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A NOTE ON SCHRODINGER OPERATORS
WITH POLYNOMIAL POTENTIALS

BY

JACEK DZIUBANSKI (WROCLAW)

1. Introduction. In [DHJ] the authors apply methods of harmonic anal-
ysis on nilpotent Lie groups to study certain Schrodinger operators. This
article is a continuation of that work. Our aim is to investigate Schrodinger
operators with nonnegative polynomial potentials on R¢.

Let A be a Schrodinger operator on R? which has the form

(1.1) A=—A+P,

where P(z) =} -,
(1,...,aq) € Z4, Zy = {0,1,2,...}. Without loss of generality we can
assume that min; o; > 2. Let Sgo AdE 4(\) be the spectral resolution of A.
For a bounded function ¢ on R, we define the operator ¢(A) by
o0
6(A) = | 6\ dEA(N).
0
The most important part of this paper is to derive estimates for the
integral kernels of the operators ¢(A) and the kernels of the semigroup
generated by —A. In order to obtain the estimates we use the idea which
relates the operator A = —A + P to an operator Ilg, where II is a unitary
representation of a nilpotent Lie group and H is a special left-invariant
homogeneous operator on the group.
The estimates we obtain here enable us to prove the following result: For
all 7,7 € Z% the operator

a,x” is a nonnegative nonzero polynomial on RY o=

DY A-+HID/2 Y

originally defined on C>°(R?) is a Calderén-Zygmund operator; here DY =
DY*...Dj*, D; = d/0x;. This result was obtained, using different methods,
by Zhong in the case where || + |7/| <2 (cf. [Z]).
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Moreover, for every g > 0 the operator
Pq(x)DVA—q—(WHW|)/2Dy/

can be extended to a bounded operator on LP(R?) for 1 < p < oo (cf. [Sh]).
In [E] the author considered the Hermite operator

2

9 2
/H——ﬁ—Fﬁﬂ

and for k € R, 1 < p < 00, and 1 < g < oo defined Triebel-Lizorkin norms
| ll3a associated with the Hermite expansions by setting

1/q

1 lhggs = || (3o @=le@ ) r)7) |

LP(R)’

where ¢(27FH)f = > pe o @(27#(2k + 1))(f, hi)hy, hy is the kth orthogo-
nal Hermite function, and ¢ is an appropriate bump function. He proved
using Mehler’s formula that the definition of the Triebel-Lizorkin space is
independent of ¢. In this paper we show that the result holds in the case of
Schrodinger operators with nonnegative polynomial potentials, that is, for
k € R, 0 < p,q < oo, and suitable bump functions ¢; and ¢, the norms

1Lz = | [ D@10z a7 |

HEZL

1=1,2

) )

Lr(R%)

are equivalent (see Section 5).
In a subsequent paper we shall study the Hardy spaces HY, associated
with A = — A+ P. We shall present several characterizations of these spaces.

2. A nilpotent Lie algebra and Schrédinger operators. Let G be
a homogeneous group, that is, a nilpotent Lie group equipped with a family
of dilations 0; (cf. [FS]), and let g be the Lie algebra of G. We say that a
distribution H on G is a regular kernel of order r € R if H coincides with a
smooth function away from the origin and

(2.1) (H,fod)=t"(H,f) for feC>G),t>D0.

For a given Schrodinger operator A as above we shall build a homoge-
neous group G, a unitary representation I/ of G, and a symmetric kernel H
of order 2 such that Iz = A. In our construction we shall use ideas from
[DHJ] and the results of W. Hebisch [He|. The following theorem proved in
[He] plays an essential role in our construction.

THEOREM 2.2. Let G be a homogeneous Lie group with dilations é;, and
let I' be a closed subset of g* such that Ad*(G)I" C I', and §;T" C I for
every t > 0. Then for every r > 0 there exists a reqular symmetric kernel R
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of order r such that
th=0 forallel

and the operator E is positive definite and injective on its domain for all
I ¢ I'. Here ©* denotes an irreducible unitary representation of G which
corresponds to the functional | via the Kirillov correspondence.

