtain the tame algebras. We call these algebras tame iterated generalized
coil enlargements, and we give a description of their module categories.

Recall that if A is a domestic tubular extension of the tame concealed
algebra, then its module category may be described as follows: modA = P∨
T ∨Q, where P is a preprojective component, Q is a preinjective component
and T is a tubular P1(k)-family separating P from Q (see [15, 4.9]).

If A is a tubular algebra, then we know from [15, 5.2] that A is non-
domestic of polynomial growth (see [16, 3.6]) and

indA = P0 ∨ T0 ∨
∨
γ∈Q+

Tγ ∨ T∞ ∨Q∞,

where P0 is a semi-regular preprojective component, Q∞ is a semi-regular
preinjective component, T0 is a P1(k)-family of ray tubes separating P0

from
∨
γ∈Q+ Tγ ∨ T∞ ∨Q∞, T∞ is a P1(k)-family of coray tubes separating

P0∨T0∨
∨
γ∈Q+ Tγ fromQ∞ (because A is also a cotubular algebra), and each

Tγ , γ ∈ Q+, where Q+ is the set of all positive rationals, is a P1(k)-family
of stable tubes separating P0 ∨ T0 ∨

∨
δ<γ Tδ from

∨
γ<δ Tδ ∨ T∞ ∨Q∞.

Domestic tubular extensions and coextensions and tubular algebras are
obtained from a tame concealed algebra by performing a sequence of admis-
sible operations (ad 1) or (ad 1∗) in the stable tubes of its separating tubular
family. We call these algebras 0-tame iterated generalized coil enlargements.

Let Λ0 be a branch coextension of a tame concealed algebra A0, and
assume that Λ0 is domestic or tubular. Then indΛ0 = P0 ∨ T0 ∨Q0, where
P0 is the preprojective component of ΓΛ0 , Q0 is the preinjective component
of ΓΛ0 , and T0 is a tubular family separating P0 from Q0. Using admissible
operations of types (ad 1), (ad 2), (ad 3), (ad 4), we insert projectives in
the coinserted and stable tubes of T0. We obtain a generalized coil enlarge-
ment Λ1 of A0 with Λ−1 = Λ0. If Λ+

1 is tame, we call Λ1 a 1-tame iterated
generalized coil enlargement. By Theorem 5.1, indΛ1 = P0∨T ′0 ∨Q′0, where
T ′0 is the weakly separating family of the generalized coil obtained from T0,
and Q′0 consists of Λ+

1 -modules.
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If Λ+
1 is domestic, then Q′0 is the preinjective component of ΓΛ+

1
and the

process stops.
If Λ+

1 is tubular, then Λ+
1 is a branch coextension of a tame concealed

algebra A1, and we can write

indΛ+
1 = P1

0 ∨ T 1
0 ∨

∨
γ∈Q+

T 1
γ ∨ T 1

∞ ∨Q1
∞,

where Q1
∞ is the preinjective component of ΓA1 , and T 1

∞ is the separating
tubular family of modΛ+

1 that is obtained from the family of stable tubes
of modA1 by coray insertions. Then Q′0 =

∨
γ∈Q+ T 1

γ ∨ T 1
∞ ∨Q1

∞, and

indΛ1 = P0 ∨ T ′0 ∨
∨
γ∈Q+

T 1
γ ∨ T 1

∞ ∨Q1
∞.

Lemma 6.1. With the notation introduced above:

(i) T 1
∞ is a tubular family separating P0 ∨ T ′0 ∨

∨
γ∈Q+ T 1

γ from Q1
∞.

(ii) For each γ ∈ Q+, T 1
γ is a tubular family separating P0∨T ′0 ∨

∨
δ<γ T 1

δ

from
∨
γ<δ T 1

δ ∨ T 1
∞ ∨Q1

∞.

P r o o f. Analogous to the proof of [18, 3.1].

Let P1 = P0 ∨ T ′0 ∨
∨
γ∈Q+ T 1

γ , T1 = T 1
∞ and Q1 = Q1

∞. Then we can
write indΛ1 = P1 ∨ T1 ∨ Q1, where T1 is a separating tubular family in
mod Λ1 consisting of coinserted and stable tubes, and Q1 is the preinjective
component of ΓΛ1 .

