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1. Introduction. Let P and @) be non-zero relatively prime integers, «
and B (a > ) be the zeros of 22 — Pz + Q, and, for n > 0, let

a — /Bn
Vi, =Vo(P,Q) =a" + p".
It is known that there exist only a finite number of integers n such that
Un(P,Q) is a square (= 0J); however, the bound on n, although effectively
computable, is, in general, extremely large [6]. If P and @ are odd integers,
the square terms of the sequence {U, (P, Q)} are known [8]. Much less is
known when P is even: for an arbitrary even P, the square terms are only
known when Q = 1 or @ = P — 1, and when () = —1 it is known that
{Un(P,Q)} has at most two square terms. These results are derived from
W. Ljunggren’s work concerning certain Diophantine equations (see [2], [3],
[4], and, also, [5]).

If @ #+1or P—1, and P is even, the best result in the effort to solve
U, (P, Q) =0 was obtained in 1983 when Rotkiewicz [10] showed that if P is
even and =1 (mod 4), then U, (P, Q) = O only if n is an odd square or an
even integer # 2Ft1 whose largest prime factor divides the discriminant D
(= P? - 4Q).

In this paper, we improve upon Rotkiewicz’s results by showing that if
Piseven and @ =1 (mod 4), then, for n > 0, U, (P, Q) = O only if all the
prime factors of n belong to a small known finite set: each is a prime factor
of D. We show, further, that if p is a prime and p? | n, then Up2u is a square
foru =1,...,t. In addition, for even values of n, we show that U,, = [J only
if P =[J or 200. Finally, we obtain corresponding results for U, = 2[J. At

the end of the paper, we give several infinite sets of pairs (P, Q) for which
Un(P,Q) # 0 for n > 2.
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MAIN THEOREM. Let n > 0. If P is even, @ =1 (mod 4), and U,, = 0O,
then n is a square, or twice an odd square, and all prime factors of n
divide D; if p* > 2 is a prime divisor of n and 1 < u < t, then Upu = O if
u is even and Upw = pU if u is odd. If n is even, then U, = [ only if, in
addition, P =0 or 2.

2. Restrictions, notation and preliminary results. We shall assume
throughout this paper that P is even, @ = 1 (mod 4), ged(P,Q) = 1 and
D = P? —4Q > 0.

We use the recursive relations U,, = PU,,_1 —QU,_s and V,, = PV,,_1 —
QV,,—2 and the following properties. Let n and m be positive integers, ¢ be
an odd prime, and o(q) be the entry point of ¢ (i.e., ¢|U,(q) and q{U, if
n < o(q))-

(1) Uy, is even iff n is even; V,, is even.
(2) If ¢| Uy, then o(q) [ n.
(3) q|U, iff q| D.
(4) If q | Uy, for some k > 0, and ¢t D, then ¢ |U;—1 or q|Ugyi.
(5) ged(Un, Um) = Uged(n,m), and Uy, | Uy, iff n|m.
(6) If ¢° || U, then ¢t || Upy,.
(7) ng(Una Q) = ng(V’m Q) =1
(8) If n is odd, then ged(U,, P) = 1.
(9) If d = ged(m,n), then ged(Viy, Vi) = Vg if m/d and n/d are odd,
and 2 otherwise.
(10) If d = ged(m,n), then ged(Upy,, Vy,) = Vg if m/d is even, and 1 or 2
otherwise.
(12) If n is odd, then U,, = O only if n = .

Property (12) was proven by Rotkiewicz [10] and the other properties
are well known (see e.g. [7], p. 44).

LEMMA 1. If q is an odd prime and each prime factor of the odd integer
m is greater than q, then q{U,,.

Proof. Assume each prime factor of m is greater than the odd prime q.
By (3) and (4), if q|U,y,, then ¢ divides Uy, Uy—1, or Uy41; but then, by
(2), o(q) divides q, ¢ — 1 or g + 1, implying that each prime factor of o(q)
is < ¢ < m. However, this is impossible, since, by (2), ¢q | U,, implies that
o(q) [m.