Let Vp = {r € R : D,P =0}, D, = Z;l:l x;D;. There is no loss of

generality in assuming that Vp = {(2/,0) : 2’ € R¥}, 0 < k < d. Therefore,
RY=Vp @R =RFER™, m=d— k. For e > 0 we set

[ P(x) +e(x?+...+22) if Vp # {0},
Pe(x)_{P(:C) ) * ifVIIZ:{O}.

We define a nilpotent Lie algebra g as follows. Let o € Zi. As a vector
space, g has a basis {X;,..., X4, YW : 0 < 8 < a}. Let X, Y denote the
spans of X;’s and Y [6]’s respectively. The nontrivial commutators are

yB=esl if B —e, >0
2.3 X, YOI = k=
23) (X ] 0 otherwise,
where ey, is the d-tuple consisting of zeros except for a 1 in the kth position.
For o as above we define

(2.4) Po = {w tw(z) = Z cpaP cp € R}.

BLa
For w € P, we set V, = {x € R : Dyw = 0}. Let C°(R%/V,,) denote the
smooth functions on R? that are invariant under translations by elements
of V,, and compactly supported on any subspace complementary to V.
Denote by g, (R?/V,,) (respectively g, (R9)) for w € P, the Lie algebra
of operators on C°(R%/V,,) (respectively C2°(R?)) generated by the D;’s
and multiplication by iw, denoted by M;,. Define the mappings 7 : g —
gu(R?/V,,) and II* : g — g, (R?) by
X — Dj,
ylol s M,
and, inductively, if Y8 — M, ; then
(X5, Y = Myp,an)

(2.5) ¢, II¥

and extend linearly to g.
With each w € P,, we associate the linear functional £, on g by setting

{ (€w, X;) =0 for each 1 < j < d,
(€0, Y1) = ws(0) if 7 (V1) = My,

Clearly (£, Y81y = Do=Pu(0). We set X, = {X € X : n¥([X,Y[]) = 0}.
The following lemma was proved in [DHJ].

(2.6)
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LEMMA 2.7. X, + Y is the mazimal subalgebra subordinate to the func-
tional &,, and ™ is the infinitesimal representation associated with &, via
the Kirillov correspondence. In particular, if V,, # {0}, then II* is reducible.

On the Lie algebra g let §; be the one-parameter group of dilations
determined by 6, X; = tX;, 6,V = ¢2Y[o and, inductively, &, [X,Y[m] =
[6:X,6, Y8, The corresponding dilations &} on g* are given by duality,
that is, (§;¢,Z) = (£,0:Z). Let G be the connected simply connected Lie
group with Lie algebra g. Throughout this paper we shall identify G with
its Lie algebra g with the Campbell-Hausdorff multiplication (cf. [FS]).
Topologically G = R xRP | where D = dimY = (a1 +1)(ag+1) ... (ag+1).
We shall use the same symbol 7 to denote the representation of G that
corresponds to the functional £, via the Kirillov correspondence. Since d;
is an automorphism of G, 7 o ¢, is the representation associated with 6;¢&,,.
Moreover, 6;&, = £,¢, where w!(z) = t?w(tr).

We choose and fix a homogeneous norm on G, that is, a continuous,
positive and symmetric function G 5 g — |g| which is smooth on G \ {0},
homogeneous of degree 1, and vanishes only at the origin.

The homogeneous dimension of G is the number @ defined by d(d;g) =
tQ dg, where dg is a bi-invariant Haar measure on G.

Let z = (z;) € R? and X = Y7, 2;X;. It was shown in [DHJ] that if
II¢ = My for w € P, then (Ad*(exp X)&,, Y) = V(z), and, consequently,

(2.8) Ad*(expX)&, =&,,, where w,(z))=w(x+2'), z,2' R
Set I' = {£&, : w € Py, w(x) > 0 for all x € R4} + Y+ C g*, where
YVt ={¢ecg :(Y) =0 forevery Y € Y}. One can check using
Lemma 1.5 of [DHJ] that I satisfies the assumptions of Theorem 2.2. Let
(2.9) W=-X2_X2_. . —X2_4yll

Note that W is a regular symmetric kernel of order 2 and

(2.10) Iy f(z) = —Af(x) + w(z) f(x) for w € P,.