Now we can iterate the process as follows: using admissible operations
of types (ad 1), (ad 2), (ad 3), (ad 4), we insert projectives in the tubes of
T1. We obtain a generalized coil enlargement Λ2 of A1 with (Λ2)− = Λ+

1 .
If (Λ2)+ is tame, we call the algebra Λ2 obtained from Λ1 by inserting
projectives in the tubes of T1 a 2-tame iterated generalized coil enlargement.

By Theorem 3.9 we know that indΛ2 = P1 ∨ T ′1 ∨ Q′1, where T ′1 is the
weakly separating family of generalized coils obtained from T1. We want to
describe Q′1. As before, using Theorem 5.1 we have indΛ2 = P2 ∨ T 2 ∨Q2,
where T 2 = T ′1 and Q2 consists of (Λ2)+-modules.

Lemma 6.2. With the above notation, Q′1 = Q2.

P r o o f. As in [18, 3.2].

If (Λ2)+ is domestic, then Q′1 is the preinjective component of Γ(Λ2)+

and the process stops.
If (Λ2)+ is tubular, then it is a branch coextension of a tame concealed

algebra A2, and we can write

ind (Λ2)+ = P2
0 ∨ T 2

0 ∨
∨
γ∈Q+

T 2
γ ∨ T 2

∞ ∨Q2
∞,
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where Q2
∞ is the preinjective component of ΓA2 , and T 2

∞ is the separating
tubular family of mod (Λ2)+ that is obtained from the family of stable tubes
of modA2 by coray insertions. Then

Q′1 =
∨
γ∈Q+

T 2
γ ∨ T 2

∞ ∨Q2
∞,

and defining P2 = P1 ∨ T ′1 ∨
∨
γ∈Q+ T 2

γ , T2 = T 2
∞ and Q2 = Q2

∞, we can
write indΛ2 = P2 ∨ T2 ∨ Q2, where T2 is a separating tubular family in
modΛ2 consisting of coinserted and stable tubes, and Q2 is the preinjective
component of ΓΛ2 . Now we can iterate the process once more.

By induction, we define the n-tame iterated generalized coil enlargements
of a tame concealed algebra.

Let A be a tame iterated generalized coil enlargement. From the descrip-
tion of indA, given above, we immediately obtain the following facts.

Proposition 6.3. If A is a tame iterated generalized coil enlargement
of a tame concealed algebra, then

(i) A is of polynomial growth.
(ii) qA is weakly non-negative.

P r o o f. (i) follows from [18, 3.3] and Corollary 5.2, (ii) follows from (i)
and [12, 1.3].

Example 6.4. In this example, Λn is an n-tame iterated generalized coil
enlargement of a tame concealed algebra. Λ0 is given by the quiver

◦

◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦

λ��

µ
��α // β //

ε
��

γoo δoo

ξoo ηoo

bound by βε = 0, λµε = 0; Λ1 is given by the quiver

◦

◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦

λ��

µ
��

%oo

σ
��

ω //

η

��

α // β //

ε
��

γoo δoo

ξoo
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bound by βε = 0, λµε = 0, %µ = σδγ, ωηξ = 0; Λ2 is given by the quiver
◦

◦

◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦

χ
�� ψ

@@@@@@@@@ ��
ϕ

														��

λ��

µ
��

%oo

σ
��

ω //

η

��

α // β //

ε
��

γoo δoo

ξoo

bound by βε = 0, λµε = 0, %µ = σδγ, ωηξ = 0, ψω = 0, ψ% = χλ, χλµ =
ϕαβ.

7. The main theorem. In this section we generalize the definition
of acceptable projectives given in [18]. We show that an algebra A having
acceptable projectives is triangular and consequently, by [7] the Tits form
qA of A is defined. The main result of this section is the generalization of
Theorem 4.3 from [18].

Definition 7.1. Let A be a finite-dimensional, basic and connected
k-algebra. An algebra A has acceptable projectives if the Auslander–Reiten
quiver ΓA of A has components P, C1, . . . , Cr with the following properties:

(i) Any indecomposable projective A-module lies in P or in some Ci.
(ii) P is a preprojective component without injective modules.
(iii) Each Ci is a standard generalized coil.
(iv) If HomA(Ci, Cj) 6= 0, then i ≤ j.

