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SQUARES IN LUCAS SEQUENCES
HAVING AN EVEN FIRST PARAMETER

BY

PAULO R I B E N B O I M (KINGSTON, ONTARIO) AND

WAYNE L. McD A N I E L (ST. LOUIS, MISSOURI)

1. Introduction. Let P and Q be non-zero relatively prime integers, α
and β (α > β) be the zeros of x2 − Px+Q, and, for n ≥ 0, let

(0)
Un = Un(P,Q) =

αn − βn

α− β
,

Vn = Vn(P,Q) = αn + βn.

It is known that there exist only a finite number of integers n such that
Un(P,Q) is a square (= �); however, the bound on n, although effectively
computable, is, in general, extremely large [6]. If P and Q are odd integers,
the square terms of the sequence {Un(P,Q)} are known [8]. Much less is
known when P is even: for an arbitrary even P , the square terms are only
known when Q = 1 or Q = P − 1, and when Q = −1 it is known that
{Un(P,Q)} has at most two square terms. These results are derived from
W. Ljunggren’s work concerning certain Diophantine equations (see [2], [3],
[4], and, also, [5]).

If Q 6= ±1 or P − 1, and P is even, the best result in the effort to solve
Un(P,Q)=� was obtained in 1983 when Rotkiewicz [10] showed that if P is
even and Q ≡ 1 (mod 4), then Un(P,Q) = � only if n is an odd square or an
even integer 6= 2k+1 whose largest prime factor divides the discriminant D
(= P 2 − 4Q).

In this paper, we improve upon Rotkiewicz’s results by showing that if
P is even and Q ≡ 1 (mod 4), then, for n > 0, Un(P,Q) = � only if all the
prime factors of n belong to a small known finite set: each is a prime factor
of D. We show, further, that if p is a prime and p2t |n, then Up2u is a square
for u = 1, . . . , t. In addition, for even values of n, we show that Un = � only
if P = � or 2�. Finally, we obtain corresponding results for Un = 2�. At
the end of the paper, we give several infinite sets of pairs (P,Q) for which
Un(P,Q) 6= � for n > 2.
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Main Theorem. Let n > 0. If P is even, Q ≡ 1 (mod 4), and Un = �,
then n is a square, or twice an odd square, and all prime factors of n
divide D; if pt > 2 is a prime divisor of n and 1 ≤ u ≤ t, then Upu = � if
u is even and Upu = p� if u is odd. If n is even, then Un = � only if , in
addition, P = � or 2�.

2.Restrictions, notation and preliminary results. We shall assume
throughout this paper that P is even, Q ≡ 1 (mod 4), gcd(P,Q) = 1 and
D = P 2 − 4Q > 0.

We use the recursive relations Un = PUn−1−QUn−2 and Vn = PVn−1−
QVn−2 and the following properties. Let n and m be positive integers, q be
an odd prime, and %(q) be the entry point of q (i.e., q |U%(q) and q -Un if
n < %(q)).

(1) Un is even iff n is even; Vn is even.

(2) If q |Un, then %(q) |n.

(3) q |Uq iff q |D.

(4) If q |Uk, for some k > 0, and q -D, then q |Uq−1 or q |Uq+1.

(5) gcd(Un, Um) = Ugcd(n,m), and Un |Um iff n |m.

(6) If qe ‖Un, then qe+1 ‖Unq.

(7) gcd(Un, Q) = gcd(Vn, Q) = 1.

(8) If n is odd, then gcd(Un, P ) = 1.

(9) If d = gcd(m,n), then gcd(Vm, Vn) = Vd if m/d and n/d are odd,
and 2 otherwise.

(10) If d = gcd(m,n), then gcd(Um, Vn) = Vd if m/d is even, and 1 or 2
otherwise.

(11) U2m = UmVm.

(12) If n is odd, then Un = � only if n = �.

Property (12) was proven by Rotkiewicz [10] and the other properties
are well known (see e.g. [7], p. 44).

Lemma 1. If q is an odd prime and each prime factor of the odd integer
m is greater than q, then q -Um.

P r o o f. Assume each prime factor of m is greater than the odd prime q.
By (3) and (4), if q |Um, then q divides Uq, Uq−1, or Uq+1; but then, by
(2), %(q) divides q, q − 1 or q + 1, implying that each prime factor of %(q)
is ≤ q < m. However, this is impossible, since, by (2), q |Um implies that
%(q) |m.

