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NAKHLÉ H. ASMAR AND

STEPHEN J. MONTGOMERY - SM ITH (COLUMBIA, MISSOURI)

Let G be a locally compact abelian group whose dual group Γ contains
a Haar measurable order P . Using the order P we define the conjugate
function operator on Lp(G), 1 ≤ p <∞, as was done by Helson [7]. We will
show how to use Hahn’s Embedding Theorem for orders and the ergodic
Hilbert transform to study the conjugate function. Our approach enables
us to define a filtration of the Borel σ-algebra on G, which in turn will allow
us to introduce tools from martingale theory into the analysis on groups
with ordered duals. We illustrate our methods by describing a concrete way
to construct the conjugate function in Lp(G). This construction is in terms
of an unconditionally convergent conjugate series whose individual terms
are constructed from specific ergodic Hilbert transforms. We also present a
study of the square function associated with the conjugate series.

1. Introduction. Throughout this paper, G will denote a locally com-
pact abelian group with dual group Γ . A Haar measure on G will be sym-
bolized by µ. For 1 ≤ p < ∞, we denote by Lp(G) the Banach space of
Haar measurable functions f on G such that |f |p is integrable. The space
of essentially bounded Haar measurable functions on G will be denoted by
L∞(G).

An order on Γ is a subset P such that P + P ⊆ P ; P ∩ (−P ) = {0};
P ∪ (−P ) = Γ . Given such a set P we will write α > β to mean that
α − β ∈ P\{0}. For f ∈ L2(G) we use the Fourier transform to define
the conjugate function f̃ of f with respect to the order P by the Fourier
multiplier relation

(1) ̂̃
f(χ) = −i sgnP (χ)f̂(χ)

for almost all χ ∈ Γ , where sgnP (χ) = −1, 0, or 1, according as χ ∈

1991 Mathematics Subject Classification: Primary 43A17.

[235]



236 N. H. ASMAR AND S. J. MONTGOMERY-SMITH

(−P )\{0}, χ = 0, or χ ∈ P\{0}. When G is compact, these definitions
are due to Helson [7] and [8].

In [6], Garling observed that the conjugate function on TN , defined using
a lexicographic order on ZN , is connected in a natural way to martingale
theory. Using this connection, Garling gave simple proofs of basic properties
of the conjugate function in this setting. Our goal in this paper is to show
how certain notions related to Hahn’s Embedding Theorem for orders [5,
Chapter IV]) can be used to introduce similar tools from probability theory
in the study of conjugate functions on groups with an arbitrary measurable
order on the dual group. We present the material related to Hahn’s Theorem
in Section 2. In particular, we will state a structure theorem (Theorem 2.4
below) which describes an order in terms of a unique chain of convex sub-
groups of Γ . When Γ is not necessarily discrete, the chain of subgroups
may contain elements that are not Haar measurable. In Section 3, we will
show how to obtain a structure theorem, similar to the one in Section 2,
while avoiding nonmeasurable subgroups of Γ . This study is based on the
work of Hewitt and Koshi [9] concerning measurable orders. In Section 4,
we use the structure theorems for orders to define the conjugate function
as a martingale difference series whose individual terms are constructed by
using different ergodic Hilbert transforms. In Section 5, we will show that
the conjugate series of f ∈ Lp(G) is unconditionally convergent in Lp(G)
when 1 < p <∞, and is unconditionally convergent in L1,∞(G) when p = 1.
These results yield a concrete way for constructing the conjugate function
on abstract groups. We end the paper with a study of the square function
associated with the conjugate series.

2. Orders on discrete groups. We start by collecting facts leading
to a structure theorem for orders on discrete groups (Theorem 2.4 below).
This requisite material is taken from [5, Chapter IV], where it is presented
as a background for the proof of Hahn’s Embedding Theorem for orders [5,
Theorem 16, p. 59]. Our presentation is simplified by the fact that the
groups are all abelian.

Definitions and basic properties. Let Γ denote an infinite torsion-free
abelian group. The topology on Γ will play no role in this section. An order
on Γ will be denoted by P (Γ ) or simply P . Because sometimes we will be
dealing with more than one order on a given group, it will be convenient to
write (Γ, P ) or (Γ, P (Γ )) to denote the group and the given order on it. A
subset J ⊂ Γ is called convex if whenever a, b ∈ J , c ∈ Γ and a ≤ c ≤ b,
then c ∈ J . As we will see, this notion plays a prominent role in the theory
of orders. For the reader’s convenience, we list a few properties of convexity
that will be used in the sequels (see [5, pp. 18–19, and Chapter IV]).
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(a) A subgroup C ⊂ Γ is convex if and only if P (Γ ) ∩ C is convex in
P (Γ ).

(b) If B ⊂ C ⊂ Γ , and if B is convex in C and C is convex in Γ , then
B is convex in Γ .

(c) The intersection of convex subgroups is again a convex subgroup.
Thus, if A is a subset of Γ , there is a smallest convex subgroup containing
A. We will denote this subgroup by {A}�. If A is a subgroup, then {A}� =
(A+ P ) ∩ (A− P ).

