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ON THE FORMAL INVERSE OF POLYNOMIAL ENDOMORPHISMS

BY

PIOTR OSSOWSKI (TORUN)

Let k£ be a field of characteristic 0. We begin by recalling some facts
about the Jacobian Conjecture. We denote by J(F') the Jacobian matrix of
a polynomial map F'.

CONJECTURE 1 (Jacobian Conjecture). If F : k™ — k™ is a polynomial
map such that det J(F) € k\ {0}, then F is a polynomial automorphism,
that is, there exists a polynomial map G : k" — k™ satisfying F(G) = X.

Yagzhev [9] and Bass, Connell and Wright [1] showed that, if the Jacobian
Conjecture is true for all n > 2 and all polynomial maps of the form F' = X —
H with H homogeneous of degree 3, then it is true for all polynomial maps.
For the Jacobian matrix of a polynomial map F' the hypothesis det J(F) €
k\ {0} is equivalent to the nilpotence of J(H).

Let G = (Gy,...,G,) with G; € k[[X1,...,X,]] be the formal inverse of
F =X — H, that is, F(G) = X. Tt is obvious that F' is an automorphism if
and only if Gq, ..., G, are polynomials.

Since in X — H all the non-zero homogeneous components have odd

degree, G has the same property. Let G; = ngo ng), where each ng) is

homogeneous of degree 2d+1 and ¢ = 1,...,n. Several formulas for ng) are
known. In those given by Bass, Connell and Wright [1] and Druzkowski and
Rusek [2], the components ng) are expressed as Q-linear combinations of
polynomials indexed by rooted trees. Our aim is to prove that the polyno-
mials, corresponding in the above mentioned expansions to the same rooted
tree, differ by a rational factor depending on the structure of the rooted
tree.

1. Rooted trees. If T' is a non-directed tree, then V(T') denotes the
set of its vertices, and the set of its edges is a symmetric subset E(V) C
V(T) x V(T). A tree T with a distinguished vertex rty € V(T), a root,
is called a rooted tree. By induction we define the sets V;(T) of vertices of
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height j. Let Vo(T') = {rtr}. For j > 0let v € V;(T) iff for some w € V;_1(T)
there exists an edge (w,v) € E(T) and v ¢ V;(T) for all i < j. Moreover, let
ht(T) = max{j : V;(T) # 0}.

If v € V;(T), then let

vt ={w e V1 (T) : (w,v) € B(T)}.

By a leaf of a rooted tree T we mean a vertex v € V(T') such that vt = 0.

The rooted trees form a category; a morphism T — 7" is a map [ :
V(T) — V(T') such that f(rtr) = rtp and (f x f)(E(T)) C E(T'). U T
is a rooted tree, then Aut(7T") denotes the group of all automorphisms of T'
and «(T) = |Aut(T)|. (] X] is the cardinality of the set X.)

For a rooted tree T and a vertex v € V(T') we define a rooted tree T, to
be a subtree of T' such that rty, = v and w € V(7)) if v belongs to a path
from w to the root.

Let T be a rooted tree and

+ _
rty = {vi1, ., Vlmyy - oy Usly oo o, Vs, }-
Moreover, let {To,,; -+, Tvy, }y -+ 54 Tvss -+ > To,,,, } e the isomorphism

classes of the rooted trees T, . It is easy to see that

(1) aT) = [[(AT,)™ - my)

j=1

(cf. [6]).
In this note we assume that there exists an empty rooted tree () with

V(0) =0 and E(0) = 0.

2. Bass—Connell-Wright formal inverse expansion.Let H =
(Hy,...,Hy,), where Hy,...,H, € k[Xy,...,X,] are homogeneous of de-
gree 3. Let n = {1,...,n}. For i € n, a rooted tree T" and a function
f:V(T) — n such that f(rtr) =4, in [1] there are defined polynomials

Pry=]] (( II Df(w)>Hf(v))

veV(T) wevt

and
o(T)= > Pry.
f:V(T)—n
frtr)=i
In [1, Ch. III, 5.(4)] it is shown that if T contains a vertex such that

|ot| > 3, then o;(T) = 0. We denote by T/, a fixed set of representatives
of the isomorphism classes of rooted trees with d vertices and with [v*| < 3
for each v € V(T'). Note that Tf, = {0}. Using these observations, we can
quote the following theorem.
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THEOREM 2 (Bass—Connell-Wright [1]). Let F = X — H : k™ — k",
where H is homogeneous of degree 3 and the matriz J(H) is nilpotent. Then
G = X; and

7 - 2
(@) _ 1
Gi = Z mal(T) fOTd > 1.
TeT),
Theorem 2 suggests the following definition: o;(0)) = X; for ¢ € n.

