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0. Introduction. Let @Q = [—1,1]¥ be the Hilbert cube, s = (—1,1)%
the pseudo-interior of @, ¥ = {(z;)ien | sup |z;| < 1} the radial-interior of
Q@ and

o ={(zi)ien € s | x; = 0 except for finitely many i}.

As is well-known, s is homeomorphic (/) to the Hilbert space ¢. We put
05 = {(2;)ien € bo | sup liz;| < oo},
55 = {(zi)ien € L2 | ; = 0 except for finitely many 7}.

It is shown in [SW] that ({2, KQQ, 6%) ~ (s,X,0), that is, there exists a homeo-
morphism h : {5 — s such that h(EZQ) = Y and h(t)) = 0.

The space of probability measures () on a metrizable space X is denoted
by P(X). By integration, P(X) can be regarded as a subset of the dual
Ch(X)* of the Banach space Cp(X) of all bounded continuous real-valued
functions on X with the sup-norm. For details, see [Vag, Part I] and [DS,
Introduction]|. The topology of P(X) is inherited from the weak*-topology of
Cy(X)*. For each k € N, let P,(X) C P(X) be the subspace of all measures
with supports consisting of at most k points, and let Py(X) = ey Pe(X).
It is known that Px(Q) ~ @ and Py({2) =~ l5 for each k € N ([Fe;] and
[NT]). For related topics, see [Fes]. For a subspace A of a metrizable space
X, we can regard P;(A) as a subspace of P(X) by identifying as follows:

Py(4) = {5 € P3(X) | supppu C A},

where supp i denotes the support of . Using the open base in [Vay, Part
II, Remark 3 to Theorem 2] (or [NT, Proposition 2.1]), it is easy to see that
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the topology of Pg(A) is identical with the relative topology inherited from
Pz(X) (cf. [DS, Subspace Lemmal). In the present paper, applying the
results of [SW], [CDM], [vM;] and [We|, we prove

MAIN THEOREM. For each k € N, the following hold:

(a) (Pk(Q)7Pk(S),Pk(E),Pk(O')) ~ (Q78727U)7

(b) (PL(@), Pu(EZ%)) & (Q, Z), hence Pi((¢4)*) = (5)* (*), and

(c) (Pa(ls x Q), Pu(la x X)) = (b x Q, by x X) (3), hence Py(ly x £]) ~
EQ X 62.

Remark 1. Relating to the above result, one may ask whether P, (H) ~
H for any infinite-dimensional pre-Hilbert space H or not. This question
can be answered negatively. In [vM;], Jan van Mill showed that every
separable Banach space (hence ¢5) contains a dense linear subspace X which
has restricted domain invariance, that is, for every continuous injection
g : U — X with domain a non-empty open set in X, there exists a non-
empty open set V' C U such that g|V is an open embedding in X. For such
a normed linear space (or a pre-Hilbert space) X, Pp(X) # X if k > 1.

In fact, let Uy, ..., U be disjoint open sets in X. By Aok_l, we denote
the standard open (k — 1)-simplex, that is,

k
A1 = {(tl,...,tk) = Rk‘ Zti =1 and t; > 0 for each 1}
i=1
We define ¢ : Uy x ... x Uy x AkF=1 — Py (X) as follows:

k
o(x1, .y gty . ty) = Ztiéazm
i=1

where ¢, € P(X) is the Dirac measure at = € X (ie. d,({z}) = 1).
Then by using the open base in [Vas] (or [NT]), it is easy to see that ¢ is
an open embedding. If Pr(X) ~ X then we have a continuous injection
g : Uy — X such that g(U;) has no interior point, which contradicts the
restricted domain invariance of X. Therefore Py(X) # X for any k > 1. m

Remark 2. By our results, each (Px(X), Py(M), P,(N))isa (Q, X, 0)-
manifold (or an (£, £5, £4)-manifold) triple if so is (X, M, N) and each func-
tor P, preserves manifolds modeled on the spaces Q, /s, €2Q, E%, (fg )“ and
ly X Eg . However, P;(X) # X in general even if X is such a manifold.