Robbins [9] has shown that for all positive integers m and n, there
exists an integer R such that U, /Upn = n(QU,—1)""! + U, R]. Since
gcd(Up, QU —1) = 1, we immediately have:
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LEMMA 2. For all positive integers m and n, gcd(Up,Upmn/Unm) =
ged(Upym).

LEMMA 3. If 2|| P, then

vV = P (mod 8) if n is odd,
" 2 (mod 8) if n is even.
If 4] P, then
P (mod 8) if n is odd,
Vo=4¢2 (mod8) if n=0,4 (mod 8),
—2 (mod 8) if n=2,6 (mod 8).

Proof. By (0), Vo =2, Vi =Pand Vo = P-P-Q-2=P%?-2
(mod 8). Assume that 2| P, and that the lemma holds for all integers < n.
If n > 2 is odd, then

2P — QP or
2P — 5QP
and for P = 42 (mod 8) we have 5P = P (mod 8). If n > 2 is even, then
V=PV, 1—-QV,—2=4—Q-2=2 (mod 8).
The proof for 4| P is similar.

Vo =PVu1 —QV,_o = { } = P or 5P (mod 8),

3. Proofs of the theorems
THEOREM 1. Let n = ka, k>1 and m odd.
(a) If 2|| P, then U, =0 only if k is even and U,, = 0.
(b) If 4| P, then U,, =0 only if k =1 and U, = O.
Proof. Assume that U,, = Ugx,, = 0. By (11),

Un = Un Vi Vo Vi - - - Vor—1,,,

and since, by (9) and (10), ged(Up, Vai,,) = 1, and ged(Vaiy,, Vaim) = 2
for 0 < i < j < k —1, each factor is O or 2[J; in particular, since U,, is
odd, U,, = O. Now, if 2|| P, then, since, by Lemma 3, V5, = 2 (mod 4)
for 0 <i <k —1, it follows that V4i,, = 200 and k is even. If, on the other
hand, 4| P, then, by Lemma 3, V5,, = —2 (mod 8), so Va,,, # O or 200, and
it follows that k = 1.

LEMMA 4. Assume p is a prime, t is a positive integer, p* > 2, and
Up = 0. Then p| D, and if 1 < u < t, then Upw = O if u is even and
Upw = p if u is odd.

Proof. By Lemma 2,
d= ng(Upu’ Upt/UP“) = ng(Ulet_u)a



32 P. RIBENBOIM AND W. L. McDANIEL

so, for some s (0 < s <t—1),d=p®; hence, O = Uy = Upu - (Upt /Upu)
implies that Up« = p°0 = O or pO. Since, by (12) if p is odd and by
Theorem 1(a) if p = 2 (note that p* > 2), Uy is a square only if u is even,
we have Upn = pO if u is odd, and in view of (6), Up. = 0O, if u is even.
Since U, = p, it follows from (3) that p| D if p is odd, and p| D trivially
if p =2 since D is even.

THEOREM 2. Let n > 1 and assume that U, = 0. If p is a prime factor
of n, then p| D. Further, if p*||n and p* > 2, then, for 1 <u <t, Up =0
if u is even, and Upw = pUd if u is odd.

Proof. Let n = mgm, where myg is such that each prime divisor of mg
is less than the least prime divisor of m. Let

d= ng(Uma Ummo/Um) = ng(Um, mo).

Clearly, if mo = 1 then d = 1. If my > 1 then m is odd (and U,, is odd)
and either d = 1 or some odd prime factor p of mg divides U,,; however,
since each prime factor of m is > p, the latter is impossible by Lemma 1. So
d=1,and O =U, = Un(Unm,/Un) implies U,, = 0.