In the sequel we use the below description of the numbers «(T).

DEFINITION 3. For a rooted tree T and a vertex v € V(T let

a(v,T) = H m;!
j=1

where mq,...,ms are the cardinalities of the isomorphism classes of the
rooted trees from {7}, : w € v"}. Note that a(v,T) = 1 for each leaf v.

REMARK. One can rewrite the formula (1) in the form

(2) a(T) = a(rty,T) [] (@)

LEMMA 4. If T is a rooted tree, then

o(T) = H a(v,T).

veV(T)

Proof. Use (2) and induction with respect to the height of T'. m

3. Druzkowski—Rusek formal inverse. In [2] we can find another de-
scription of the formal inverse. We suppose that F' = X — H, where H
is homogeneous of degree 3. It is well known that there exists a unique
3-linear symmetric polynomial map H : k™ x k™ x k™ — k" such that

H(X,X,X)=H(X).
THEOREM 5 (Druzkowski-Rusek [2]). If G = 3,5, G is the formal
inverse of F =X — H, then G = X and

G — Z H(GW G9D G"Y  ford>1.
p+q+r=d—1
For small indices we have:

G0 =X,
¢ =H(X, X, X),
(3) G? =3H(X,X,H(X,X,X)),

G® =9H (X, X, H(X, X, H(X, X, X)))
+3H(X,H(X, X, X), HX, X, X)).
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We shall see that each G(?) is a linear combination of polynomial maps cor-
responding to rooted trees.

DEFINITION 6. For any rooted tree T € T/, with d > 1 we define B(T’)
to be a multiset (i.e., a set with repeated elements; see [7]) containing repre-
sentatives of the isomorphism classes of the rooted trees T, for v € MJTr and
3 — |rt4 | empty trees. Thus the multiset B(7") has exactly 3 elements.

EXAMPLE 7. (Always the lowest vertex is the root.)

B(e) = {0,0,0}, B()) = {+.0,0},

&B(\)) Loy, m(\l)) —f

DEFINITION 8. For a rooted tree T' € T/, we define, by induction on
d > 0, a polynomial homogeneous map 7(T') : k™ — k™ of degree 2d + 1 as
follows:
7(0) =X  (the identity map),

T(T) :H(T(T1)7T(T2)7 T(T3)) for d >1 and ip(T) = {Tl,TQ,Tg}.
Now, let us describe the coefficients in linear combinations like (3).

DEFINITION 9. For a rooted tree T and a vertex v € V(T) we define
B(v,T) to be the number of different sequences of elements of the multiset

B(To).
LEMMA 10. If d > 0, then

(4) G = 3" B(T)r(T), where B(T)= [[ B.T).

TeT), veV(T)

Proof. We prove this lemma by induction on d.
For d = 0 the equality (4) is obvious. Note that 3(0) = 1.
Let d > 0. Then

G = Z H(GW G g

p+q+r=d—1
= > (Y Bmorm), Y BT)r(Ta), S B(Ty)r(T))
ptg+r=d-1 T1€Ty, T»€T, T5€T),

S S S BB BT - Hr(Th), w(T), 7(Ty)).

pFq+tr=d—1T, €T}, To€T/, T3€T,

All maps of the form H(7(T1), 7(T%), 7(Ts)) are homogeneous of degree 2p +
1+2¢+14+2r+1=2(p+q+7r)+3=2d+ 1. Collecting summands with
the same map 7(7T'), for T' € T/, we see that the coefficient of 7(7T") is equal
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to

Blrtr, T) - B(T1)B(T2)5(Ts) = B(T),
where m(T) = {Tl,TQ, Tg} n

4. Main theorem. We are going to compare the expressions for G(%
given in the previous subsections.

DEFINITION 11. For a rooted tree T' € T/, and a vertex v € V(T we
define numbers o(v, T) and o(T') as

o(v,T) = a(v, T)B(v,T) and o(T)= [] o(v.T).
veV(T)

In particular, o(@) = 1.

COROLLARY. If T € T/, then o(T) = o(T)B(T).

LEMMA 12. If T € T/, and v € V(T), then
1 for|vT|=0,
3 for|vt| =1,
6 for |vt] e {2,3}.

T 3!
D T

Proof. It is sufficient to collect the numbers a(v,T), B(v,T) and o(v, T)
= a(v,T)B(v,T) in a table. In the second column we assume that the rooted
trees 11, 1%, T3, ) are all distinct.