(d) A subgroup C ⊂ Γ is called principal if C = {c}� for some c ∈ Γ .
(e) Let Γ and Γ ′ be two ordered groups. A homomorphism φ : (Γ, P (Γ ))

→ (Γ ′, P (Γ ′)) is called an order homomorphism if φ(P (Γ )) ⊂ P (Γ ′). It is
clear that if φ is an order homomorphism, then kerφ is a convex subgroup
of Γ . Conversely, if H is a convex subgroup of (Γ, P (Γ )), then we can
define an order on the quotient group Γ/H by a+H ∈ P (Γ/H) ⇔ a ∈ P .
To verify this claim, suppose that a + H = b + H, and, say, a ∈ P and
b ∈ −P . Then 0 ≤ a ≤ a − b ∈ H. Since H is convex, it follows that
a ∈ H, and so a + H = b + H = 0 + H, which shows that P (Γ/H) is
indeed an order on Γ/H. It is also clear that the natural homomorphism
π : (Γ, P (Γ )) → (Γ/H,P (Γ/H)) is an order homomorphism. We have thus
the following useful theorem (see [5, Theorem 7, p. 21]).

Theorem 2.1. Suppose that Γ is an ordered group and H is a subgroup of
Γ . If H is convex then the natural homomorphism π : (Γ, P ) → (Γ/H, π(P ))
is an order homomorphism. Conversely , suppose that φ : (Γ, P ) → (Γ ′, P ′)
is an order homomorphism with kerφ = H. Then H is a convex subgroup
of Γ .

Definition. An order P on Γ is called Archimedean if, given a, b ∈
P\{0}, there is a positive integer n such that na > b.

Archimedean orders have a simple characterization in terms of real-
valued homomorphisms, due to O. Hölder ([5, Theorem 1, p. 45]).

Theorem 2.2. An order P on Γ is Archimedean if and only if Γ is
isomorphic to a subgroup of R.

There is another useful characterization of Archimedean orders in terms
of convex subgroups ([5, Corollary 5, p. 47]).

Theorem 2.3. Suppose that Γ is an ordered group; then Γ is Archi-
medean ordered if and only if the only convex subgroups of Γ are {0} and Γ .

Following [5, Chapter IV, Section 3], we let Σ denote the system of all
convex subgroups in Γ . This system is in fact a chain containing {0} and Γ .
Hence if C and D are in Σ, then either C ⊂ D or D ⊂ C. Also, whenever
{Cλ}λ∈Λ is a collection from Σ, then

⋂
λ∈Λ Cλ and

⋃
λ∈Λ Cλ are again in Σ.
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By a jump in Σ we mean a pair of subgroups C and D such that D ⊂ C,
D 6= C, and Σ contains no subgroups between C and D. A jump will be
denoted by D ≺ C.

It is a fact that a subgroup C ∈ Σ is the greater member of a jump (i.e.
D ≺ C) if and only if C is a principal convex subgroup. That is,

C = {a}�

for some a ∈ Γ (see p. 54 of [5]).
Let Σ0 denote the system of principal convex subgroups, and let Π be an

indexing set for Σ0. Order Π as follows: for %, π ∈ Π, set π ≤ % if and only
if C% ⊂ Cπ. With this order, Π has a maximal element α0 corresponding to
{0} ∈ Σ0. Thus Cα0 = {0}. For notational convenience, let Dα0 = ∅. Let
Dπ ≺ Cπ denote a jump in Σ, with π < α0. The quotient group Cπ/Dπ has
no nontrivial convex subgroups. By Theorem 2.3, Cπ/Dπ is Archimedean
ordered. Let

(2) ψπ : Cπ/Dπ → R
denote the order isomorphism mapping Cπ/Dπ into a subgroup of R, and
let

(3) Lπ : Cπ → R
denote the composition of ψπ with the natural homomorphism of Cπ onto
Cπ/Dπ. Then Lπ is an order homomorphism of Cπ into R with kerLπ = Dπ.
Since R is a divisible group, the homomorphism Lπ can be extended to a
homomorphism of the entire group Γ into R (see [10, Theorem A.7, p. 441]).
We keep the same notation for this extension. The next theorem summarizes
this discussion. It is a basic result of this section and will be used in defining
our construction of the conjugate function.

Theorem 2.4. Let Γ be an infinite discrete (torsion-free) ordered group
with order P . Let Σ denote the chain of convex subgroups of Γ and Σ0

the subcollection of principal convex subgroups indexed by the ordered set Π.
There is a collection of real-valued homomorphisms {Lπ : π ∈ Π} of Γ into
R such that , for every jump Dπ ≺ Cπ, we have

(i) Lπ(Dπ) = {0}; and
(ii) sgn(Lπ(χ)) = sgnP (χ) for all χ ∈ Cπ\Dπ.

Observe that, in the notation of the previous theorem, we have

(4) Γ =
⋃

α∈Π

Cα\Dα.

In fact, given x∈Γ , we have {x}� =Cα for some α∈Π. Since Dα is strictly
contained in Cα, it follows that x belongs to Cα\Dα, which proves (4).

The following example will illustrate many of the results of this section.
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Example. Suppose that (T,<) is an ordered set and that γ is a limit
ordinal. Let Z(T,γ) be the group of sequences (zt)t∈T such that the set {t :
zt 6= 0} is reverse well ordered (i.e., every subset has a largest element) with
order type less than γ. Define an order as follows: If z = (zt)t∈T ∈ Z(T,γ)

and t0 = max{t : zt 6= 0}, then z ∈ P if and only if zt0 ≥ 0.
In this example we see that Σ0 is order isomorphic to −T , that Cα =

{(zt) : zt = 0, for t ≥ α}, that Dα = {(zt) : zt = 0, for t > α}, and that
Lα((zt)) = zα.

