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1. Introduction. Let I be a nonempty index set and let {G;}icr be
a family of discrete groups. Then we can consider the free product group
G = %, eI G; in which each element x can be uniquely represented as a
reduced word

(1) T=0192---9n, N =0, gp €Giy \{e}, i1 # ... #in.

For such an element x we define its type as the formal word ¢(z) = i1iz.. .0y
and its length to be |z| = n, as introduced by J.-P. Serre in his book [Se].
A function f on G whose value f(x) depends only on the type (resp. the
length) of x will be called type-dependent (resp. radial).

Note in passing that if all G;’s are isomorphic to the group Z of integers
then G can be regarded as the free group with I as the set of generators. In
this case we can define another length putting ¢(z) = |g1]|+. ..+ |gn|, where
|gx| denotes the absolute value of the integer gx. Then one can study radial
functions and spherical functions with respect to ¢ as it was done in [FP1, 2
and PS].

Now let {P;};c;r be an arbitrary family of (not necessarily orthogonal)
bounded projections on a Hilbert space Hy. We construct a representation
7w of G acting on a Hilbert space H containing Hy in such a way that for
every z € G the restriction of w(x) to Hy is P;, ... P;,, where iy .. .1, = t(z).
Therefore if we pick a vector (g lying in Hg then the corresponding coefficient
x +— (m(x)Cp, o) of 7 is a type-dependent function. The construction is
presented in Section 2 where we also establish some relations between certain
properties of the family {P;};c; and those of . In particular, if all P;’s are
orthogonal then 7 turns out to be unitary. The construction gains in interest
in view of Theorem 3.3 which, together with Proposition 3.1, says that if all
G;’s are infinite then every type-dependent positive definite function on G
is a coefficient of such a representation .
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In [M3] we have described the class of all type-dependent positive definite
functions on G in the following way. For i € I define 7(i) = 1/(|G;| — 1).
Then we endow the linear space of finitely supported functions on the set
of types S(I) = {iy...ip, :m > 0, 4 € I and i3 # ... # ip} with a
T-convolution defined by

(1) 67, *r 67, = (1 — T(l))(gl + T(’L.)(Se,
where e denotes the empty word in S(I) and
(11) (51‘1 kroo..kp (Szn :5“% forn>2 i €1, 7;175...2'”,

and with an involution f*(i1...4,) := f(in ...11), thus obtaining a x-algebra
A(7). A complex function ¢ on S(I) is said to be T-positive definite if
>uesn QW) (f*#7 f)(u) = 0 for any f € A(7). In particular, if all G;’s are
infinite then 7 = 0 and this notion coincides with the positive definiteness
on S(I) regarded as the free x-semigroup generated by I and defined by
the relations it = i* = ¢ for i € I (cf. [BCR]). It was proved in [M3] that
a type-dependent function (which obviously can be uniquely expressed as
composition of a function ¢ on S(I) and the type t), to¢, is positive definite
on G if and only if ¢ is T-positive definite on S(I). This allows us to study
functions on S(I) instead of on G, in particular to prove positive definiteness
of 1) spherical functions on the free product Zy * . .. * Zj, of cyclic groups of
the same order [M3, Theorem 5.8] (see [IP]) and 2) spherical functions on
the free product Z, * Zs of two cyclic groups [M3, Theorem 4.5] (see [CS]).
The proofs use the fact that, having the index set I fixed, all the algebras
A(7) are mutually isomorphic.

In this paper we prove that if all G;’s are infinite and ¢ is an extreme
point in the convex cone of type-dependent positive definite functions on
G = %,c; Gi then, in fact, ¢ is an extreme point in the convex cone of all
positive definite functions on G, unless ¢ = ¢, ¢ > 0 (Theorem 3.3). The
same question without the assumption that all G;’s are infinite presents
a more delicate problem (because the representations involved are more
complicated) and will be studied in a forthcoming paper.