1 BT awl) 50T) o)
0 {0,0,0} 1 1 1
1 {71,0,0} 1 3 3
2 {T1,Ty,0} 2 3 6
{T1,T»,0} 1 6 6
3 {11, Ty, Ty} 6 1 6
{11, Ty, Tx} 2 3 6
{T1,T», T3} 1 6 6

Now, compare the first and last columns. The last column is obviously
equal to 3!/(3 — [vT|)l. m

COROLLARY. For T € T/, we have
o(T) = oH{veV(T): [vt|22}] 3IV(T)\Leaf(T)]

where Leaf(T') is the set of all leaves of the rooted tree T.

In the proof of Theorem 13 we make use of the following polarization
formula:

_ 1 < O°H;
(5) Hi(U,V.W) = gZ: UVaWe 5% ox,0%,
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(see [5, p. 251]). We also recall Euler’s formula: if F/(X) is homogeneous of
degree p, then

]

We are now in a position to formulate and prove the main theorem of our
paper.

THEOREM 13. If i € n and T € T/, for d > 0, then
(6) oi(T) = o(T)7:(T),
where 7(T) = (11(T), ..., 7 (T)).

Proof. We argue by induction on the number of vertices of T
The case d = 0 is obvious:

oi(0) =X; =1-X; = 0(0)7:(0).

Suppose now that 7' € T/, (d > 1) and (6) is true for all rooted trees with
less than d vertices. Let R(T) = {T1,...,Ts,0,...,0}, where 0 < s < 3 and

T1,...,Ts are non-empty. For ¢ € n, using a “tree surgery” (see [1], [8]), we
can write
T T e 0°H;
oi(T) —ai( N 9) - zj: 1Uj1(T1)~--Ujs(Ts)m'
1yeees]s=
Let us apply Euler’s formula 3 — s times and let 7; = () for j =s+1,...,3:
1 - O*H;
(1) = (1) ..o (Ts) X, .. . Xy
01( ) (3—8)' _ Z 0]1( 1) U]s( ) Js+1 J3 aXhanzaXJg
Ji,j2,43=1
1 - O*H;
= (Mo, (T2)04,(T3) o
G, Z (T (1273 (T0) e e
1,72,J3=

Hence by assumption,

_o(Ty)o(Ts)o(T3) O3 H;

oi(T) = W ‘ Z_lle (T1)75, (T2)7j, (TS)ma
and by (5),
ou(r) = 28TV 1oy (1), ().

(3—9)!
Finally, we apply Lemma 12, Definition 8 and Definition 11 to get
0i(T) = o(ttr, T)o(T1)o(T2)o(T3)7:i(T) = o(T)7:(T),

and the proof is complete. m
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COROLLARY. If T € T/, for d > 0, then
o(T) = o(T)r(T),
where o(T) = (61(T),...,00(T)).

5. Remarks. Theorem 13 and Lemma 10 give us an alternative proof of
Theorem 2. Indeed,

G = 3 BT = Y LoD = Y o),

TEeT, TeT, TeT,

This proof looks simpler than the original one in [1].

It is well known that a polynomial map FF = X — H : k"™ — k™ with
H homogeneous of degree 3 and J(H) nilpotent has a polynomial inverse
iff G4 = 0 for degG¥ = 2d 4+ 1 > 3"~!. Bass, Connell and Wright [1]
conjectures that not only G4 = 0 but also o(T) = 0 in the case T € T/,
and 2d + 1 > 3"~1. A counterexample was given in [4]. On the other hand,
Gorni and Zampieri [3] showed that there is a polynomial automorphism of
the form X — H as above such that for any n there exists a rooted tree T
with 7(T") # 0 and with the number of vertices of T' greater than n. In both
papers, the counterexample is the same polynomial map:

F= (X1 4+ X4(X1 X5+ X2 Xy), Xo — X3(X1 X3 + XoX4), X3+ X2, Xy),

given by van den Essen for other reasons. In view of Theorem 13, 7(T") # 0
iff o(T) # 0, and problems solved in [3] and [4] are equivalent. Moreover,
we can exhibit rooted trees T for which 7(T") # 0 (Gorni and Zampieri have
not done it).

If
s—1
TOZWETZ, Ts:vﬂ GT/23+4 fOI‘SZl7

then (see [4]) o(Ts) # 0 for all s > 0 and therefore the polynomial maps

T(To)=HHX,X,X),HX,X,X),HX, X, X)),

T(T,)= H(X,H(X,X,X),7(Ts_1)) fors>1

are non-zero.
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