We can also construct R(T,γ) similarly.

3. Orders on locally compact abelian groups. In this section we
prove a general version of Theorem 2.4 for measurable orders. The difficulty
here is due to the fact that, in general, the chain of convex subgroups in
Theorem 2.4 may contain nonmeasurable subgroups, or jumps of the form
Dα ≺ Cα with Cα\Dα having measure zero. To overcome these measure
theoretic problems, we will find a smallest open principal convex subgroup
of Γ which will determine when to stop the chain while still being able
to separate with continuous real-valued homomorphisms as in Theorem 2.4.
This section is based on the study of orders of Hewitt and Koshi [9]. Indeed,
Theorem 3.10 below is a combination of results from [9] and the material
from the previous section. Throughout the present section Γ will denote
an infinite locally compact torsion-free abelian group. The following basic
properties of measurable orders will be needed.

Theorem 3.1. (a) If P is a measurable order , then P has nonvoid inte-
rior ([9, Theorem 3.1]). Consequently , if P is a measurable order , then −P
has nonvoid interior.

(b) If Γ is an infinite compact torsion-free group, then every order on
Γ is dense and has void interior ([9, Theorem 3.2]). Consequently , every
order on a compact infinite group is nonmeasurable.

R e m a r k 3.2. Suppose that Γ is a locally compact abelian group, and
that P is a measurable order on Γ . Use the structure theorem for locally
compact abelian groups to write Γ as Γ = Ra×Ω, where a is a nonnegative
integer and Ω contains a compact open subgroup Ω0 ([10, Theorem 24.30]).
The fact that P is measurable automatically implies that either Γ is discrete
or a > 0. In fact, if a = 0, then Γ = Ω and so Ω0 is a compact open subgroup
of Γ . The restriction of P to Ω0 is a measurable order in Ω0. But since
Ω0 is compact, it follows from Theorem 3.1(b) that Ω0 = {0}, and so Γ is
discrete.

Henceforth, to avoid the cases treated in the previous section, we will
assume that Γ = Ra × Ω with a > 0. For use in the sequel, we need the
following result due to Hewitt and Koshi [9, Theorem 3.12].
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Theorem 3.3. Let P be an order on Ra × B, where a > 0 and B is
an infinite torsion-free locally compact abelian group that is the union of its
compact open subgroups. Suppose that P has nonempty interior. Then there
is a continuous real-valued homomorphism L : Ra → R such that

(5) L−1(]0,∞[)×B ⊂ int(P ) ⊂ P ⊂ L−1([0,∞[)×B.

The order P ∩ (L−1({0})×B) is arbitrary.
R e m a r k 3.4. (a) It follows from Theorems 3.1 and 3.3 that an order

P on Ra is measurable if and only if it is not dense in Ra.
(b) Let P be a measurable order on Ra×Ω, and let B denote the union

of all the compact open subgroups of Ω. The restriction of P to Ra × B is
a nondense order, and so by Theorem 3.3 there is a continuous real-valued
homomorphism L : Ra → R such that

L−1(]0,∞])×B ⊂ P.

We can now describe our candidate for a smallest open convex principal
subgroup of Γ . Let

(6) H = {y ∈ Ω : Ra × {y} has nonvoid intersections with P and − P}.

Proposition 3.5. Let P be a measurable order on Ra × Ω, and let H
be as in (6). Then H is a subgroup of Ω that contains all the compact open
subgroups of Ω; and Ra ×H is an open convex subgroup of Γ .

P r o o f. The fact that H contains all the compact open subgroups of
Ω follows from Theorem 3.3. Also, the fact that H is a subgroup is easily
verified. Since Ra ×H is a subgroup with nonvoid interior it follows imme-
diately that the subgroup is open. To establish the convexity of Ra × H,
suppose that

0 < (t, y) < (t′, y′)
with y′ ∈ H, t, t′ ∈ Ra. To show that (t, y) ∈ Ra ×H, it is enough to find
x ∈ Ra with (x, y) ∈ −P . Since y′ ∈ H, we can find x ∈ Ra such that
(x, y′) ∈ −P . Hence (t− t′, y − y′) + (x, y′) ∈ −P , or, (t− t′ + x, y) ∈ −P .

Lemma 3.6. Let P be a measurable order in Γ and let H be as in (6).
For y ∈ H, let Ay = (Ra × {y}) ∩ P and By = (Ra × {y}) ∩ −P . Then Ay

and By are nondense in Ra × {y}.

P r o o f. It is enough to deal with the set Ay with y 6= 0. Assume that
(Ra × {y})∩ P is dense in Ra × {y}. Let (s, y) be any element of Ra × {y},
and let (s0, y) ∈ (Ra × {y}) ∩ P be such that L(s0) > L(s). We have
L(s0 − s) > 0, and so from Remark 3.5(b) we see that (s0 − s, 0) ∈ P .
Hence (s0, y) + (s− s0, 0) = (s, y) ∈ P , implying that Ra × {y} ⊂ P , which
contradicts the fact that y ∈ H. Thus P∩(Ra×{y}) is nondense in Ra×{y}.
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We can now prove a special separation theorem for orders (compare with
[9, Theorem 3.7]).