In fact, Px(X) is path-connected for any (disconnected) space X and
k > 1. To see this, let zop € X and p = >\, $i0,, € Pi(X). We define a

(%) Tt is known that (Eg)” ~ X% (cf. the proof of [vMy, Corollary 4.2]).
(®) 1t is known that (fs X Q, €2 x X) ~ (£2 X Q,ls X &), hence fa x X ~ fo x £},
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path ¢ : I — Py (X) as follows:

(1) = S (1= 20)8:6,, + 2t6,, if0<t<1/2,
i (2 —2t)0,, + (2t —1)6,, if1/2<t<1.

Then ¢(0) = p, ©(1/2) = 6, and p(1) = 0y,. =

Remark 3. Let SM be the category of separable metrizable spaces
with (continuous) maps. Then each Py, : SM — SM is a covariant functor.
Our Main Theorem holds if Py is replaced by any covariant functor F :
SM — SM satisfying the following conditions:

(1) if A is a subspace of X then F(A) is a subspace F(X);

(2) if A is closed in X then F(A) is also closed in F(X);

(3) for A C X, any deformation h : AxI — X induces the deformation
h* : F(A) x I — F(X) defined by h; = F(h:) (hence h}(F(A)) C

(he(A)));

(Usen Xi) = Ujen FI(X5) for Xy € Xo C .

(XNY)=F(X)NF();

(X\A) C F(X)\F(A) for AC X;

(Mien Xi) = ﬂzeN (Xi) for X1 D5 X3 D .

if X is a finite-dimensional compactum then sois F(X);

if X is separable completely metrizable then so is F'(X);

FQ)~Q.

Let §(X) be the hyperspace of non-empty finite subsets of X with the
Vietoris (or finite) topology (cf. [Na]). For a subspace A of X, we can regard
F(A) as a subspace of F(X) by identifying F(4) = {F € F(X) | F C A}.
From the definition of the Vietoris topology, it follows that the topology of
$(A) is identical with the relative topology inherited from §(X). As easily
observed, if A is closed in X then F(A) is closed in F(X).

For each k € N, let F1(X) C F(X) be the subspace of all subsets of X
consisting of at most k points. Then the functor §x : SM — SM satisfies
(1) and (2). By [Feq, Corollary 5], §x(Q) ~ @, that is, §, satisfies (10). We
show that § also satisfies the conditions (3)—(9). Thus the following can
be obtained:

F
F
F
F
F
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THEOREM 2. For each k € N, the following hold:

(a) (%k(Q); Sk(S), Sk(z)v gk(a)) ~ (Q7 8, 2, U)’

(b) (Fr(Q¥),Tr(X¥)) =~ (Q¥, X¥), hence Sk((ﬁg)“’) ~ (€§)“’, and

(©) (Fe(l2xQ), Fr(lax X)) & (laxQ, by x X, hence Fp(lax 6 m Loy xt5.

Let G be a subgroup of the kth symmetric group G;. Then G acts
on X* as a permutation group of the coordinates. The orbit space of this

action is denoted by SPZ (X) and called the G-symmetric power of X, where
SPF(X) is the quotient space of X*. We put SP*(X) = SP’ék(X), which
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is called the symmetric power of X. For a subspace A of X, we can regard
SPF(A) as a subspace of SPE(X) by identifying SP(A) = ¢(A*), where
qg: XF — SPZ(X) is the quotient map. In fact, since ¢ is an open map,
it is easy to see that the topology of SP’&(A) is identical with the relative
topology inherited from SPf,(X). Since SP(X)\ SPE(A) = q(X* \ A%),
if A is closed in X then SP(A) is closed in SP%(X). Thus the functor
SPY, : SM — SM satisfies (1) and (2). By [Fea, Corollary 5], SPE(Q) ~ Q,
that is, SPE satisfies (10). We show that SPf, also satisfies the conditions
(3)-(9). Thus we can obtain the following:

THEOREM 3. For any subgroup G of the kth symmetric group, the fol-
lowing hold:

(a) (SPG(Q), SPE(5),SP&(X), SPE(0) = (Q, 5, ¥, 0),

(b) (SP&(Q¥), SPE(5%)) & (Q¥, £), hence SPE((€)%) = (€5)*, and

(c) (SPE (03 x Q), SPE (£y x X)) & (ly x Q, €y x X), hence SPE (£y x £]) ~
£2 X Eg

It should be remarked that Theorems 2(a) and 3(a) refine the results in
[Ngo] and [Ngy], respectively.