Robbins [9] has shown that for all positive integers m and n, there
exists an integer R such that Umn/Um = [n(QUm−1)n−1 + UmR]. Since
gcd(Um, QUm−1) = 1, we immediately have:
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Lemma 2. For all positive integers m and n, gcd(Um, Umn/Um) =
gcd(Um, n).

Lemma 3. If 2 ‖P , then

Vn ≡
{
P (mod 8) if n is odd ,
2 (mod 8) if n is even.

If 4 |P , then

Vn ≡

P (mod 8) if n is odd ,
2 (mod 8) if n ≡ 0, 4 (mod 8),
−2 (mod 8) if n ≡ 2, 6 (mod 8).

P r o o f. By (0), V0 = 2, V1 = P and V2 = P · P − Q · 2 ≡ P 2 − 2
(mod 8). Assume that 2 ‖P , and that the lemma holds for all integers < n.
If n ≥ 2 is odd, then

Vn = PVn−1 −QVn−2 ≡

{
2P −QP or

2P − 5QP

}
≡ P or 5P (mod 8),

and for P ≡ ±2 (mod 8) we have 5P ≡ P (mod 8). If n ≥ 2 is even, then

Vn = PVn−1 −QVn−2 ≡ 4−Q · 2 ≡ 2 (mod 8).

The proof for 4 |P is similar.

3. Proofs of the theorems

Theorem 1. Let n = 2km, k ≥ 1 and m odd.

(a) If 2 ‖P , then Un = � only if k is even and Um = �.
(b) If 4 |P , then Un = � only if k = 1 and Um = �.

P r o o f. Assume that Un = U2km = �. By (11),

Un = UmVmV2mV4m . . . V2k−1m,

and since, by (9) and (10), gcd(Um, V2jm) = 1, and gcd(V2im, V2jm) = 2
for 0 ≤ i < j ≤ k − 1, each factor is � or 2�; in particular, since Um is
odd, Um = �. Now, if 2 ‖P , then, since, by Lemma 3, V2im ≡ 2 (mod 4)
for 0 ≤ i ≤ k − 1, it follows that V2im = 2� and k is even. If, on the other
hand, 4 |P , then, by Lemma 3, V2m ≡ −2 (mod 8), so V2m 6= � or 2�, and
it follows that k = 1.

Lemma 4. Assume p is a prime, t is a positive integer , pt > 2, and
Upt = �. Then p |D, and if 1 ≤ u ≤ t, then Upu = � if u is even and
Upu = p� if u is odd.

P r o o f. By Lemma 2,

d = gcd(Upu , Upt/Upu) = gcd(Up, p
t−u),
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so, for some s (0 ≤ s ≤ t − 1), d = ps; hence, � = Upt = Upu · (Upt/Upu)
implies that Upu = ps� = � or p�. Since, by (12) if p is odd and by
Theorem 1(a) if p = 2 (note that pt > 2), Upu is a square only if u is even,
we have Upu = p� if u is odd, and in view of (6), Upu = �, if u is even.
Since Up = p�, it follows from (3) that p |D if p is odd, and p |D trivially
if p = 2 since D is even.

Theorem 2. Let n > 1 and assume that Un = �. If p is a prime factor
of n, then p |D. Further , if pt ‖n and pt > 2, then, for 1 ≤ u ≤ t, Upu = �
if u is even, and Upu = p� if u is odd.

P r o o f. Let n = m0m, where m0 is such that each prime divisor of m0

is less than the least prime divisor of m. Let

d = gcd(Um, Umm0/Um) = gcd(Um,m0).

Clearly, if m0 = 1 then d = 1. If m0 > 1 then m is odd (and Um is odd)
and either d = 1 or some odd prime factor p of m0 divides Um; however,
since each prime factor of m is > p, the latter is impossible by Lemma 1. So
d = 1, and � = Un = Um(Umm0

/Um) implies Um = �.
Now, let n = pt11 p

t2
2 . . . ptrr , pi < pj for i < j. We have just shown, in

particular, that Uptr
r

= �, and therefore pr |D, by Lemma 4. If r > 1, let

a < r be such that pa+1, pa+2, . . . , pr divide D. Let m =
∏r

i=a p
ti
i , and set

d′ = gcd(Upta
a
, Um/Upta

a
) = gcd(Upta

a
,m/ptaa ).

Now, if a < k ≤ r, then pk -Upta
a

, since, by (2) and (3), %(pk) = pk.
Hence, d′ = 1 and Upta

a
= �. By induction, we have U

p
ti
i

= � for i =

1, . . . , r. The theorem then follows from Lemma 4.