In Section 4 we construct a family 7,, z € C, of representations of
G =Gyx...xGy, N > 2, related to a family {(;(z) ® (;(2)}Y, of one-
dimensional projections on CV. The radial function ¢, defined by

1 forx=e,

_ o\ =1
¢:(x) = 2<Nz 1) for z # e,

N -1

turns out to be a coefficient of m, if w? = z. This function ¢. can be
viewed as a spherical function on a free product G = Gy *...x Gy of infinite
groups. Namely, let G¥ = G¥ * ... G%; be the free product of finite groups
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of order k. Then a radial function ¢* is said to be spherical with eigenvalue
2 if ¢¥(e) = 1 and ¢¥ x iy = 2¢*, where p; denotes the probability measure
equidistributed over the set WF = {z € G} : |z| = 1} (see [IP]). Such a
function is unique and given by ¢%(z) = P,|(2;k, N), where P,(-;k,N) is
a polynomial of degree n defined in [M2]. Now taking & to be infinite we
cannot define spherical functions in the same way since the set W is also
infinite. But putting

62 (@) = lim Pl (25k, N)

we get the function ¢,. For finite &k the related representations were studied
by Iozzi and Picardello [IP] and for £ = oo by Wysoczanski [W2] (see also
Szwarc [Sz1]), whose construction was based on the ideas of Pytlik and
Szwarc [PS] (cf. also [B1l, FP1, FP2, Va and Sz2]). In the last section
we prove that our representations m, are topologically equivalent to those
constructed by Wysoczanski [W2].

2. The construction. Assume that {G;}.c; is a family of discrete
groups, G = 3, ; Gi, and {P;}er is a family of bounded (not necessarily
orthogonal) projections in a fixed Hilbert space Hy. If x € G\ {e} is as in
(1) then we put i(x) = i,. Define

H:{f:G—>H0: 3" £ (w)]? < oo and

weG
if we G\ {e} then f(w) € Ker Pi(w)}.

For any w € G and any vector § € Hy lying in Ker P;(,,) whenever w # e,
we denote by (w,&) the function in H which has the value £ at w and 0
elsewhere. H,, will stand for the space of all functions in H vanishing outside
{w}, i.e. the set of all admissible pairs (w, ). Then we have H = @, c; Huw-
By abuse of notation we shall identify Hy with H, C H.

Now we are going to define a representation 7 of G acting on H. To do
that, for every i € I, g € G; \ {e} and f € H, we define

flg) +Pifle) ifw=e,
(2a) (@) f)(w) = { (- P)f(e) Hw=g

flg~tw) otherwise,
or, in terms of the vectors (w, &),

(2a7) mi(g)(w, &) = { Ee’Pif) +(g,(Id = R)¢) ifw=e,

gw, &) otherwise.
Note in particular that ||m;(g)|| < || P;|| + ||Id — P;||. Putting m;(e) = Id it is
easy to see that m; is a representation of the group G;. More precisely, let
Py denote the orthogonal projection of H onto H. = Hy and set T; = P; P,
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(T; is a projection of H onto Im P;). Then the operator m;(g) acts as the
identity on Im7; = Im P; and m;(g) acts in KerT; = (Ker P;) @ @w# H,
as a multiple of the regular representation. Moreover, if P; is orthogonal
then the direct decomposition H = Im7T; + KerT; is also orthogonal and
the representation m; of G; is unitary.

In this way for every i € I we have defined a representation m; of G;.
By the definition of the free product of groups (see [Se]) the m;’s extend
uniquely to a representation 7w of G. Namely,

(2b) m(x) = miy(91) - i, (9n)

if z is as in (1). Note that if all the projections P; are orthogonal then we
have 7(z)* = 7, (gn)* ... 75, (g1)* = T, (g7 1) ..., (g7 1) = w(z~1) so 7 is
unitary.

LEMMA 2.1. If z is as in (1) and £ € Hy, then

n(@)(e.€) = (e. Py ... PO+ Y (g1--.gr,(Id = P )P;y,, ... P, £).
k=1

Proof. If n = 0 then the formula is obvious. Assume that it holds for
elements of length n and pick z as in (1). We shall consider an element gox
of length n + 1 with go € G, \ {e}, i0 # i1. By our assumption and (2) we
have

W(gox)(e, 6) = 7-[-(.90)(67 Pi1 s Plné)
+ (g0g1---gx, Id = P )Py, ... P &)
k=1
= (67Pi0Pi1 Pzng)

+ (9091 - gk, (Id = P )Py, ... Py €),
k=0

which completes the proof.

Let A be a family of bounded operators on some Hilbert space. A closed
subspace M is called invariant for A if AM C M for each A € A. Note that
if M is invariant for A then M* is invariant for A* = {A* : A € A}. The
family A is called topologically irreducible (cf. [Di]) if there is no nontrivial
closed invariant subspace for A. Hence if A is irreducible then so is A*.