Now, let n = ptllpg2 ...plr pi < pj for i < j. We have just shown, in
particular, that U, = U, and therefore p, | D, by Lemma 4. If r > 1, let

t;
)

a < r be such that psy1,pat2, ..., pr divide D. Let m = [[;_, p;’, and set

d = ng<Upza ) Um/Upfl“) = ng(Upfla ) m/pfza)'
Now, if a < k < r, then ka(UpZa, since, by (2) and (3), o(pr) = pk.
Hence, d = 1 and Upéa = [. By induction, we have Up§i =0 for i =
1,...,7r. The theorem then follows from Lemma 4. '

We now show that unless P or 2P is restricted to the set of perfect
squares, U, # O for n an even positive integer.

LEMMA 5. For any fized integer QQ and every positive integer n, V,, =
fn(P), where f,(P) is a polynomial in P; for each k > 1, the term of lowest
degree of for,(P) is (=1)*Q*, and of fors+1(P) is (—=1)*(2k + 1)QF P.

The proof is by induction on k.

By this lemma, if m is odd, Vm/P:APi7nQ(m_1)/27 for some integer A.
If, now, U,, = [J, then, since each prime factor of m divides D (= P? —4Q)
by Theorem 2, we have ged(P,m) = ged(D,m) = 1, and it follows that
ged(P,V,,/P) = 1. Hence, if P-V,,/P = V,;, = 0O, then P = [, and if
V,, = 200, then P = 201.

THEOREM 3. Assume n > 0 is an even integer and U, = O. If 2| P,
then P =20, and if 4| P, then P =[1.

Proof. Let n = 2*m, m odd. If 2| P, then, as seen in the proof of
Theorem 1, V,,, = 2, so, by the remarks preceding the theorem, P = 2[1. If
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4| P, then k = 1 by Theorem 1, so U,, = Uy, = Uy, Vi, and since U, = O,
we have V,,, =, and P = [.

The Main Theorem incorporates the results of Theorems 1, 2 and 3.
Similar results can be obtained for the sequence {2U,,(P,Q)}:

THEOREM 4. Let n = 2*m, k> 0 and m odd.

(a) If k=0 (i.e., n is odd), then U, # 20J.
(b) If 2|| P, then U, =20 only if k is odd, U,, = O and P = 201.
(¢) If 4| P, then U, =20 only if k =1, U,, =0 and P = 20.

Proof. Assume that U, = Ugk,,, = 20. Trivially, if k= 0, then U,, # 20
since U, is odd. Thus k>1. Then U,, = U, Vi Vo, - - - Vor—1,,, implying that
U,, = 0. The remainder of the proof parallels that of Theorems 1 and 3.

EXAMPLE 1. Let r be a positive odd integer, P = 2r, and Q = 72 — 4.
Then ged(P,Q) = 1and Q@ = 1 (mod 4). Since D= P?—4Q = 4r?—4(r?—4)
= 16, the only prime factor of 2D is p = 2. Now, Uy = P(P? —2Q) = [
only if P2 —2Q = 20J. But

P? —2Q = 4r? — 2(r? —4) = 2(r* +4) # 20.

By Theorems 1 and 2, then, the only squares in {U,,(2r,r% —4)} are Uy
and U;.

EXAMPLE 2. Let r be a positive integer, 3{r, P = 4r, and Q = 4r2 — 3.
Then ged(P,Q) =1, Q@ =1 (mod 4) and D = 1672 — 4(4r? — 3) = 12. Now

Us=P?—Q=16r* — (4r* — 3) = 3(4r* + 1) # 30,

so U, =0 = 3{n. By Theorems 1, 2 and 3, U, = O iff n = 0, 1, or 2,
with Uy = O iff r = [

No example is known of a pair P, @ and an odd prime p such that
Uy = 0O (and none exists if P and @ are odd). It is our conjecture that
none exists if P is even and Q=1 (mod 4); that is, that the only odd value
of n such that U,, = O is n = 1. It appears highly probable that, in practice,
one can easily determine all n such that U, (P, Q) = O for any given P and
Q such that U,z is computable for the largest prime factor p of P2 —4Q—and
know that all have been found.
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