1. Preliminaries. Let X7 C X5 C ... be a tower of closed sets in
X. We say that (X,,)nen is expansive (or finitely expansive) [Cu] if for each
n € N, there is an embedding h: X,, X Q@ — X,,11 (or h: X, x I — X,,14)
such that h(x,0) = z for every z € X,, (*). It is said that (X,,)nen has the
mapping absorption property for compacta in X provided for any compactum
A C X and for any € > 0 and n € N there exists amap f : A — X, for some
m > n such that f|AN X, =id and f is e-close to id (cf. [Cu, Definition
4.5]). It is said that (X, )nen has the compact absorption property (abbrev.
cap) (or the finite-dimensional compact absorption property (abbrev. fd-
cap)) in X and M = |J,,cn Xn is called a cap set (or an fd-cap set) for X
[Ch] if each X, is a (finite-dimensional) compact Z-set in X and for each
(finite-dimensional) compact Z-set A in X, ¢ > 0 and n € N, there is an
embedding g : A — X,,, for some m > n such that g is e-close to id and
glAN X, =id, where a closed set A in X is a Z-set if each map f:Q — X
can be approximated by maps g : @ — X \ A. In case X is an ANR, a
closed set A in X is Z-set if and only if there are maps f: X — X \ A
arbitrarily close to id [vMgs, 7.2.5], or, more strongly, there is a deformation
h: X xTI— X such that hg = id and h(X) € X \ Aif 0 <t < 1 [Toq,
Theorem 2.4 with Corollary 3.3].

LEMMA 1.1. If X1 C Xy C ... is an expansive (resp. finitely expan-
sive) tower of compact (resp. finite-dimensional compact) Z-sets in X and

(*) We mean 0 = (0,0,...) € Q.
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has the mapping absorption property for compacta (resp. finite-dimensional
compacta) in X, then (X,,)nen has the cap (resp. the fd-cap) in X, whence
Unen Xn 45 a cap set (resp. an fd-cap set) for X.

Proof. For each (finite-dimensional) compact Z-set A in X, € > 0 and
n € N, we have a map f : A — X,, for some m > n such that f|ANX, =id
and f is €/2-close to id. On the other hand, we have a map h : A — Q
(h : A — TI¥ for some k € N) such that h(AN X,) = {0} and h|A\ X,
is injective. Since (X, )nen is (finitely) expansive, there is an embedding
0 Xm X Q — Xpy1 (or ¢ @ Xy x IF — X,,41) such that o(z,0) =
and diam p({z} x Q) < &/2 (or diam p({x} x I¥) < £/2) for every x € X,,.
Then we have the embedding g : A — X,,41 (or g : A — X,,,1%) defined by
g(x) = ¢o(f(x), h(x)), which is e-close to id. m

The following is due to Anderson [An| (cf. [Ch, Lemma 4.3)):

LEMMA 1.2. If M is a cap set (resp. an fd-cap set) for Q, then (Q, M) ~
(Q, %) (resp. (Q,M) ~ (Q,0)). Moreover, if M C s in the above, then
(Q,s,M) ~(Q,s,X) (resp. (Q,s,M) =~ (Q,s,0)).

As is well-known, the pseudo-boundary @ \ s is a cap set for Q. Then
(Q,Q\s) =~ (Q,X), whence (Q,Q\ X) = (Q, s).

To prove (a) in the Main Theorem, we apply the following characteriza-
tion due to Sakai and Wong [SW]:

THEOREM 1.3. In order that (X,M,N) ~ (Q,X,0) (or (X, M,N) ~
(0,08 ,05)), it is necessary and sufficient that X ~ Q (or X ~ l3) and X
has a tower X1 C Xo C ... of compacta such that

(i) X,, = Q for each n € N,

(i) each X,, is a Z-set in X411,

(iii) M = U,en Xn is a cap set for X and

(iv) each X,, N N is an fd-cap set for X,.

A Z-matriz in X is a double sequence (A7), ien of Z-sets in X such
that A'T' C A7 C A7, for all n,i € N (°), that is,

Al c A c Alc...

U U U

A? C A3 C Aic...