THEOREM 2.2. Let {P;}icr be a family of bounded projections in a fized
Hilbert space Ho and let m be the representation of G = %, ; G; defined by
(2). Then
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(i) if all P; are orthogonal then w is unitary;

(ii) if z € G, t(z) =1i1...7 and £ € Hy then Pyn(z)§ = P;, ... P, &,
where Py denotes the orthogonal projection of H onto Hy;

(iii) if the family {P;}icr is nontrivial (i.e. P; # 0 for some i € I) and
topologically irreducible (on Hy) then m is also topologically irreducible (on
H) provided that all G;’s are infinite;

(iv) assume that ||(Id — P;,)Pi, ... Pi, || < ay, and ||P;y ... P, || < ayp for
any n > 0 and any sequence ig,i1,...,1, € 1 satisfying iog # i1 # ... 7 in;
then

kd
(3) Ir(@) < a,
s=0

In particular, if the series > a, is convergent then 7 is uniformly bounded.

Proof. We have already noted statement (i). Moreover, (ii) is a conse-
quence of Lemma 2.1. Assume that the family of projections {P;};c; on Hy
is nontrivial and irreducible and that all G;’s are infinite. For each i € I let
{gk,i}72; be a sequence of distinct elements of the group G;. For any i € I
and a natural number n define the operator 7T}, ; on H by

n

Thi= 1 Zﬂ(gm)

n
k=1

Then || T,:|| < || Pl + |IId — P;||. Moreover, for { € H,

Ty,i(e,§) = (e, &) + % Z(Qk,z@ (Id - P)¢)

k=1
and for any w # e and any (w, &) € Hy,

n

Toilw,€) = 3 (griw€).

k=1
Now, fix f € H, ¢ > 0 and decompose G = ByUB1UBs and f = fo+ fi1+ f2,
supp fs € Bg, in such a way that By = {e}, By is finite and || f2|| < e(2|| P ||+
2||1d — P;||)~t. We obtain
[T, f — (e, Pif(e))]
< | Toile, @ = P f(eDl + D 1 Tni(w, Fw)]| + | Tnsifoll

weE B1

S
Id - P)f =3 - <
f”( H+ Vi 2 If )l +3 =<

for n sufficiently large. Therefore the sequence T, ; is strongly convergent
to the operator T; = P, F,.
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Let M be a closed subspace invariant for the representation w. Then
T, ;M C M for all natural numbers n and so T;M C M for all ¢ € I. If
T; M # {0} for some i € I then M N Hy is a nonzero invariant subspace for
the family {P;};cs (as T; restricted to Hy is just P;) so M N Hy = Hy and
Hy C M. Then for any x € G and (z,&) € H, we have (z,&) = n(z)(e, &) €
M (as M is invariant). This implies H, C M for all z € G and so M = H.

Assume that T;M = {0} for all i € I and let m : G — Hj be any function
in M C H. Then we have 0 = T;m = P,Pym = P;m(e) for all i € I. Since
the subspace (),.; Ker P; of Hy is invariant for {P;}ie; and the family is
nontrivial we have m(e) = 0. We are going to prove that m(w) = 0 for all
w € G. Assume that this holds for all m € M and all w € G such that
|lw| <n (n>1). Take z as in (1). As m(e) =0 and M is invariant we have
m(z) = (r(g Ym)(gs .. gu) = 0.

We now turn to (iv). Let = be a fixed element as in (1) and for 1 <r <mn
put w, =2 'g1...9r = (¢r41-..9n)"". By Lemma 2.1 we have

7r('/I;)<w7“7£) - Tr(gl .. ~gr>(67£)

=(e. Py ... PO+ (1.9, M= PP, ... P &)
k=1

and if w is none of w,, 1 < r < n, then 7(x)(w,&) = (zw, ). Hence

4)  (m(@)f)(w)

f@ )+ Py P f(w)  ifw=e,
r=1
") S (A= PPy, P flwy) ifw=gi...gy 1<k <n,
r=k
f(a;_lw) otherwise.

For 0 < s < n define the operator As acting on H in the following way:

(Ao f)(w) = {Ffﬁd _1Pi)k)f(wk) ifw=g...95, 1 <k<n,

T w otherwise,
and if 1 < s < n then we put
(Asf)(w)
P“PZQP“f(wS) ifw:e,
= (Id — Pik)Pik+1 .. -Pik+sf(wk+s) ifw= g1 .-.9k, 1< k <n-—s,
0 otherwise

(in particular, (A, f)(e) = P;, ... P;, f(e), and for w # e, (A, f)(w) = 0).
Then ||As]| < as and by (4), w(z) = >._, A, which gives us (3) and
completes the proof.
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Remark. Note that if P; =0 for every ¢ € I and Hy = C then 7 is just
the regular representation of G, so the first assumption in (iii) is essential.