Theorem 2.2 guarantees that there is a regular symmetric kernel R of order
4 such that 7'('% = 0 for £ € I" and 7}, is positive definite and injective on
its domain for all [ € g* \ I". Set H = v R+ W2. We can verify that H is
a regular symmetric kernel of order 2 that satisfies the Rockland condition,
that is, g is injective for every nontrivial irreducible unitary representation
7w of G. Moreover,

Iir =7 = —A+ P.(z), z€R%
One can check that
(2.11) lim rhef=I5f=Af for f € CX(RY).
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Applying [G1, Theorem 3.1 and Remark 3.14], we conclude that the follow-
ing maximal subelliptic estimates hold for H: for every regular kernel U of
order r and a positive integer k such that r < 2k there is a constant C' such
that

(2.12) If *Ullze < C(If * H |2 + || fll2) for all f € C2(G).

Let Sgo AdEg(X) be the spectral resolution of the essentially self-adjoint
positive operator f+— H f= fx H. For a bounded function ¢ on R we define
the operator ¢(H)f = §;~ ¢(\) dEx (A) f. Obviously, by (2.11),

(2.13) o(A) = de’(H) for ¢ € C°((0,00)).

3. Estimates of kernels. Let {S;}:~( be the semigroup of linear oper-
ators on L?(G) generated by —H. The homogeneity of H and (2.12) imply
that the semigroup has the form

(1) Sif=[f*a, alg) = fQ/Q(h(fSt—mg),
where ¢; € C*(G) N L*(G).
The results of P. Glowacki [G] (see also [D]) assert that for every homoge-

neous left-invariant (or right-invariant) differential operator d on G and for
every nonnegative integer j there are constants Cp, C; o such that

10g:(9)] < Cot(t'/? + |g|)= 9719172,
0H? qi(g)| < Cja(t'/? +|g]) =@ 171727,
where |0 is the degree of homogeneity of .
Let us denote by Sy([0,00)) the subspace of all functions ¢ from the

Schwartz class S([0,00)) such that

dk
(3.3) —¢(0T) =0 fork=1,2,...

(3.2)

The following lemma was proved in [D1].

LEMMA 34. If ¢ € Sy([0,00)), then ¢(H)f = f * D, where & € S(G).
Moreover, if ¢*(\) = ¢(tN), then
QHH)f = [Py, where Dy(g) =t 2B(5,-1/29).
From (2.8) and (2.13) we deduce that for every F' € L!(G) and a polyno-

mial w € P, the kernel F*(x,u) of the operator IT% on L?*(R?) is expressed
by

(3.5) F¥(z,u) = | F(u—z,y) exp(i{Ad} &, y)) dy
Yy
= (FyF)(u — z,w(z),...,D’w(z),...),
where Fy F' is the Fourier transform of F' with respect to ).
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Consequently, by (2.13) and Lemma 3.4, the kernels Q,(z,u) of the
operators @, = ¢(27"A), where ¢ € Sy([0,00)), are given by
(3.6) Qu(z,u)
= 2d“/2117(2“/2(u —x),27"P(x),... ,27“(|’8|+2)/2D6P(.%'), o)

with & = Fy® € SR x V), |8 = |(B1, .-, 8a) = X B;.
For a multi-index v € Z% we set X7 = X" XJ? ... X]*. Then

)

oMl
vy 2 P
(3.7) D7 = 97— Uxv
Let us observe that %%Qu (x,u) is the kernel corresponding to the op-
erator
(38) (-n"IDYg(27"A)DY f

= (-)h IH)IgWHgT#H)I;W,f = (=) l2lrl+ I)N/ZH(I;(W*qs*Xw')Hf

for f € C*(RY). Therefore
ol gl

Oz du’
= (=) Igdt It Di/2

(3.9)

Qu(xa u)

X Wiy (22 (u — 2),27H P(), ..., 27 IBFD2DBp(g) ),
where U, o) = Fy(X7 « P x X7,
Thus we have proved
PROPOSITION 3.10. For every b > 0 and every ¢ € Sp([0,00)) the kernels
Qu(z,u) of the operators Q,, = (27" A) satisfy

(3.11) 1Qu(,u)| < CR2M/2(1 4 212 |2 — uf) =,
ol Il , B
(3.12) %WQ“(LU) < C(bﬁw,)2(d+|’Y|+|’Y |)N/2(1 + 2#/2|x — ul) b

Let K;(z,u) be the kernels of the operators {;~ Ae™** dE4(\). The fol-
lowing proposition is a simple consequence of (3.1), (3.2), (3.5), and the fact
that if ||g|| is a Euclidean norm on G then ||g|| < C(1+|g|)¢ for some &’ > 0.