U U U

A3 C A3 C Ajc...
U

U U

(°) For a technical reason, it is assumed in [vMy] that AT = () for each n € N. One
can add Aj = 0 to the matrix if necessary.
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To prove (b) in the Main Theorem, we apply the following theorem due
to van Mill, which is a combination of Theorem 3.6 and Corollaries 2.3
and 4.2 of [vMa]:

THEOREM 1.4. Suppose that X ~ Q. Let (A}')n ien be a Z-matriz in X
which has the following properties (°®):

(i) each (A7Y)ien has the cap for X (M),
(ii) ﬂ;nzlAZ’ ~ Q for eachmi < ...<np, and iy,..., i, €N,
(iii) for eachny<...<np andiy,...,im,p € N, (A?mﬂ’ﬂﬂ;n:l AZj)ieN
. m 4
has the cap in ();_; A;’ and N
(iv) for each ny < ... < Ny, and iy,...,0m,n,1 € N, ﬂ;":lAi]? ¢ AP
implies that A7 N (72, AZj is a Z-set in ;- Az_j.

Then (X, ﬂneN UiEN A7) = (Q“, %), hence nneN UieN Al = (@”)w‘

For any collection U of open sets in X, two maps f,g : A — X are
U-close if for each z € A, f(x) = g(z) or {f(x),g(z)} is contained in some
U eU. Let M be a Z,-set in X, that is, a countable union of Z-sets. We
call M a Z-absorber for X [DM] (cf. [We]) if for any Z-set A in X and any
collection U of open sets in X, there exists a homeomorphism A : X — X
such that h is U-close to id and h(ANJU) C M. The following is due to
West [We] (cf. [Dij, 1.2.11]):

THEOREM 1.5. Suppose that X is completely metrizable. If M and N are
Z-absorbers for X, then for any collection U of open sets in X, there exists
a homeomorphism h : X — X U-close to id with h(M N|JU) = N NnJU.
In particular, (X, M) ~ (X, N).

It is known that /5 x X and f5 x o are Z-absorbers for ¢ x ). Since
ly X Q =~ £y, we have the following:

COROLLARY 1.6. In order that (X, M) ~ ({2 X Q, ¥y x X), it is necessary
and sufficient that X =~ ¢y and M is a Z-absorber for X.

We apply this to prove (c) in the Main Theorem, but it is a little hard
to check the condition in the definition of Z-absorbers, where the existence
of homeomorphisms of X onto itself is required. So we give here a charac-
terization of Z-absorbers for /;-manifolds which can be easily applied. An
embedding f: A — X is called a Z-embedding if f(A) is a Z-set in X.

THEOREM 1.7. Let X be an £y-manifold and M C X. Then the following
are equivalent:

(%) A Z-matrix with these properties is called a Q-matriz in [vMa)].
(") In case X ~ Q (or X is a Q-manifold), a tower of compact Z-sets in X with the
cap is called a skeleton in [vMa].
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(a) M is a Z-absorber for X;

(b) M is a Zy-set in X and for each open set W in X and each Z-set
A in W and each map o : W — (0,1), there exists a Z-embedding
f:A— MnNW such that d(f(z),x) < a(z) for each x € W, where
d is an admissible metric for X;

(c) there exist a deformation h : X xI — X and a tower X1 C X C ...
of Z-sets in X such that hg = id, hy(X) C X,, fort > 27", each X,
is an Ly-manifold and M =, ey Xn-

Proof. (b)=(a): Let A be a Z-set in X and U a collection of open
sets in X. Then W = (JU is an ¢3-manifold and ANW is a Z-set in W.
By [We, Lemma 2], W has an open cover Uy such that Uy refines U and
if a homeomorphism h : W — W is Up-close to id then h extends to the
homeomorphism h : X — X with h|X \ W =id. Let U; be an open star-
refinement of Uy. Since W is an ANR, U; has an open refinement Us such
that any two Us-close maps of an arbitrary space to W are U;-homotopic (cf.
[vM3, 5.1.1]). Choose a map a: W — (0,1) so that the a(z)-neighborhood
of z in X is contained in some member of Us. By (b), there exists a Z-
embedding f : ANW — M NW such that d(f(z),x) < a(z) for each z € W.
Then f is Ui-homotopic to id. By the Z-set Unknotting Theorem for ¢5-
manifolds (cf. [Sa, §3]), f extends to a homeomorphism h : W — W which
is Up-isotopic to id. Then h extends to the homeomorphism h:X — X by
h|X \ W = id, whence h is U-close to id and h(ANJU) C M. Hence M is
a Z-absorber for X.