COROLLARY 2.3. Let G = ., G; and let {P,;}ier be a family of or-
thogonal projections in a Hilbert space Hy. Then

(a) the operator-valued function U on G given by U(e) = 1d and U(x) =
P, ... P, forx asin (1) is positive definite;

(b) for any wvector & € Hy the complex-valued function x +—
(&0, Py, - .. Py, &o) for x as in (1) is positive definite.

Proof. The statement (a) is an obvious consequence of (i) and (ii) in
Theorem 2.2 (see [NF, Theorem 7.1]) and it easily entails (b).

Remark. Let us note that the operator-valued function U is a free
product function (see [Bo2]). Hence Corollary 2.4 can also be obtained as a
consequence of [Bo2, Theorem 7.1].

3. The x-semigroup S(/) and free product of infinite groups.
Let I be a set and let S(I) denote the set of all formal words of the form

(5) U=141...1,, wheren >0, i €1, i1 # ... in.

We shall regard S(I) as a unital x-semigroup generated by I with the empty
word e as unit and defined by the following relations:

1w=1"=14 foranyiecl.
In particular, if v = 4;...4, and v = j1...J,n then u* = 4,...i; and
UV = 41 ...0002 .. Jm provided n # 0 # m and i, = j;; otherwise uv =
i1 il .

PROPOSITION 3.1. Let ¢ be a complex function on S(I). Then ¢ is
positive definite if and only if there exists a family {P;}ic; of orthogonal
projections on some Hilbert space Hy and a vector (o € Hy such that for
any u =1y ...i, € S(I),

¢(u) = <CU’Pi1Pi2 st PinCO>‘

Proof. By [BCR, Theorem 4.1.14] it is enough to prove that if ¢ is
positive definite then |¢(u)| < ¢(e) for any v € S(I). Let ¢ be a posi-
tive definite function on S(I) and let u = iy ...4, € S(I). Then we set
Up = Qgt1---in, 0 < k < n. By [BCR, Remark 4.1.6] for any u,v €
S(I) we have ¢(u*u) > 0 and ¢(v*u)p(u*v) < ¢(v*v)p(u*u). Therefore
P(upur)p(upupy1) < d(upupy1)o(upug) for 0 <k <n. But ujups =
uj U = upu, hence 0 < ¢(ujur) < ¢d(uj upy1). Since u, = e and uy =
u we get ¢(u ) < ¢(e). So |p(u)|? = dle*u)p(ue) < d(e)p(u™u) < ¢*(e).

COROLLARY 3.2. Let {G}ier be any family of groups, G = ., Gi
and let ¢ be a positive (resp. negative) definite function on the x-semigroup
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S(I). Then the composite function ¢ ot (i.e. pot(x) = ¢(t(x))) is positive
(resp. negative) definite on G.

Proof. If ¢ is a positive definite function then by Corollary 2.3(b) so is
¢ ot. Suppose that ¢ is negative definite on S(I). Then, by Schoenberg’s
theorem (see [BCR, Theorem 3.2.2]) for any positive A the function ¢y =
exp(—A¢) is positive definite on S(I). Hence ¢, ot is positive definite on
G. Applying Schoenberg’s theorem to ¢y ot we see that ¢ ot is negative
definite on G.

We conclude with the following theorem stating the correspondence be-
tween the class of positive definite functions on a free product of infinite
groups and the class of positive definite functions on the x-semigroup S(I).
The first statement is in fact a special case of [M3, Theorem 3.2.]. Note that
each type-dependent function on G = ., G; can be uniquely expressed as
a composition of the form ¢ o t.

iel

THEOREM 3.3. Let {G; }icr be any family of infinite groups, G =k
and let ¢ be any complex function on S(I). Then

icl Gi,
(i) ¢ ot is positive (resp. negative) definite on G if and only if ¢ is
positive (resp. negative) definite on S(I);
(ii) if ¢ is an extreme point in the convex cone of positive definite func-
tions on S(I) and ¢ is not of the form cde, ¢ > 0, then ¢ ot is an extreme
point in the convex cone of all positive definite functions on G.