We now show that unless P or 2P is restricted to the set of perfect
squares, Un 6= � for n an even positive integer.

Lemma 5. For any fixed integer Q and every positive integer n, Vn =
fn(P ), where fn(P ) is a polynomial in P ; for each k ≥ 1, the term of lowest
degree of f2k(P ) is (−1)kQk, and of f2k+1(P ) is (−1)k(2k + 1)QkP .

The proof is by induction on k.
By this lemma, if m is odd, Vm/P =AP±mQ(m−1)/2, for some integer A.

If, now, Um = �, then, since each prime factor of m divides D (= P 2− 4Q)
by Theorem 2, we have gcd(P,m) = gcd(D,m) = 1, and it follows that
gcd(P, Vm/P ) = 1. Hence, if P · Vm/P = Vm = �, then P = �, and if
Vm = 2�, then P = 2�.

Theorem 3. Assume n > 0 is an even integer and Un = �. If 2 ‖P ,
then P = 2�, and if 4 |P , then P = �.

P r o o f. Let n = 2km, m odd. If 2 ‖P , then, as seen in the proof of
Theorem 1, Vm = 2�, so, by the remarks preceding the theorem, P = 2�. If
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4 |P , then k = 1 by Theorem 1, so Un = U2m = UmVm, and since Um = �,
we have Vm = �, and P = �.

The Main Theorem incorporates the results of Theorems 1, 2 and 3.
Similar results can be obtained for the sequence {2Un(P,Q)}:

Theorem 4. Let n = 2km, k ≥ 0 and m odd.

(a) If k = 0 (i.e., n is odd), then Un 6= 2�.
(b) If 2 ‖P , then Un = 2� only if k is odd , Um = � and P = 2�.
(c) If 4 |P , then Un = 2� only if k = 1, Um = � and P = 2�.

P r o o f. Assume that Un = U2km = 2�. Trivially, if k= 0, then Un 6= 2�
since Un is odd. Thus k≥1. Then Un = UmVmV2m . . . V2k−1m implying that
Um = �. The remainder of the proof parallels that of Theorems 1 and 3.

Example 1. Let r be a positive odd integer, P = 2r, and Q = r2 − 4.
Then gcd(P,Q) = 1 and Q ≡ 1 (mod 4). Since D= P 2−4Q= 4r2−4(r2−4)
= 16, the only prime factor of 2D is p = 2. Now, U4 = P (P 2 − 2Q) = �
only if P 2 − 2Q = 2�. But

P 2 − 2Q = 4r2 − 2(r2 − 4) = 2(r2 + 4) 6= 2�.

By Theorems 1 and 2, then, the only squares in {Un(2r, r2 − 4)} are U0

and U1.

Example 2. Let r be a positive integer, 3 - r, P = 4r, and Q = 4r2 − 3.
Then gcd(P,Q) = 1, Q ≡ 1 (mod 4) and D = 16r2 − 4(4r2 − 3) = 12. Now

U3 = P 2 −Q = 16r2 − (4r2 − 3) = 3(4r2 + 1) 6= 3�,

so Un = � ⇒ 3 -n. By Theorems 1, 2 and 3, Un = � iff n = 0, 1, or 2,
with U2 = � iff r = �.

No example is known of a pair P , Q and an odd prime p such that
Up2 = � (and none exists if P and Q are odd). It is our conjecture that
none exists if P is even and Q≡1 (mod 4); that is, that the only odd value
of n such that Un = � is n = 1. It appears highly probable that, in practice,
one can easily determine all n such that Un(P,Q) = � for any given P and
Q such that Up2 is computable for the largest prime factor p of P 2−4Q—and
know that all have been found.
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[2] W. Ljunggren, Über die unbestimmte Gleichung Ax2 − By4 = C, Arch. Math.
Naturvid. 41 (1938), 3–18.



34 P. RIBENBOIM AND W. L. McDANIEL

[3] W. Ljunggren, Zur Theorie der Gleichung x2+1 = Dy4, Avh. Norske Vid. Akad.
Oslo. I, No. 5 (1942), 1–26.

[4] —, New propositions about the indeterminate equation
xn − 1
x− 1

= yq , Norske Mat.
Tidskr. 25 (1943), 17–20.

[5] L. J. Morde l l, Diophantine Equations, Pure Appl. Math. 30, Academic Press,
London, 1969.
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