Observe that tame iterated generalized coil enlargements of tame con-
cealed algebras have acceptable projectives.

Lemma 7.2. If an algebra A has acceptable projectives, then A is trian-
gular.

P r o o f. Assume that A is not triangular. Let P, C1, . . . , Cr be as in the
above definition. Then there exists a cycle in modA consisting of indecom-
posable projective modules none of which lies in P, for otherwise P would
contain a cycle. Hence the indecomposable projective modules in the cycle
lie in the standard generalized coils C1, . . . , Cr. From Definition 7.1(iv), they
all lie in one standard generalized coil Ci. Thus Ci contains a cycle of pro-
jectives and we obtain a contradiction with Proposition 3.4.

Assume that an algebra A has acceptable projectives and let P, C1, . . . , Cr
be as in Definition 7.1. Consider the standard generalized coil Cr. From
[3, 4.5] we know that if C is a coil then the mesh-category k(C) has no
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oriented cycle of projectives. Therefore, if there exists a cycle in the mesh-
category k(Cr), then the projective P which is generated by step (ad 4) is
equal to some projective P ′ which was in k(Cr) before applying (ad 4), which
is impossible. Analogously we see that the admissible operations performed
after the step (ad 4) have not created an oriented cycle of projectives.

Consequently, the mesh-category k(Cr) has no oriented cycle of projec-
tives, there is a projective P in Cr such that P is a sink in the full subcategory
of k(Cr) consisting of projectives, that is, the support of Homk(Cr)(P,−)
contains no projective. In comparison to [18, 4.2] we have to consider an
additional case.

Let P = Pa be as in Section 2, and A′ = A/AeaA. Denote by R the set
of the vertices X ′

i, i ≥ 0 and Zij , 1 ≤ j ≤ t, of a mesh-complete translation
subquiver Cr (compare the figure in the description of (ad 4) in Section 2).

Let C′r be the translation quiver obtained from Cr by deleting R and
replacing the sectional paths Xi → Zij → . . . → X ′

i → τ−1
A Xi−1 (if they

exist) by the respective compositions Xi → τ−1
A Xi−1.

Proposition 7.3. With the notation introduced above, we have:

(i) A = A′[X ⊕ Y ], where X is an indecomposable direct summand of
radP , Y is a directing module and radP = X ⊕ Y .

(ii) A′ has acceptable projectives and C′r is a standard generalized coil
of ΓA′ .

P r o o f. (i) Since P =Pa is a sink in the full subcategory of indA con-
sisting of projectives, the vertex a is a source in QA. Hence A=A′[X ⊕ Y ],
where X is the indecomposable direct summand of radP that belongs to
modA′, Y is a directing module such that radP = X ⊕ Y .

(ii) Since Cr is a generalized coil, so is C′r. Standardness of C′r follows
from that of Cr (see [18, 4.2] or [3, Lemma 5.3]). Because P, C1, . . . , Cr−1, C′r
are the components of ΓA′ where the projectives lie, we see that A′ has
acceptable projectives.

Theorem 7.4. Let A be an algebra with acceptable projectives. Then the
following conditions are equivalent :

(i) A is a tame iterated generalized coil enlargement of a tame concealed
algebra.

(ii) A is tame.
(iii) qA is weakly non-negative.

P r o o f. (i)⇒(ii) is Proposition 6.3.
(ii)⇒(iii) follows from [12].
(iii)⇒(i). Let P, C1,. . ., Cr be the components of ΓA where the projectives

lie, with P preprojective without injective modules, and C1, . . . , Cr standard
generalized coils such that HomA(Ci, Cj) 6= 0 implies i ≤ j. Let A′, C′r and
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P = Pa be as in Proposition 7.3 and in [18, 4.2, Proposition]. Then A′ has
acceptable projectives, and P, C1, . . . , Cr−1, C′r (if it still has projectives) are
the components of ΓA′ where the projectives lie. We proceed by induction
on the number p of projectives in the standard generalized coils C1, . . . , Cr.

If p = 0, then P is a preprojective component. By [14, 1.3] and [15, 4.9],
A is a domestic tubular coextension of a tame concealed algebra, that is, a
0-tame iterated generalized coil enlargement.