Theorem 3.7. Let P be a measurable order on Γ , let H be as in (6),
and let L be as in Remarks 3.4(b). For every y ∈ H, there is a real number
α(y) such that

(i) L−1(]−∞, α(y)[)× {y} ⊂ −P,
(ii) L−1(]α(y),∞[)× {y} ⊂ P.

Moreover , the mapping y 7→ α(y) is a continuous real-valued homomorphism
from H.

P r o o f. We will write the elements of Γ = Ra × Ω as (x, y), where
x ∈ Ra, and y ∈ Ω. Suppose that (x1, y) ∈ P and L(x2) > L(x1). Then
L(x2 − x1) > 0, and so from Remark 3.4(b) we have (x2 − x1, 0) ∈ P\{0},
and consequently, (x2, y) ∈ P\{0}. Similarly, if (x1, y) ∈ −P , and L(x2) <
L(x1), then (x2, y) ∈ (−P )\{0}. From these observations and the definition
of H, we see that the following holds for every y ∈ H:

−∞ < sup{L(x) : x ∈ Ra, (x, y) ∈ (−P )}(7)
= inf{L(x) : x ∈ Ra, (x, y) ∈ P} <∞.

For y ∈ H, let α(y) be defined by either the inf or the sup in (7). That α
is a continuous homomorphism follows exactly as in the proof of [9, Theo-
rem 3.7]. We omit the details.

We restate Theorem 3.7 using separating homomorphisms that reflect
the order on Ra ×H.

Theorem 3.8. Let P be a measurable order on Γ , and let H, L, and α
be as in Theorem 3.7. Define the homomorphism τ on Ra ×H by

τ(x, y) = L(x)− α(y).

Then
(i) τ is continuous on Ra ×H.
(ii) τ−1(]−∞, 0[) ⊂ (−P ).
(iii) τ−1(]0,∞[) ⊂ P.

(iv) The kernel of τ is locally null (i.e., if K is any compact subset of
τ−1({0}), then µΓ (K) = 0).

P r o o f. Assertions (i)–(iii) follow from the definitions of the homomor-
phisms τ and α. Now suppose that K is a compact subset of τ−1({0}) and
µΓ (K) > 0, where µΓ is a Haar measure on Γ . Then K −K contains an
open neighborhood of the identity in Γ , and hence τ−1 ({0}) is an open
subgroup of Γ , which implies that Ra × {0} ⊂ τ−1 ({0}). This is plainly a
contradiction, and so (iv) holds.
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Theorem 3.9. Let H be as in (6). Then Ra ×H is a principal convex
open subgroup of Γ .

P r o o f. Because of Proposition 3.5, all we need to show is that Ra ×H
is a principal subgroup. For this purpose, let z be any element in Ra ×H
such that τ(z) > 0. We claim that Ra × H = {z}�. Since by definition
{z}� is the smallest convex subgroup containing z, and since Ra × H is
convex, it is enough to show that {z}� ⊃ Ra ×H. Let x be any element of
P ∩(Ra×H). From Theorem 3.8, τ(x) ≥ 0. Choose a positive integer n such
that τ(nz) > τ(x) ≥ 0. Again from Theorem 3.8 we see that 0 ≤ x ≤ nz, and
since {z}� is convex, it follows that x ∈ {z}�. Hence {z}� ⊃ P ∩ (Ra×H),
and consequently {z}� ⊃ Ra ×H.

We are now ready to state the main result of this section. We write the
group Γ as Ra × Ω, where a > 0. Let Σ(H) denote the chain of convex
subgroups of Γ containing Ra × H, and let Σ0(H) denote the chain of
principal convex subgroups containing Ra × H. Let Π(H) be an indexing
set for Σ0(H). Order Π(H) as we did in the discrete case: for %, π ∈ Π(H),
set π ≤ % if and only if C% ⊂ Cπ. With this order, Π(H) has a maximal
element α0 corresponding to Ra × H ∈ Σ0(H). Hence Cα0 = Ra × H.
As in the discrete case, we denote a jump in Σ(H) by Dπ ≺ Cπ, where
Cπ is a principal convex subgroup of Γ containing Ra × H. Note that for
Cα0 = Ra ×H the jump occurs with an element outside of Σ0(H). We set,
by definition, Dα0 = ker τ , where τ is the homomorphism of Theorem 3.8.
Hence Dα0 is locally null by Theorem 3.8. Note that

(8) Γ = Dα0 ∪
⋃

α∈Π(H)

Cα\Dα.

With the exception of Dα0 , each set on the right side of (8) is open.

Theorem 3.10. With the above notation, for every α ∈ Π(H), α 6= α0,
there is a continuous real-valued homomorphism Lα on Γ such that

(i) Lα (Dα) = {0};
(ii) sgnP (χ) = sgn(Lα(χ)) for all χ ∈ Cα\Dα.

When α = α0, there is a real-valued homomorphism Lα0 on Γ such that

(iii) Lα0(Dα0) = {0};
(iv) sgnP (χ) = sgn(Lα0(χ)) for all χ ∈ Cα0\Dα0 .

(Since Dα0 is locally null , (iv) holds for locally almost all χ ∈ Cα0 .)

P r o o f. We treat first the case α = α0. Consider the homomorphism τ
provided by Theorem 3.8. Since τ maps into R and R is a divisible group,
τ can be extended to a homomorphism on all of Γ ([10, Theorem A.7]). We
denote the extended homomorphism by Lα0 . By the properties of τ from
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Theorem 3.8, it is clear that (iii) and (iv) hold. Now since Lα0 is continuous
on an open subgroup of Γ , it follows by linearity that Lα0 is continuous on
all of Γ . This proves the theorem in this case.