(¢)=>(b): Let d be an admissible metric for X, let A be a Z-set in an open
set Win X and a: W — (0,1) a map. Then we have a map 3: W — (0, 1)
such that 3(z) < 27'a(x) and

() d(h(x,B8(z)),r) < min{2 'a(x),d(x, X \ W)} for each z € W.
By (#), we can define a map fo: A — W N M by fo(z) = h(x,(z)). Then
d(fo(z),r) < 27 'a(z) for each x € W. For each n € N, let

Wp,=WnX, and A,={xcA|f(zx)>2""}.

Then each W,, is a Z-submanifold of an ¢5-manifold W and each A,, is a
closed set in A such that fo(A,) C W,,. Moreover, it follows that

WnM=|JW, and A= (] A4, = []intA,.
neN neN neN
Since each W,, is a Z-set in W, W N M is a Z,-set in W.

Since Wi is an fo-manifold, fy|A; is 2~3-homotopic to a Z-embedding
g1+ A1 — Wy (cf. [Sa, §3]). By the Homotopy Extension Theorem (cf.
[vMs, 5.1.3]), fo is 273-homotopic to a map fi : A — W N M such that
fl‘Al = 01, fl(AQ) C Wy and fl‘A \ A2 = fo‘A \ AQ. Since W5 is an
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{3-manifold, fi|As is 2~ *-homotopic to a Z-embedding go : Ao — Ws such
that ¢g2]41 = g1 = fi1|A1. Again by the Homotopy Extension Theorem,
f1 is 27*-homotopic to a map fo : A — W N M such that fa|As = go,
fo(As) € W3 and fa|A\ As = fo]A\ As. Thus we inductively construct
maps f, : A — W N M such that f, is 27" 2-homotopic to fn_1, fn|A, is
a Z-embedding into W,,, and f,|A\ Ant1 = folA\ Apy1.

We define f : A - W N M by flA, = fn|A, for each n € N. Since
(fn)nen is uniformly Cauchy, f is the uniform limit of (f,)nen, whence f
is continuous. Since each pair of points of A are contained in some A, and
fnlAy is injective, it follows that f is injective. For each x € A, \ A,_1,
f(z) = fu(z) and f,_o(x) = fo(x), whence

d(f(.%), $) < d(fn(x)a fn—l(x)) + d(fn—l(x)a fn—Z(x)) + d(fg(.%’), J?)
<2 2ol Lo lg(x) < 27 4 27 L)
< B(z) + 27 a(z) < a(z).

To see that f is closed, let (z;);en be a sequence in A such that f(z;)
converges to y in W. Assume that liminf a(x;) = 0. Then (x;);en has a
subsequence (x,,);en such that lima(x,,) = 0, whence z,,, converges to y
because

;s y) < d(@n,, f(2n,)) + d(f(2n,),y) < a(@n;) +d(f (@), y)-

This contradicts a(y) # 0. Therefore liminf a(z;) > 27" for some n € N,
which means that a(z;) > 27" for sufficiently large ¢ € N, whence f(z;) =
fn(z;) because z; € A,. Since f,|A, is a closed embedding, =; converges
to some x in A,,. This means that f is closed. Since f(A) is a closed set in
W and f(A) Cc WN M, f(A) is a Z-set in W ([vMs, 6.2.2(3)]), hence f is
a Z-embedding.

(a)=(c): For each n € N, let Q,, = [-1+27",1 —-27"]“ C Q. Note
that X = X X/l = X x ly x Q =~ X X @ by the Stability Theorem for
{y-manifolds (cf. [Sa, §2]), X x ¥ = {J, ey X X @n and each X x @, is a
Z-set in X x @, which in turn is an £o-manifold. We have the deformation
h: X xQxI— X xQ defined by hy(z,y) = (z,(1—t)y). Then hy = id and
hi(X x Q) C X xQy for t > 27", Thus X x X satisfies the condition (c) for
X x Q. The implication (c)=(a) has already been proved. Hence X x X' is
a Z-absorber for X x Q. Since (X, M) =~ (X x @, X x %) by Theorem 1.5,
M also satisfies the condition (c). m

2. Proofs of Theorems. Let h : A x I — X be a deformation of
A C X. We define a deformation h* : Pz(A) x I — Pz(X) as follows:

k k
hi(p) = Z 8i0h,(z;) for each p = Z 50z, € P3(A).
i=1

=1
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In other words,

[ fdhi(p)= [ fhedp=">" f(hi(z))u(z) for each f € Ci(X).
X X

Then the continuity of h* is obvious. Note that hj(P;(A)) C Pr(ht(A)) C
P(X) for every t € I and k € N. If hy = id then hj = id.