PROPOSITION 3.13. There exist constants C > 0 and € > 0 such that
(3.14)  Ki(x,u)
=222y — 2, tP(2),. ..  tUBHD2DAP(1), ),

where
(3.15) 12 (2,8 < C(1+ =)~
(3.16) 12 (2,8) — Z(x,0)] < C(1+ |z)~ g
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We denote by T;(x,u) the kernels of the semigroup generated by —A.

PROPOSITION 3.17. For every b > 0 there exists a constant C' > 0 such
that

(3.18) 0<Ty(z,u)
< Ot exp(—|u—x?/(5t)) J[ (1 + [t11+2/2DF p(a)]) .
Bl

Proof. On Y we consider the coordinates y = (y5)p<a = . ysY .
Since 0/dys = YA + > vi<1] cy.5(9)YD] where ¢, 5 is a homogeneous
polynomial on G of degree |3]| — || (cf. [FS]), we conclude from (3.2) that

o \M™ o N\
<5y5<1>> m<5y5<n>> QI(Q)'

<Ok, kn, Y0, B (1 4 [g))~ 92
This combined with (3.5) and (3.1) gives
(320)  |Ti(x,u)
< Cpt ™21+t 2w —2) 742 [T (1 + UPHD/2DP P(a))) 0

BLla

(3.19)

On the other hand, the Feynman—Kac formula implies
(3.21) 0 < Ty(z,u) < Ct~ Y2 exp(—|u — z|?/(4t)).
Thus (3.18) follows from (3.20) and (3.21).

4. Applications. In this section we show some applications of the
estimates we derived in Section 3. Some results presented here are known
(see the remarks following Theorems 4.4 and 4.5) but we believe that the
methods can be used in other investigations.

An operator K defined on a dense set D of L?(R?) by the formula

Kf(z) =\K(z,u)f(u)du,

where K (z,u) is a continuous function on {(z,u) € R x R% : 2 # u}, is a
Calderon—Zygmund operator if K can be extended to a bounded operator
on L?(R%), that is,

(4.1) 1K fllL2@ey < Cllfll2eey  for f €D,

and

(4.2) K (z,u)| < Clz —u|™% z#u,

(4.3) |V K (z,u)] + |V K (z,u)| < Clz —u|~4Y,  z#u.

The smallest constant C' such that (4.1)—(4.3) hold is called the bound of
the Calderén—Zygmund operator.
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THEOREM 4.4. For every v,y € Zi the operator
R = DvA-(+D/2py

is a Calderdn—Zygmund operator with bound that depends only on v, v', and
the degree of the polynomial P.

REMARK. For |y| + |y/| < 2 Theorem 4.4 was proved by Zhong in [Z].

Proof. Fix v and +'. Without loss of generality, by taking a large if
necessary, we can assume that @ > |y| + |7/|, where @) is the homogeneous
dimension of the group G. Therefore the operator H~(7+17'D/2 has a con-
volution kernel, which is a regular kernel of order —|y| — |7/| on the group
G. Let ¢ € Cg°(1/2,2) be such that 3, ((27#A) =1 for A > 0.

Set

0, = oij)\f(\v\ﬂ'%l)/?g(gfu)\) dEx(\).
Clearly the convolution ernel 6,(g) of the operator O, is given by
0,(9) = 9= rI I+ D/291R/2 0 (6,2 9),
where Oy € S(G). Thus
(X7 %0, % X7)(g) = 2"9/2(X7 % Og % X7 ) (8gsus29)

and X7 %Oy x XV dg = 0.