We now treat the remaining cases. Since Ra×H is convex and open, the
group Γ/(Ra ×H) is discrete and can be ordered as in Theorem 2.1. Let Φ
denote the natural homomorphism of Γ onto Γ/(Ra ×H). It is easy to see
that C is a convex subgroup of Γ if and only if Φ(C) is a convex subgroup
of Γ/(Ra × H). Consequently, if Dα ≺ Cα is a jump in Γ , with α 6= α0,
then Φ(Dα) ≺ Φ(Cα) is a jump in Γ/(Ra × H). The theorem follows now
by composing Φ with the homomorphisms provided by Theorem 2.4 for the
discrete ordered group Γ/(Ra ×H).

With Theorem 3.10 in hand we can give a simple proof of a separa-
tion theorem for measurable orders [1, Theorem 5.14]. The statement here
slightly improves on [1].

Theorem 3.11. Let P be a measurable order on Γ and let K be an
arbitrary compact subset of Γ . Let N = ∅ if Γ is discrete and N = Dα0

if Γ is not discrete, where Dα0 is as in Theorem 3.10. Then there is a
continuous real-valued homomorphism ψ of Γ such that

sgnP (χ) = sgn(ψ(χ))

for all χ ∈ K\Dα0 .

P r o o f. We treat the descrete case first. Without loss of generality, we
may assume that K is a finite subset of Γ not containing 0. We appeal to
Theorem 2.4 and use its notation. Let

Dα1 ⊂ Cα1 ⊂ Dα2 ⊂ Cα2 ⊂ . . . ⊂ Dαn ⊂ Cαn

be a finite collection in Σ such that K ∩ (Cαj\Dαj ) 6= ∅ for all j = 1, . . . , n,
and

K ⊂
n⋃

j=1

Cαj\Dαj ,

and let Lαj be the real-valued homomorphism of Γ corresponding to αj .
We have, from Theorem 2.4,

Lαj (Dαj ) = {0},(9)
Lαj (K ∩ P ∩ (Cαj\Dαj )) ⊂ ]0,∞[,(10)

Lαj (K ∩ −P ∩ (Cαj\Dαj )) ⊂ ]−∞, 0[.(11)

We construct the homomorphism ψ as a linear combination

ψ =
n∑

j=1

ajLαj ,
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where the coefficients aj are defined inductively as follows. Set a1 = 1. If
aj is defined for j = 1, . . . , k − 1, let

Ak = max
x∈K

k−1∑
j=1

|ajLαj
(x)|, Bk = min

x∈K∩(Cαk
\Dαk

)
|Lαk

(x)|.

Note that Bk is positive. Choose ak so that akBk > Ak. Using (9)–(11),
it is straightforward to check that the homomorphism ψ has the desired
property.

To treat the general case, we appeal to Theorem 3.10, and borrow its
notation. Let Φ denote the quotient homomorphism of Γ onto the discrete
group Γ/(Ra ×H) (recall that Ra ×H is open). Since K is compact, Φ(K)
is a finite subset of Γ/(Ra ×H). Order Γ/(Ra ×H) as in Theorem 2.1. By
the case we just treated, we can find a homomorphism ψ∗ of Γ/(Ra × H)
separating the set Φ(K). It is clear that the homomorphism ψ∗◦Φ separates
the set K\(Ra ×H). If K ∩ ((Ra ×H)\Dα0) = ∅ then we are done. If not,
consider the homomorphism

ψ = Lα0 +
a

b
ψ∗ ◦ Φ,

where a = maxx∈K |Lα0(x)| and b = minx∈K\Ra×H |ψ∗ ◦ Φ(x)|. A simple
argument that we omit shows that ψ has the desired property.

4. The conjugate function and its basic properties. In this sec-
tion, we use the structure of orders that we derived earlier to define the
conjugate series of a function in Lp(G), 1 ≤ p <∞. For use in the following
section, we also recall some basic properties of the conjugate function opera-
tor, such as generalized versions of M. Riesz’s and Kolmogorov’s Theorems.

Let Γ denote a locally compact abelian group containing a measurable
order P , and let G denote the dual group of Γ . Recall that the conjugate
function operator f 7→ f̃ is defined on L2(G) by the multiplier relation (1).
It is convenient to write HP (f) as an alternative notation for the conjugate
function. We appeal to Theorems 2.4 and 3.10 and write the group Γ as a
disjoint union of open sets

(12) Γ = Cα0 ∪
⋃

α6=α0

Cα\Dα.

For each α 6= α0, let Lα denote the continuous homomorphism from Γ into
R such that

(12) sgn(Lα(χ)) = sgnP (χ)

for all χ ∈ Cα\Dα, and let Lα0 denote the continuous homomorphism from
Γ into R such that

(14) sgn(Lα0(χ)) = sgnP (χ)
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for locally almost all χ ∈ Cα0 . To simplify notation, let us write Π for
the indexing set in both cases of Theorems 2.4 and 3.10. For each α ∈ Π,
the subgroup Cα is open, and similarly, Dα is open for α 6= α0. Hence the
annihilators in G, A(G,Cα) and A(G,Dα), are compact. Let µα, respec-
tively να, denote the normalized Haar measure on A(G,Cα), respectively
A(G,Dα). We have

(15) µ̂α = 1Cα and ν̂α = 1Dα ,

where, if A is a set, 1A is the indicator of A. For f ∈ Lp(G), 1 ≤ p < ∞,
we have

‖f ∗ µα‖p ≤ ‖f‖p and ‖f ∗ να‖p ≤ ‖f‖p

([10, Theorem 20.12]). For α 6= α0, we let

dαf = f ∗ µα − f ∗ να and dα0f = f ∗ µα0 .