Here we observe that Py satisfies the conditions (1)—(10) in Remark 3.
Indeed, as mentioned in the Introduction, Pj satisfies (1) and (10). Us-
ing the open base in [Vag, Part II, Remark 3 to Theorem 2] (or [NT,
Proposition 2.1]), it can be shown that Py(A) is closed in Py (X) if A is
closed in X, that is, Py satisfies (2). And as seen in the above, Py satis-
fies (3). Obviously Py satisfies (4)—(7). We have the continuous surjection
7 X x APl — Pu(X) defined by

k
(T, .oy T 81, vy Sk) = E $i0z,
i=1

where A¥~1 is the standard (k—1)-simplex. Observe that 7~!(p) is finite for
each p € Pi(X). If X is a finite-dimensional compactum, then so is P (X),
that is, Py satisfies (8). It has been shown in [Va;] that if X is separable
completely metrizable then so is P(X), hence P (X), which means that P,
satisfies (9).

In the following, we use only these properties (1)—(10).

LEMMA 2.1. If A is a Z-set in an ANR X, then each Px(A) is a Z-set in
Pr(X).

Proof. First note that P(A) is a closed set in P(X). Since A is a Z-set
in an ANR X, there is a deformation h : X x I — X such that hg = id and
h(X) Cc X\ Aif 0 <t <1[Toy, Theorem 2.4 with Corollary 3.3]. Then
h induces the deformation h* : Py(X) x I — P,(X) such that h{; = id and
hi(P(X)) C Pe(X\ A) C Py(X) \ Px(A) for 0 <t < 1. Therefore Py(A) is
a Z-set in Pi(X). m

Foreachn € N, P, (Q,,) =~ Q [Fey], where Q,, = [-14+27",1-27"]“ C Q.
Since Q,, C (—1+27 "1 1—-2""Hw Q, is a Z-set in Q41 [vMs, 6.2.4].
Then each Py(Q,,) is a Z-set in Py(Q,+1) by Lemma 2.1. Thus we have a
tower Pi(Q1) C Pr(Q2) C ... which satisfies the conditions (i) and (ii) in
Theorem 1.3. To prove (a), it remains to show that P(X) = (U, ey Pr(@n)
is a cap set for P,(Q) and each Py(Q,) N Px(0) is an fd-cap set for P, (Qy).

LEMMA 2.2. For each k € N, (Pi(Qn))nen has the cap in both Py(Q)
and Py(s), whence Pp(X) = |, ey Pr(Qn) is a cap set for both Pp(Q) and
Pk(s)
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Proof. First note that Py(X) = U, cny Pe(Qn) and Pr(Qn) =~ Q for
each n € N. By Lemma 2.1, each Py(Q),) is a Z-set for Py(Q,+1). By the
Z-set Unknotting Theorem [vMs, 6.4.6], we have

(Pr(@n+1), Pr(@n)) = (Q x Q,Q x {0}) = (Pr(Qn) x Q, Px(Qn) x {0}),

hence the tower (Px(Qn))nen is expansive. Let 6 : [-1,1] x I — [—1,1] be
the deformation defined by

s ifs<1-—t,
6:(5) :{1—75 ifs>1—t
We define a deformation h : Q x I — Q by hy(x1,22,...) = (6¢(z1),
04(x2),...). Then h induces the deformation h* : Pi(Q) x I — P,(Q)
such that h*(Py(s) x I) C Py(s), h$ = id and each h}_, is a retraction onto
P(Qy). Hence (Py(Qn))nen has the mapping absorption property in both
P, (Q) and Py(s). By Lemma 1.1, we have the result. m

LEMMA 2.3. For each k,n € N, Py(Q,) N Pr(c) = Pp(Qn N o) is an
fd-cap set for Pi(Qy).