Therefore, by the almost orthogonality principle, ZNEZ X0, X f
converges in the norm L2(R?) for every f € C°(R?). Moreover, since the
spectrum of the operator A is strictly positive, the operator A~(71+17'D/2 g
bounded on L%(R?), and the series converges in S'(R?) to Rf. Thus R is

bounded on L?(R%) and
Rf Z X7%0, *X’Y

HEZL

It follows from (3.5) that the kernel R, (x,u) of U;W*@ oxo 18

R, (x,u) = 2425 (282 (y — x), 27 P(x),..., 2 FIBIFD/2 DB p(y) ),

where = € S(R? x RP). It is now not difficult to check that the kernel of R
satisfies (4.2) and (4.3).

THEOREM 4.5. For every q > 0 and every v, € Zi the operator
(4.6) R=PYz)D"A*D",

where k = q+ (|v] + |7'])/2, can be extended to a bounded operator on LP
for 1 < p < oo, that is,

IRf e < Cpllfllze  for f e CE(RY).
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REMARK. In the case where P satisfies a reverse Holder inequality, and
k= %, 1, the boundedness of R on LP spaces (for a certain range of p) was
shown by Shen (see [Sh] for details).

Proof (of Theorem 4.5). Let R(x,u) be the integral kernel of the oper-
ator R. It suffices to show that there exists a constant C such that

(4.7) sup S\R(x,u)] du + sup S\R(x,u)] dx < C.
z€ER4 u€R?

Let ¢ be as in the proof of Theorem 4.4. Since the infimum of the spectrum
of A is strictly positive, there exists a constant B; such that

(4.8) R(z,u)= Y Ry(z,u),
n>B1

where R, (z,u) is the kernel of the operator
R, = Pq(x)D7< | AFcera dEA(A)) D",
0
As in the proof of Theorem 4.4, we obtain
R, (x,u) = 27112%/2 P (y)
x 22 (u—x),27"P(x),...,27 M IB+2D/2 DB (), ... ),
where = € S(R? x RP).
It is easy to check that >° 5 §|R,(z,u)|du < C with C independent
of z.

It remains to prove that sup,cga § |R(z,u)|dz < C.
For a positive integer m we set

R () = 2822719 P (@) X[y ) (24 |0 — )
% H X[—m,m}(z_u(|6|+2)/2DBP(ﬂU))-
BLa
We see that
(4.9) |Ru(z,u)] < b BRI (2, 0),
m>2

where b, < Cym™" for every I > 0.
For fixed u € R? let n be an integer such that
(4.10) on/2 < Z \D’BP(u)]l/("BHQ) < 9n+1)/2
BLa
Since P is a nonzero polynomial, there exists a constant By such that n > By
for every u. If RLm} (z,u) # 0 then |z —u| < 27#/?m and |DPP(z)| <
21(18142)/2m, for every 8 < . Applying the Taylor formula we obtain

DB P(u)| < C2(B81+2)/2plal+1



158 J. DZIUBANSKI

for every 8 < a. It follows from (4.10) that there exists f < « such that
2(B1+2)n/2 < | DA P(u)|. Therefore

(4.11) a2 < CoH/2mleltt,
On the other hand, (4.10) implies
(412) |P(x)| <C > |IDPP(u)| - |z —ull?h < Comlelan Y~ 2lflin=m/2,

BLla B<la
Finally, by (4.9), (4.11) and (4.12), we obtain

VR, w)de < Y {|Ru(2,u)| do

n>B1
< S b [ IR ) de
pu>B1 m>2
< Z Z O b,, 20/ 29= 1y cagny

m>2 pu>n—Clog, m
x Y 2Bl 2{y g (22 (u — z)) dw < O

BLla

5. Triebel-Lizorkin spaces associated with A. For a smooth func-
tion ¢ such that

(5.1) suppd C [1/2,2], |p(AN)| > c>0 for A € [3/4,7/4],

and for k € R, 0 < p,q < oo, we define a Triebel-Lizorkin norm || || 4x.9(4)
associated with A = —A + P by

. 1/q
(5:2) 1 lags) = | [NEEJZ@“ QuID) ), gy
where
(5.3) Quf =27 "A)f = | ¢27"N)dEA(N)f.
0