Proof. (i) By the last corollary we need to show only one implication.
Suppose that ¢ ot is positive definite. For any ¢ € I and any natural number
p we choose a subset A(i,p) of G; \ {e} of cardinality p (recall that G;’s are
infinite). If u =14;...4, € S(I) then we put

A(“?Z’) = {91 o gn€G: gk € A(ik,p)}.

Note that Card A(u,p) = p/*l, where |u| denotes the length of u. We are
going to prove that for any u,v € S(I),

(6) Sp(u,v) = Z oty ra))p~ I p=Ivl = p(v*u)

z€A(u,p)

y€A(v,p)
as p — oo. First of all, note that if x and y have the first letters distinct
(though they may be of the same type) then t(y~'z) = t(y)*t(x). Therefore
if u and v have the first letters distinct or one of them is e then Sp(u,v) =
¢(v*u). Suppose that u = iy...%, # €, v = j1...Jm # € and i3 = j; and
let C denote the set of all pairs (z,y) € A(u,p) x A(v,p) such that the first
letters of z and y are the same. It is clear that Card C' = pl“/*/*I=1 Then
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d(t(y~tx)) = ¢p(v*u) for (x,y) € A(u,p) x A(v,p) \ C. Hence
RO R I () il

z€A(u,p)

yE€A(v,p)

= o) = > ety e
(z,y)eC

<p )+ D sty @) p M p T < 2p7 g(e)
(z,y)eC

(the last inequality holds because |p(u)| < ¢(e) for any u € S(I), as ¢ ot is
positive definite on G). This proves (6).

Now let uy, ..., u, be any distinct elements of S(I) and let aq, ...,
be any complex numbers. We have to prove that

Z d(uiuy )o@ > 0.

r,s=1
For any natural number p we define the function f, on G' by
folx) = { app~®lif 2 € A(u,,p) for some 1 < r < m,
0 otherwise.

The function ¢ ot is positive definite on G and so using (6) we get

0< D oty ") fy(2) foly)

z,yeG
m m
= Z Sp(Ur, us) s — Z d(usuy) o
r,s=1 r,s=1

as p — oo and so ¢ is positive definite on S(I). In the case of a nega-
tive definite function we can apply Schoenberg’s theorem as in the proof of
Corollary 4.2.

Now suppose that ¢ is an extreme point in the convex cone of all positive
definite functions on S(I). Then ¢ is a matrix coefficient of an irreducible
s-representation (Hg, ) of S(I). Hence for u =i ...y,

d(u) = (Co, Py, - - - P, Co),

where P; = m(i) and {P,};cs is an irreducible family of orthogonal projec-
tions on Hy, (o € Hy. Since ¢ is not of the form ¢d. the family is nontrivial.
By Theorem 2.2(i), (ii), ¢ ot is a coefficient of an irreducible unitary repre-
sentation of G, which concludes the proof.

Remark. Note that the function 4. is extreme on the *-semigroup S(I)
being its character but obviously J. is not extreme on G.
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4. One-dimensional projections. In this section we will be concerned
only with the case of one-dimensional projections. Let us start with the
following

PROPOSITION 4.1. Let Hy be a Hilbert space and for every i € I let P;
be a one-dimensional projection on Hy, i.e. Pi(§) = (G @ mi)& = (§,m:) G,
for some vectors (;,n; satisfying ((;,m;) = 1. Then

(i) the family {P;}ic1 is irreducible if and only if both the subsets {(;}icr
and {n; }icr are linearly dense and there is no nontrivial partition I = I;UI
such that {¢; i€ I} L{n; i € Ir};

(ii) for any Co,mo € Hy and iy,ia,...,i, € I,

(0> Piy Piy - - Pi, Go) = (M0, Ciy ){Mir» Ci) (Mis Cig) -+ - (M C0)5
(iii) for any iy,i2,...,0, € 1,

||Pi1Pi2 e Pln” = ||CHH : ’<77i1aci2><77i2?<i3> s <77in—17<in>| : ||77an

Proof. To see (i) we note that if one of the conditions is not satisfied
then one of the invariant subspaces

M1:<CZZ€I>7 M2:<777,Z€I>L, M3:<CZZ611>

is nontrivial (for A C Hy, (A) denotes the closed subspace generated by A).
Suppose that the conditions are satisfied and that M is a closed invariant
subspace. Put I1y = {i € I : M # {0}}, [ = I\I,. Then{(;:i€ L} C M
and {n; : i € Iy} L M so one of I, 5 is empty and the subspace M must
be trivial. By induction on n one can prove (ii), and (iii) is a consequence
of (ii).