Proof. Foreachi € N, let X} =[-1+27",1-27"]*x {0} C Q,. Then
QnNo =;en X} Each Py(X}) is a finite-dimensional compactum, which
is a Z-set in Py(Q,) by Lemma 2.1. We define a deformation ¢ : X! x I —
Xl by

or(x1, ..., 2,0,0,...) = (z1,...,24,t/2,0,...).
Note that ¢ is an embedding. Let ¢* : Py(X!) x I — Pp(X:t!) be the
deformation induced by ¢. Then ¢ = id and ¢* is obviously injective by
the definition, that is, ©* is an embedding. Hence the tower (Py(X!))ien

is finitely expansive. We define a deformation h : @, x I — @Q,, as follows:
ho = id and

ht(CEl,:EQ, .. ) == (1‘1,. ey Ly (2 - Zit)x,-H,O,O, .. ) if Z_i <t S 2_i+1.

Then h induces the deformation h* : Pr(Qn) x I — Pr(Q,) such that
hi = id and each h}_, is a retraction onto Py(X:). Hence (Py(X}))ien
has the mapping absorption property. By Lemma 1.1, Py(Q,) N P(o) =

Pi(Qn N o) = U;en Pu(X},) is an fd-cap set for P(Qy,). =
It is known that Py (¢3) ~ ¢5 [NT]. But we will give a short proof.
LEMMA 2.4. For each k € N, (Pr(Q), Px(s)) = (Q, s), hence Py({2) = {ls.

Proof. We show that Py(Q) \ Pk(s) is a cap set for Py(Q). Then the
result will follow from Lemma 1.2 because Py (Q) =~ Q. It has been shown in
[Va;] that P(X) is separable completely metrizable if so is X. Then Pj(s) is
completely metrizable, so P(Q)\ Px(s) is Fy in Pi(Q). Let h: Q@ xI — @ be
the deformation defined by h¢(x) = (1—t)z. Then h induces the deformation
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h* + Py(Q) x I — Py(Q) such that Ay = id and h(P,(Q)) C Pi(s) for
0 <t < 1. Therefore P(Q) \ Px(s) is a Z,-set in Py(Q). Observe that

Pe(Q)\ Pi(s) = {pn € Pu(Q) [ suppp & s} D P(Q\ s).

Since (Q,Q\ 5) ~ (Q, %), we have (P(Q), Pu(Q\ )) ~ (P(Q), Pu(5),
whence P (Q \ s) is a cap set for P(Q) by Lemma 2.2. Since any Z,-set
containing a cap set is itself a cap set [Ch, Lemma 4.2 or Theorem 6.6],

Pi(Q) \ Pr(s) is a cap set for P,(Q). m
Remark 4. As for the above lemmas, 2.1 follows from (1)—(3); 2.2 from
(1)—(4) and (10); 2.3 from (1)—(5) and (8); 2.4 from (1)—(4), (6), (9) and (10).

Proof of the Main Theorem. First we show (a). Since P;(Q) =~
@, we can apply Theorem 1.3 with Lemmas 2.1-2.3 to obtain (P (Q), Pr(X),
Py(0)) = (Q,X,0). In particular, (Py(X), Px(0)) = (X,0). On the other
hand, (Px(Q), Px(s)) ~ (Q,s) by Lemma 2.4. By Lemmas 1.2 and 2.2,
(Pe(Q), Pr(s), Pr(X))~(Q, s, Y). Applying Theorem 2.4 of [CDM], we have

(Pk(Q)7 Pk(s)7 Pk(E)? Pk(o-)) ~ (Qa 57 27 U)
Next we prove (b) by applying Theorem 1.4. For each n,i € N, let

A = Qi X ... X Q; xQ X Q X ...C Q".
—_——

n times
Then observe that for each n; < ... < n,, and i1,...,%, € N,
m
nj _
(%) (VA7 = Qpy X X Qpy X Qpy X o X Qpy X ...
j=1 i .
ny times ngo—mni times

X Qp X oo X Qp, XQXQ X ...,

~
N —MNm—1 times

where pr = min{ig, ...,y }. It is proved in [vMy, Thm. 4.1] that (A7), ien

(2
is a Z-matrix in Q% which has all the properties of Theorem 1.4. Therefore

Mpen Uien A7 = (¢5)“. Then it follows that

Py =PV U Ar) = N U Pean.
neNieN neNieN
Since P(Q¥) =~ @ and (Py(A}))n.ien is @ Z-matrix in P,(Q“) by Lemma
2.1, it suffices to show that (Pj(AI')),ien has all the properties of Theo-
rem 1.4.