Observe that if P = 0 then the Triebel-Lizorkin norm || [ ayxa is
equivalent to the classical homogeneous norm || || p2x.q.
P

In the present section we shall show that different ¢’s give equivalent
Triebel-Lizorkin norms, that is,

THEOREM 5.4. Let k € R, 0 < p < 00, 0 < g < 00. If ¢V and ¢ are
two C* functions satisfying (5.1), then there is a constant C' > 0 such that

(5.5) C U flarapmy <fllazas@y < Cllfllasago)-
The proof uses ideas of Peetre [P] (see also Epperson [E]).
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For a > 0 and a fixed C* function ¢ for which (5.1) holds define the
maximal function A, by

_ Quf ()|
(5:6) Anf @) = sup A e — g

where Q, = ¢(27"A). We also consider

_ VQuf ()]
(5.7) B, f(z) = ysél@ 1+ QM/SL,E — g

LEMMA 5.8. For every a > 0 there is a constant C > 0 such that for all
pweZ,xeR: fe L2(RY,

(5.9) Buf() < C2/2 A, f(x).

Proof. The proof is essentially the same as that of Lemma 2.1 in [E]. Let
¥ be a C° function on R such that suppy C [1/2,2], Zjezzp(Qj)\)(b(Qj)\)
=1. Set ((\) = Z;zq ¥(270)¢(27 \) Obviously, (3.11) and (3.12) hold for
the kernels Ms-. (x, s) of the operators ((27#A). Therefore
L QuI@)| = | (27 A)Quf (2)

ij H N 8.%'j H 8.%'j

< G |21+ 222 — )7

_ ' § -2 (1, 5)Q, (5) ds

X (14 212]s —ul)*(1 + 2|5 — ul)~*|Q,f ()| ds
< O A, f(w)(1+ 22|z —ul)?,
which gives (5.9).
LEMMA 5.10. There is a constant C such that for all p € Z, v € RY,
f e L2(RY),
(5.11) Auf (@) < CIM(Quf )" @),
where a = d/r and M is the Hardy—Littlewood mazximal operator.

Proof (cf. [P]). For 6; > 0set 6 = 27#/25;. By the mean value theorem
there is a constant C' > 0 such that for every § > 0,

1/r
\%f(m—u)\gc(sd/r( g \me)rdy)

|t—u—y|<d

+C0  sup  [VQuf(y)l

|r—u—y|<d
< C5Y(S + [ul) T [M(1Qu |7 ()]
+ OOB,.f(w)(1+ 2126 + 2% |u])".
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Applying (5.9), we obtain
(Quf (= w)| < C2#4/ 6T (27125, 4 Jul) T [M(1Qu fI") ()]
+ CO1 (A f) (@) (1 + 6y + 24/ [u))
< O848y + 242 |u)) VT MQuf M) @)
+ OO (A f) (@) (1 + 61+ 2472 |ul)*.
By the above, there exists a constant C' > 0 such that for every 0<d; <1,
|Quf (@ = w)|(1+22ul)=* < Coy Y IM(QufIN) (@) + Co1 AL f ().
Taking 6; small enough, we get (5.11).

Proof of Theorem 5.4. Let 0 < r < min{p, ¢} and a = d/r, and let ¥(?
be a smooth function satisfying (5.1) such that

(5.12) > PN (27N =1 for A > 0.
HEZ

If R = ¢ (277 A), then

p+1
(5.13) QP =sV2rA) = > QPRPQY.
v=p—1
By Proposition 3.10,
pt1
QW@ <Cy Y § 2P+ 22z —y) NP F(v) dy
v=p—1Rd
1
<Gy Y (2" 2Pl —y) AR f(a) dy
v=p—1Rd
1
<Gy Z AP f(x)
v=p—1
From Lemma 5.10, we conclude
1
QW @) <C Y IMUIQP N @)
v=p—1

Finally, using the Fefferman—Stein vector-valued maximal inequality [FeS],
we have

£ lagrom < €)|( X @ MAQE ) @)I7))

p==—00

1/(1‘

Lp
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r/qu/r

Lr/r

<c|( ¥ @ ieRre)”)

p==—00

< Cllf lagaqge)-
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