Combining Theorem 2.2 and Proposition 4.1 we obtain the following

generalization of [Sz1, Corollary 1] (see [M3, Example 2.3.2])

COROLLARY 4.2. Let {v;i}ieruqoy be a family of unit vectors in a Hilbert
space Hy and let a;; = (v;,v5), i,j € TU{0}, G = %._,;Gi. Then the
function ¢ on G given by

el

O(T) = apiy QiyigQigisg - - - Gio  for x as in (1),
o(e) = 1, is positive definite. Moreover, if the family {v;}icr is linearly
dense in Hy, (vi,v;) # 0 for i,j € I and all G;’s are infinite then ¢ is
extreme.

From now on we restrict our attention to the following case. Let I =
{1,...,N}, N > 2, and let &,...,&y be an orthonormal basis in Hy = CV,
Then we put

o (1 +...+&N)

_ L
VN
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and for 1 <i < N,

N-1 1 al
VNS A Y

j=1
Jj#i
It is easy to check that
1 if i =3,
(7) (G:G) =140 ifi=0o0rj=0andi#j,

(in particular ¢; + ...+ (y =0). For 1 <i < N and for any fixed complex

number z define
Gi(z) =200+ V1 — 2%

(to avoid dealing with square roots of complex numbers one can substitute
z=cosa and V1 — 22 =sina, a € C). Then, by (7), (¢;(2),(2)) =1 and

for i # j,
1-22 Nz22-1
(®) (G2 GR) = 22 = =1 = o

In particular, P; = (;(z) ® (;(Z) is a projection. Applying Theorem 2.2 and
Proposition 4.1 we easily obtain

THEOREM 4.3. Let G = Gy * ... *x Gx be a free product of arbitrary

groups, z € C, and let 7, be the representation of G in CN given by the
family {P; = (;(2) ® ¢;(2)}Y, and defined by (2). Then
(i) if z € [-1,1] then 7, is unitary;
1 " ifr=ce,
.. 2 z|—
(ii) (7= (z)Co, Co) = .2 (N]\j _11> if £ # e
(iii) if all G; are infinite, z € C and 2 # 0,1,1/N then 7. is topologi-
cally irreducible;
(iv) if z€ C and |[N2? —1| < N — 1 then 7. is uniformly bounded and
for any x € G,

2]+ 11— 22
Il < 122+ 1L - 2 1+ o)
N—-1

In particular, for z € [0,1] the function ¢, given by
1 forx =e,
={ (Nz—1\"
¢:(2) z( sz 1 > for x # e,
s a positive definite function on G = Gy *...xGp; it is an extreme positive
definite function provided z # 0,1/N and all G;’s are infinite.
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Proof. If z € [-1,1] then P;’s are orthogonal, which gives us (i). Both
(ii) and (iii) are consequences of (8) because {¢;(z)}}, is a linear basis of
Hj unless z = 0,1 or —1. Finally, by (8),

Nz2—1|"!
N -1
Moreover, one can easily check that if P is a one-dimensional projection on

a Hilbert space then ||[Id— P|| = || P||. Therefore, in the notation of Theorem
2.2(iv), ag = |2%| + |1 — 22| and

1Psy - Pi | = (2% + 1= 22))

forn>1and iy # ... # iy,.

n—1
an < (122 + |1 — 22))? NNzZ__ll forn > 1,
which leads to (iv) and completes the proof.
Let us change our parameter putting
Nz2—-1 ., (N-Du+1
u= o be 2=

(this parametrization was used in [M1, Sz1, W1 and W2]). Writing I, = 7,
we can rephrase the last theorem as follows:
THEOREM 4.3'. (i) If uw € [-1/(N —1),1] then II,, is unitary;
1 if v =e,
(11/) <Hu($)<.07<0> = (N _]1\2u + 1u\x|71 if ?é e;

(iii") if all G; are infinite, u € C and uw # 0,1,—1/(N — 1), then I, is
rreducible;

(iv") if |u| < 1 then II, is uniformly bounded and for any x € G
(N -1Du+1]+ (N —-1)]1 -

N
N -1 1 N -—-1)[1-
o (1 D (Y )
N1 —[ul)

In particular, for uw € [-1/(N — 1),1] the function 1, given by

{1 forx =e,

T ()| <

%(CL’)Z (N_l)u+1u
N
s a positive definite function on G = G1*...xGp; it is an extreme positive

definite function provided z # —1/(N —1),0 and all G;’s are infinite.