Let ny < ... < n,, and 41,...,4, € N. Since ﬂ;nzl AZj ~ (Q, we have
ﬂ;n:l Pk(AZj) = Pk(ﬂ;n:l AZ?) ~ @, that is, 1.4(ii). For each p,i € N, we
also have Py(A!™*P) N ﬂ;’;l Pk(AZj) ~ Q. Since Q; is a Z-set in Q;y1,
APmTP N N, AZ_j is a Z-set in A7 N N, A?jj (see (x)). Then by
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Lemma 2.1,

Anm-i-p ﬂ = P, (A’;lm"rp N0 ﬁA?j)
j=

is a Z-set in Py(A77 P N1y A7) = Pe(A77 ™) NN, Pe(A}7). By the
same proof as for Lemma 2.2, it follows that (P (Aferp)ﬂﬂJ: (Aij ))ieN
has the cap for Pk(ﬂgnzl Az_j), that is, 1.4(iii) holds. Similarly, 1.4(i) holds,
that is, (Pr(AL))ien has the cap for Pi(Q%). To see 1.4(iv), suppose

) oAl = Pk< N AZJ) ¢ Pu(AD).

j=1 j=1
Then (L, A;” ¢ A7, which implies that A7 N ., AZ," is a Z-set in
M=, AZ? By Lemma 2.1, it follows that Py (A7) N2, (Anj) = P,(A'N
Nz, AZj) is a Z-set in Pp(j_, AZ?) Nj= 1Pk(A 7), that is, we have
1.4(iv).

To see (c), notice that each Py(ly x Q) is a Z-set in Py(¢2 x Q) by
Lemma 2.1, Py (l2 X Qy) = {2 by Lemma 2.4 and Py (o x X)) = |,y Pr(£2 %
Q). We have the deformation h : o x Q X I — l9 X @ defined by hi(z,y) =
(z,(1 —t)y). Let h* : Py(f2 x Q) x I — Py(l2 x Q) be the deformation
induced by h. Then hf§ = id and h; (Py(f2 x Q)) C Pi(l2 x Q) for t >
27", By Theorem 1.7, P;({2 x X) is a Z-absorber for Py(¢2 x Q). Since
P (42 x Q) = {3, (c) follows from Corollary 1.6. m

Remark 5. In the above, (a) follows from (1)-(6) and (8)—(10); (b)
from (1)—(5), (7) and (10); (c) from (1)—(6), (9) and (10) (cf. Remark 4).
Thus our Main Theorem holds if Py is replaced by a functor F' : SM — SM
with the conditions (1)-(10).

Proof of Theorems 2 and 3. As seen in Remark 5, it suffices to
see that §j and SPY, satisfy the conditions (1)-(10). The conditions (1), (2)
and (10) have been seen in Remark 3 and the conditions (4)—(7) are obvious.

For a deformation h : AxI — X of A C X, the induced deformation h* :
Sk(A)xI — F(X) is defined by h*(F,t) = h(F x{t}), whence the continuity
of h* is easy to see. Thus § satisfies (3). We have the natural continuous
surjection p : X*¥ — §x(X) defined by p(x1,...,zx) = {z1,...,21}. Since p
has finite fibers, if X is a finite-dimensional compactum then so is §(X),
that is, § satisfies (8). Obviously, Fx(U) is open in Fx(X) for any open set
U in X. If X is separable completely metrizable, then X is a Gs-set in a
metrizable compactification X, which implies that §x (X ) is a Gs- set in the
compact metrizable space Fx(X) = p(X*), where p : X¥ — F,(X) is the
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natural surjection. Hence §x(X) is separable completely metrizable, that
is, § satisfies (9).

Since the quotient map ¢ : X* — SP%(X) is open, SPX(U) is open in
SP'&(X ) for any open set U in X. If X is separable completely metrizable,
then X is a Gs-set in a metrizable compactification X , which implies that
SPL(X) is a Gs-set in the compact metrizable space SPL(X) = g(X%),
where §: X¥ — SPE(X) is the quotient map. Hence SP (X) is separable
completely metrizable, that is, SPZ satisfies (9). Since ¢ has finite fibers,
if X is a finite-dimensional compactum then so is SP%(X), that is, SPE
satisfies (8). For a deformation h : A x I — X of A C X, the induced
deformation h* : SPE(A) x I — SPE(X) is defined by h¥(q(z1,...,zx)) =
q(he(x1), ..., he(z1)), whence the continuity of h* is clear. Thus SPE, satis-
fies (3). m
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