Let p > 0. Since A′ is convex in A, qA′ is weakly non-negative. By induc-
tion hypothesis, A′ is an n-tame iterated generalized coil enlargement. Thus,
A′ = Λn, where Λn is obtained from an (n − 1)-tame iterated generalized
coil enlargement Λn−1 by inserting projectives using admissible operations
of types (ad 1), (ad 2), (ad 3), or (ad 4) in the last separating tubular family
Tn−1 of mod Λn−1 (we may assume n ≥ 1).

Using the notation introduced in Section 6, we see that if modΛn−1 =
Pn−1 ∨ Tn−1 ∨ Qn−1 then modΛn = Pn−1 ∨ T ′n−1 ∨ Q′n−1, where T ′n−1 is
the last weakly separating family of generalized coils containing projectives
in modΛn. Hence C′r belongs to T ′n−1 ∨ Q′n−1. Also, there is a generalized
coil enlargement Λn of a tame concealed algebra An−1 such that mod Λn =
Pn∨T ′n−1∨Q′n−1, and the branch extension (Λn)+ of An−1 is either domestic
or tubular.

If (Λn)+ is domestic, then Q′n−1 is the preinjective component of Γ(Λn)+

and C′r belongs to T ′n−1. By performing the admissible operation on C′r to ob-
tain A from A′, we get another generalized coil enlargement of An−1 which,
being convex in A, has weakly non-negative Tits form. By Corollary 5.2, it is
tame and therefore A is also an n-tame iterated generalized coil enlargement.

If (Λn)+ is a tubular algebra, then it is a branch coextension of a tame
concealed algebra An, and

Q′n−1 =
∨
γ∈Q+

T nγ ∨ T n∞ ∨Qn∞,

whereQn∞ is the preinjective component of ΓAn , and T n∞ is obtained from the
separating tubular family of modAn by coray insertions. Then modΛn =
Pn∨Tn∨Qn, where Pn = Pn−1∨T ′n−1∨

∨
γ∈Q+ T nγ , Tn = T n∞ and Qn = Qn∞.

In this case C′r must belong to Tn, otherwise we can construct a vector x with
non-negative coordinates such that qA(x) < 0. Indeed, if X is the indecom-
posable direct summand of radP that lies in modA′ and X ∈ T ′n−1, then
Λn[X] is also a generalized coil enlargement of An−1 which, being convex
in A, has weakly non-negative Tits form and, by Corollary 5.2, is tame, so
A is an n-tame iterated generalized coil enlargement. This contradicts the
fact that (Λn)+ is a tubular algebra (because by construction of the tame
iterated generalized coil enlargement of a tame concealed algebra we obtain
in this step an (n+1)-tame iterated generalized coil enlargement). Therefore
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X ∈ Q′n−1. If X 6∈ Tn, then by Lemma 6.1, there exist γ ∈ Q+ and a mod-
ule Y ∈ T nγ such that q(Λn)+(dimY ) = 0 and Hom(Λn)+(X,Y ) 6= 0. Since
(Λn)+[X] is convex in A and gl.dim(Λn)+[X] ≤ 3, we get, for ea = dimSa,

qA(2 dimY + ea) = q(Λn)+[X](2 dimY + ea) = 2(dimY, ea)(Λn)+[X] + 1 < 0

because we have
(dimY, ea)(Λn)+[X] = 〈dimY, ea〉+ 〈ea,dimY 〉

= 〈dimY,dim Ia〉+ 〈dimPa − dimX, dimY 〉
= −〈dimX, dimY 〉 = −dim Hom(Λn)+(X,Y ) < 0.

Hence we obtain a generalized coil enlargement Λn+1 of An which, being
convex in A, has a weakly non-negative Tits form. By Corollary 5.2, Λn+1

is tame. Therefore A is an (n+1)-tame iterated generalized coil enlargement
of a tame concealed algebra.

Corollary 7.5. Let A be an algebra with acceptable projectives which
has a sincere indecomposable module. Then the following conditions are
equivalent :

(i) A is either a 0-tame iterated or a 1-tame iterated generalized coil
enlargement.

(ii) A is tame.
(iii) qA is weakly non-negative.

P r o o f. Follows from Theorem 7.4 and the fact that 0-tame iterated and
1-tame iterated generalized coil enlargements have indecomposable sincere
modules.
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