Remarks. (a) The positive definiteness of 1, u € [-1/(N — 1), 1], was
first proved in [M1] and the fact that for u # —1/(N —1),0 the function
1, is extreme is due to Szwarc [Sz1]. An analytic series of representations
giving v,,’s as coeflicients was constructed by Wysoczaniski [W1, W2]. In

" fora#e fz|=n,
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the next section we will show that our series 7, is topologically equivalent
to his.

(b) Let us mention that Wysoczanski [W1] has proved that if G = Gy *
...*xGpy and |u| < 1 then

© ol < Xt -l
(N = Du+ 1)(1 — )] 1| N2
TN S ) {'“ N—l’ N—l}

(Il - B, denotes the norm in the algebra of Herz—Schur multipliers—see [BF]
for instance) and that the equality holds provided all G; are infinite.

5. Relation to Wysoczanski’s construction. In this section we
prove that the representations m, of G = G1 * ... * Gy are equivalent to
those studied by Wysoczanski [W2]. Firstly we present a brief exposition of
his construction. We will, however, change the parameter by substituting
(Nz2 —1)/(N — 1) instead of z in all formulas of [W2] indicating this by a
tilde, so that 7, will stand for m, of [W2], u = (N22 —1)/(N — 1), while
(., H) will denote the representations defined in the previous section.

Let

Xy ={(z.4): x € G, j €T andif x # e then j # i(x)}

(recall that for x # e as in (1) we have defined i(z) = i,; here and subse-
quently I = {1,...,N}, N > 2). Then, for every z € C, i € I, we define

a representation A,(g) of G; acting on ¢2(X;) putting A, (e) = Id and for
g€ G; \ {6}7

100  Alg)ed) = (e.0).

(10h)  Ag)er) = o)+ (90) A
(100 Alg)lo™9) = (e.) ~ (e,

(10d) A:(9)(w.§) = (92,5) iz te g™

(we will identify X; with the natural orthonormal basis of £?(X;)). By the
definition of the free product A, extends uniquely to the whole of G. From

now on we assume that z # 0,1, —1. We define an operator V, acting on
(2(X1) by putting for j € I,

N

) o) =)+ (T4 gy o) e

k=1
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and for x # e such that t(z) =iy ...y, and j # iy,

(11b) V.(z,j) = (z,7) + <N__11 + T i)zﬁ> > (k).
k#in

This operator is bounded, invertible [W2, Lemma 10] and

N
() Ved) =)+ (T o) ek
k=1

(12b) V() = (¢,4) + <N__1 o+ ;‘/_N1> > (@ k).
kin

Now Wysoczanski’s family of representations of G is given by
Fo(z) =V A (2)V,
(see [W2, Theorem 11]). We are in a position to formulate the main result

of this section stating that this construction is topologically equivalent to
that presented in the previous section.

THEOREM b5.1. Let z € C\ {0,1,—1}. Then there exists a bounded,
invertible operator T, : KQ(Xl) — H intertwining 7, and w,. This operator

satisfies ||T.|| = +/|22] + |1 — 22|, |T;Y| = 1 and is an isometry for z €

Proof. Fix z € C\ {0,1,—1}. Forany i € I, j € I\ {i} we define a
vector in Hy = CV by

1-— z\/ﬁ
= &%)

4 N](\i:;) <CJ’(Z) - ]\;\iQ__llCi(Z)>-

By the definition of (;(z), j(z) we have

() - 1— 22 1—2VN ' IN —1 '

or, more explicitly,

0= (s - 7w )

(13a) ) (z) =

+( 1— 22 N z +N2>€‘
N(N-1) (N—-1)YN N-1)%
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1— 22 z 1
+< NV T VoV N1>k;j§k.
By (7), (8) and (13a) we have (1t (2),;(z)) = 0. Moreover,

=221
a N -1

(14a) i (2), 7\ (2))
and, if N >3, j,k € I\ {i}, j # k, then

i i 22+ 1 —2% -1
(14b) (@) () = =2

(to see this one can use (7) and (13b)). Therefore for any linear combination

+1,

U=73 i ajnj(-i) (z) we have

|22| + 1 - 22| -1
(15) () = 3 Joy 2+ [ Y e

J#i J#i

‘ 2

In particular, {n§i)(z)}j¢i is a linear basis of Ker P; and for 22 € (0,1) this
is an orthonormal basis. Using the Schwarz inequality we get