It is clear that if f ∈ L2(G), then the support of f̂ is σ-compact. Hence
it has nonvoid intersection with only countably many of the sets appearing
on the right side of (12). It follows from (15) that, except for countably
many α’s, dαf is zero almost everywhere. By approximating with functions
in L2(G), we see that the same is true for any f ∈ Lp(G), 1 ≤ p < ∞. As
a convention, when dαf = 0 a.e., we take it to be identically 0. With this
convention, the formal difference series

(16)
∑
α∈Π

dαf

has only countably many nonzero terms. The conjugate function will be
defined by a series conjugate to (16). Central to our construction is the
ergodic Hilbert transform, which we introduce next. This transform has
been systematically studied by Cotlar [4], Calderón [2], and Coifman and
Weiss [3].

Let Lα be as in (14) or (13), and let φα denote its adjoint homomorphism.
Thus φα is a continuous homomorphism mapping R into G and satisfying

(17) χ ◦ φα(r) = Lα(χ)(r)

for all r ∈ R and all χ ∈ Γ ([10, Section 24]). The truncated Hilbert trans-
form in the direction of Lα is the operator defined on Lp(G), 1 ≤ p < ∞,
by

(18) HLα,nf(x) =
1
π

∫
1/n≤|t|≤n

f(x− φα(t))
1
t
dt.

The (ergodic) Hilbert transform in the direction of Lα is the operator defined
on Lp(G), 1 ≤ p <∞, by

(19) HLαf(x) = lim
n→∞

HLα,nf(x).
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The fact that this limit exits µ-a.e. on G follows from [4] (see also [2] or [3]).
In fact, several other properties of this transform follow from those of the
Hilbert transform on R and the transference methods of [2] and [3]. For ease
of reference, we state some properties that are needed in the sequel. Let L de-
note an arbitrary continuous nonzero homomorphism from Γ into R, and let
φ denote its adjoint homomorphism. The operatorHL,n is defined as in (18).

Theorem 4.1. Let f ∈ Lp(G), where 1 ≤ p <∞.

(i) The limit
HLf(x) = lim

n→∞
HL,nf(x)

exists µ-a.e.
(ii) If 1 < p <∞, then the limit converges in Lp(G), and

‖HLf‖p ≤ Ap‖f‖p,

where Ap is the bound of the Hilbert transform operator on Lp(R).
(iii) For f ∈ L1(G), we have

µ({x ∈ G : |HLf(x)| > y}) ≤ A

y
‖f‖1

for all y > 0, where A is the weak type (1, 1) norm of the Hilbert transform
on L1(R).

(iv) For f ∈ L2(G), we have

ĤLf(χ) = −i sgn(L(χ))f̂(χ)

for almost all χ ∈ Γ .

The usefulness of this theorem is due in great part to the fact that
all the estimates are independent of L or G. Property (iv) justifies using
the terminology “the Hilbert transform in the direction of L” and shows a
clear connection between the ergodic Hilbert transform and the conjugate
function on groups. The proof of (iv) is straightforward, using (ii) and (17)
(see [1, Theorem 6.7]). For use in the sequel, we recall the generalizations
of M. Riesz’s Theorem and Kolmogorov’s Theorem from [1]. (These results
are due to Helson [7] and [8] when G is compact.) Also, having all the
necessary ingredients to prove these results, we will sketch short proofs to
make the paper more self contained and to illustrate the use of the separation
theorems.

Theorem 4.2. Let G be a locally compact abelian group with dual group
Γ , and let P denote an arbitrary measurable order on Γ . For all f ∈ Lp(G),
1 < p <∞, we have

‖HP f‖p ≤ Ap‖f‖p,

where Ap is the norm of the Hilbert transform on Lp(R).
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Theorem 4.3. Let G be a locally compact abelian group with dual group
Γ , and let P denote an arbitrary measurable order on Γ . For all f ∈ L2 ∩
L1(G) and all y > 0, we have

µ({x ∈ G : |HP f(x)| > y}) ≤ A

y
‖f‖1,

where A is the weak type (1, 1) norm of the Hilbert transform on L1(R).

Both theorems are proved in a similar way. It is enough to consider
f ∈ L2(G) with compactly supported Fourier transform. Let K ⊂ Γ denote
the compact support of f̂ . Apply Theorem 3.11 to obtain a real-valued
homomorphism L of Γ such that

sgnP (χ) = sgn(L(χ))

for almost all χ ∈ K. Thus, from Theorem 4.1(iv) and the fact that f̂ is
supported in K, it follows from the uniqueness of the Fourier transform that

HP f = HLf

a.e. on G. The inequalities in Theorems 4.2 and 4.3 follow now from the
corresponding ones for HL in Theorem 4.1.

Because of Theorem 4.3, the operator HP extends from L2∩L1(G) to an
operator on L1(G) satisfying the same weak type (1, 1) estimate. We keep
the same notation for the extended operator.

The next theorem is our first step toward building the conjugate function.
We continue with the notation leading to (16).