(15b) (w,u) < (22| + 1 =2 e

JjFi
Fix i € I = {1,...,N} and define T; : ¢*(I \ {i}) — Ker P, by putting
T;(j) = n\”(2). By (15b) we have |T3|| < /[22[+ |1 — 22] and by (15a),

T; is invertible and |7, < 1. Tt is easy to verify that both estimates are
sharp. Now we define T, : ¢?(X;) — H by

(16a) T.(e i) = (e, &)
(recall that {&1, ..., &N} is the orthonormal basis of Hy = CV) and for x # e,
t(x) =iy ...1, and j # iy,
(16b) T.(x.j) = (x.0;"(2).
Fix z # e and assume that t(x) = iy ...i,. Then T, maps ¢?({(z,j) : j €
I\ {i,}} onto H, = Ker P;, so that the restriction of T} to £*>({(x,j) : j €
I\ {in}} can be identified with T; . Therefore || 1| = /|| + |1 — 22|, T%
is invertible, |7, }|| = 1 and for z € (0,1), T} is an isometry.

Now we are going to prove that T, intertwines 7, with 7, i.e. T,7,(x) =

7. (x)T, for any = € G. All we have to do is to check that for any i € I,
g € G;\{e} and (z,j) € X1,

(17) Tzvz_lgz(g)(xaj) :ﬂ-z(g)TZ‘/z_1<x7j)'



208 W. MLOTKOWSKI

We will need the following two formulas (cf. (12)):

1 2z [N\ & N—-1
(18) fi+<N+N M)};fk: N(l—zz)Ci(Z)’

1 € I, and, for j # 1,

) -1 zVN ) N -1
19 . —_t =4 - (Id—P;){i(2).
The first formula is easy to check. To prove the second one recall that
Z;‘Vﬂ ¢; = 0. Hence, by (13b),

Soul(2) = VIN =11 = 22)¢o — 2N = 1¢; = iv__zi (o= #6:(2));

ki
which, upon using (13a), easily leads to (19). Therefore for j € I we have

(20) 1.7 ) =[5 (G

and for z # e as in (1) and j # iy,

(1) 7.7 @) = | o (4= PG ).

Now we can prove (17). If z = e, j = ¢ then

TV A g)end) = TV ed) = | =z (0.6

z

N Nﬁ:i%“(g)(@’ Gi(2) = m.(9) TV, (e, 4).

For j # i we get
Tzvz_lgz(g)(e,j)

~ (NZ22-1 . .
:TZVZ 1( N—l (€7Z)+(g7j>>

Nz2 -1 N -1 N-—1
T No1 N = Zg)(eafi(2>) + m(ga (Id = P;)¢;(2))

N -1
=\ Fi = PGED + (0,14 = P)G ()]
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N -1 ~

= m%(@(% ¢ (2)) = m(g) TV, (e, 5).

Now take z = ¢! and j # i. Then

1V A0 ) =T () N 1<e,i>)

-1
N2 - 1{,(2)>

e
Vi

(Id = P;)¢;(2))

1

Finally, if z # e, g~' is as in (1) then

ng

—1
’/ N gm (Id - P;,,)¢(2))
=,/ @) (1 - PG ()

TV, A (g)(x, ]

which finishes the proof.

Remarks. 1) We have obtained the family 7, z € C, of representations
of the group G = G1*...xGy as a special case of the construction presented
in Section 2. We could do this a little bit more generally taking for example
{Gi(2) ®¢G(Z:) MY, 2 € C, as the initial family of projections, with z;’s not
necessarily all equal.

2) In view of Theorem 5.1 and Theorem 4.3(iv) we have, for any complex
z satisfying |[N22 — 1| < N — 1, the following estimate of Wysoczaniski’s
representation:

~ 22| + |1 = 2°|
17 ()]l < (12%] + |1 = 22))%/2 Lt ——xm |
1—|
N1

Therefore, coming back to his parametrization, for v € C, |u| < 1, the right
hand side of [W2, Theorem 11] can be replaced by
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(N = 1Du+1]+ (N —1)[1 - ul

< |

3/2
N )

(N = Du+ 1]+ (N = 1)[1 — uf
X(” N(L— [u]) >

or, as [(N — Du+ 1| < Nlu| + |1 — u|, by

141 —ul
1 —q)3/2 1= ™
(ul+ 1 =)
which no longer depends on N.
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