Theorem 4.4. Let f ∈ Lp(G), where 1 ≤ p <∞, and let α ∈ Π. Then

(i) HP (dαf) = HLα(dαf) µ-a.e.

If f ∈ L2 ∩ Lp(G), then we also have

(ii) HP (dαf) = dα(HP f) and HLα
(dαf) = dα(HLα

f) µ-a.e.

P r o o f. The equalities in (ii) are clear since all operators in question are
multiplier operators and so they commute. To prove (i) we note that since
dα is a bounded operator from L1(G) into L1(G), and since HP and HLα

are bounded from L1(G) into L1,∞(G), it is enough to consider f ∈ L2(G).
Since sgnP and sgn(Lα(·)) agree a.e. on Cα\Dα, and since dα projects the
Fourier transform on Cα\Dα, it is easy to see that the Fourier transforms of
HP (dαf) and HLα(dαf) agree almost everywhere on Γ , and so (i) follows.

As we argued for (16), we will agree that, for f ∈ Lp(G) (1 ≤ p < ∞),
the formal series

(20)
∑
α∈Π

HLα(dαf)
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has only countably many terms. We will refer to (20) as the conjugate
(difference) series of f .

5. Unconditional convergence of conjugate difference series.
We will show that the conjugate series (20) converges unconditionally in
Lp(G) when 1 < p < ∞ and unconditionally in L1,∞(G) when p = 1. This
will further justify our notation in (20) since the order of summation will
become irrelevant in (20).

For use with weak type estimates, we recall a few facts about the Lorentz
spaces Lp,∞(G). All details can be found in [11, Chapter V, Section 3]. Al-
though the presentation in the cited reference is confined to σ-finite measure
spaces, the results that we need on locally compact abelian groups follow
easily by restricting a given function to its σ-compact support.

Given a measurable function f on G, let λf denote its distribution func-
tion, and let f∗ denote the decreasing rearrangement of f . Define

(21) ‖f‖∗p,∞ = sup
y>0

y(λf (y))1/p = sup
y>0

y1/pf∗(y)

and

(22) ‖f‖p,∞ = sup
y>0

y1/pmf (y),

where

mf (y) =
1
y

y∫
0

f∗(u) du.

Let Lp,∞(G) consist of all measurable functions on G such that ‖f‖∗p,∞ <∞.
It is well known that, when 1 < p < ∞, (21) and (22) are equivalent and
define a norm on Lp,∞(G). In fact, ‖f‖p,∞ is a norm for all 1 ≤ p <∞, and
when 1 < p <∞, we also have

(23) ‖f‖∗p,∞ ≤ ‖f‖p,∞ ≤ p

p− 1
‖f‖∗p,∞

(see [11, Chap. V, Theorem 3.21]).
Let ε ∈ {−1, 1}Π . We will write ε(P ) for the subset of Γ obtained from

P by changing the sign on Cα\Dα according to ε(α). That is, if x ∈ Cα\Dα

and α 6= α0, or if x ∈ Cα0 , then x ∈ ε(P ) if and only if ε(α)x ∈ P .
It is easy to see that ε(P ) is an order on Γ .
Suppose that η ∈ {0, 1}Π . Define a projection operator Pη on L2(G) by

P̂η(f) = f̂ 1∪α∈Π, η(α)=1Cα\Dα
.

Define the conjugate projection operator P̃η,P by

(24) P̃η,P f = HP (Pηf).
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Thus,

(25) ̂̃Pη,P f(χ) =
{

0 if χ 6∈
⋃

α,η(α)=1 Cα\Dα,

−i sgnP (χ)f̂(χ) otherwise.

To establish the unconditional convergence of the conjugate series, the
following result is fundamental. It is a simple consequence of Theorems 4.2
and 4.3.

Theorem 5.1. Let η be any element of {0, 1}Π , and let P be an arbitrary
order on Γ .

(i) The operator P̃η,P is bounded on Lp(G) for 1 < p < ∞ with norm
≤ Ap, where Ap is as in Theorem 4.2.

(ii) The operator P̃η,P is of weak type (1, 1) on L2 ∩ L1(G) with norm
≤ 2A, where A is the weak type norm in Theorem 4.3.

P r o o f. Define ε ∈ {−1, 1}Π by

ε(π) =
{

1 if η(π) = 1,
−1 if η(π) = 0.

It is easy to check using the Fourier transform that for all f ∈ L2(G), we
have

P̃η,P f = 1
2 (HP f +Hε(P )f).

The theorem follows now from Theorems 4.2 and 4.3 applied to the operators
HP and Hε(P ).

As a simple consequence we have the following.

Corollary 5.2. Let {α1, . . . , αn} be a finite subset of Π. Then the
operator

f 7→
n∑

j=1

HLαj
(dαjf)

is of weak type (1, 1) on L1(G) with norm ≤ 2A and is bounded from Lp(G)
into Lp(G) with norm ≤ Ap, where A and Ap are as in Theorems 4.2
and 4.3.

P r o o f. Define η ∈ {0, 1}Π by η(αj) = 1 for j = 1, . . . , n and η(π) = 0
otherwise. Then

(26)
n∑

j=1

HLαj
(dαj

f) = P̃η,P f.

Now apply Theorem 5.1.

We are now ready to establish the unconditional convergence of the con-
jugate series (20).



250 N. H. ASMAR AND S. J. MONTGOMERY-SMITH

Theorem 5.3. Let f ∈ Lp(G), 1 ≤ p < ∞, and let {αj} ⊂ Π be an
arbitrary enumeration of the countable set of α ∈ Π such that dαf 6≡ 0.

(i) If p = 1, the series
∑

j HLαj
dαjf converges in L1,∞(G) to HP f .

(ii) If 1 < p <∞, the series
∑

j HLαj
dαjf converges in Lp(G) to HP f .

P r o o f. We will deal with the case p = 1 only. The other case is
done similarly. The assertions of the theorem are clear if f̂ is compactly
supported, since in this case only finitely many dαf are nonzero. Suppose
that f is an arbitrary function in L1(G), and approximate f in L1(G) by
functions with compactly supported Fourier transforms, say {gn}. Then
using Corollary 5.2 and Theorem 4.3, we get∥∥∥ N∑

j=1

HLαj
dαj

f −HP f
∥∥∥∗

1,∞

≤ 2
∥∥∥ N∑

j=1

HLαj
dαj

(f − gn)−HP (f − gn)
∥∥∥∗

1,∞

+ 2
∥∥∥ N∑

j=1

HLαj
dαj

gn −HP gn

∥∥∥∗
1,∞

≤ 12A‖f − gn‖∗1,∞ + 2
∥∥∥ N∑

j=1

HLαj
dαj

gn −HP gn

∥∥∥∗
1,∞

.

Given ε > 0, we can make the left side smaller than ε by first choosing
n so that ‖f − gn‖∗1,∞ < ε/(12A) and then choosing N = N(n) so that
‖

∑N
j=1HLαj

dαjgn −HP gn‖∗1,∞ = 0. This completes the proof.

The conjugate square function. We end this section with a study of the
square function associated with the conjugate series (20). We start with a
definition. For f ∈ Lp(G), 1 ≤ p <∞, let

(27) S̃f =
( ∑

α∈Π

|HLα(dαf)|2
)1/2

,

where the index of summation runs over those α’s for which dαf 6≡ 0.

Theorem 5.4. (i) Let 1 < p < ∞. There is a constant Bp, depending
only on p, such that for all f ∈ Lp(G), we have

‖S̃f‖p ≤ Bp‖f‖p.

(ii) There is an absolute constant B such that , for all f ∈ L1(G), and
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all y > 0, we have

µ({x ∈ G : |S̃f(x)| > y}) ≤ B

y
‖f‖1.

P r o o f. Part (i) is a well-known consequence of Theorem 5.3(ii). We will
omit the proof. (In fact one can prove it by reproducing the argument that
we present for part (ii).) To prove (ii), let p be an arbitrary but fixed number
in ]0, 1[. We will need Khinchin’s Inequality [12, Theorem V.8.4, p. 213],
which we will cite here in a notation convenient for our proof. Let a1, . . . , aN

be arbitrary complex numbers, and write E for the expected value over the
probability space {−1, 1}N . Then Khinchin’s Inequality asserts that there
are constants αp and βp, depending only on p, such that

(28) αp

{ N∑
j=1

|aj |2
}1/2

≤
{

E
∣∣∣ N∑

j=1

ajεj

∣∣∣p}1/p

≤ βp

{ N∑
j=1

|aj |2
}1/2

.

Returning to the proof of (ii), we note by monotone convergence that it is
enough to consider a finite sum( N∑

j=1

|HLαj
dαj

f |2
)1/2

.

Applying Khinchin’s Inequality, we see that, pointwise on G, we have( N∑
j=1

|HLαj
dαj

f |2
)1/2

≤ Cp

(
E

∣∣∣ N∑
j=1

εjHLαj
dαj

f
∣∣∣p)1/p

.

We think of each ε ∈ {−1, 1}N as an element of {−1, 1}Π by setting ε(αj) =
ε(j) for j = 1, . . . , N , and ε(π) = 1 for π 6∈ {α1, . . . , αN}. Let η = η(ε) be
defined as in the proof of Corollary 5.2 (see (26)) so that

N∑
j=1

εjHLαj
dαjf = P̃η(ε),ε(P )f.

Then

(29)
∥∥∥( N∑

j=1

|HLαj
dαj

f |2
)1/2∥∥∥∗

1,∞
≤ Cp‖(E|P̃η(ε),ε(P )f |p)1/p‖∗1,∞.

It is easy to prove from definitions that, for any s > 0 and for any measurable
function f on G, ‖|f |s‖∗p,∞ = ‖f‖∗ s

sp,∞. The fact that ‖ · ‖∗1/p,∞ is equivalent
to a norm (see (23)) implies that

‖Ef‖∗1/p,∞ ≤ 1
1− p

E‖f‖∗1/p,∞.

We can now estimate the right side of (29)as follows:
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Cp‖(E|P̃η(ε),ε(P )f |p)1/p‖∗1,∞ = Cp(‖E|P̃η(ε),ε(P )f |p‖∗1/p,∞)1/p

≤ Cp

(
1

1− p
E‖|P̃η(ε),ε(P )f |p‖∗1/p,∞

)1/p

= Cp

(
1

1− p
E‖P̃η(ε),ε(P )f‖∗p1,∞

)1/p

≤ Cp

(
2pAp

1− p
E‖f‖p

1

)1/p

= 2ACp

(
1

1− p

)1/p

‖f‖1.

The penultimate inequality follows from Corollary 5.2. This completes the
proof of the theorem.
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