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1. Introduction. Let I be a nonempty index set and let {Gi}i∈I be
a family of discrete groups. Then we can consider the free product group
G = ∗i∈I

Gi in which each element x can be uniquely represented as a
reduced word

(1) x = g1g2 . . . gn , n ≥ 0, gk ∈ Gik
\ {e}, i1 6= . . . 6= in.

For such an element x we define its type as the formal word t(x) = i1i2 . . . in
and its length to be |x| = n, as introduced by J.-P. Serre in his book [Se].
A function f on G whose value f(x) depends only on the type (resp. the
length) of x will be called type-dependent (resp. radial).

Note in passing that if all Gi’s are isomorphic to the group Z of integers
then G can be regarded as the free group with I as the set of generators. In
this case we can define another length putting `(x) = |g1|+ . . .+ |gn|, where
|gk| denotes the absolute value of the integer gk. Then one can study radial
functions and spherical functions with respect to ` as it was done in [FP1, 2
and PS].

Now let {Pi}i∈I be an arbitrary family of (not necessarily orthogonal)
bounded projections on a Hilbert space H0. We construct a representation
π of G acting on a Hilbert space H containing H0 in such a way that for
every x ∈ G the restriction of π(x) to H0 is Pi1 . . . Pin

, where i1 . . . in = t(x).
Therefore if we pick a vector ζ0 lying inH0 then the corresponding coefficient
x 7→ 〈π(x)ζ0, ζ0〉 of π is a type-dependent function. The construction is
presented in Section 2 where we also establish some relations between certain
properties of the family {Pi}i∈I and those of π. In particular, if all Pi’s are
orthogonal then π turns out to be unitary. The construction gains in interest
in view of Theorem 3.3 which, together with Proposition 3.1, says that if all
Gi’s are infinite then every type-dependent positive definite function on G
is a coefficient of such a representation π.
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In [M3] we have described the class of all type-dependent positive definite
functions on G in the following way. For i ∈ I define τ(i) = 1/(|Gi| − 1).
Then we endow the linear space of finitely supported functions on the set
of types S(I) = {i1 . . . in : n ≥ 0, ik ∈ I and i1 6= . . . 6= in} with a
τ -convolution defined by

(i) δi ∗τ δi = (1− τ(i))δi + τ(i)δe,

where e denotes the empty word in S(I) and

(ii) δi1 ∗τ . . . ∗τ δin
= δi1...in

for n ≥ 2, ik ∈ I, i1 6= . . . in,

and with an involution f∗(i1 . . . in) := f(in . . . i1), thus obtaining a ∗-algebra
A(τ). A complex function φ on S(I) is said to be τ -positive definite if∑

u∈S(I) φ(u)(f∗ ∗τ f)(u) ≥ 0 for any f ∈ A(τ). In particular, if all Gi’s are
infinite then τ ≡ 0 and this notion coincides with the positive definiteness
on S(I) regarded as the free ∗-semigroup generated by I and defined by
the relations ii = i∗ = i for i ∈ I (cf. [BCR]). It was proved in [M3] that
a type-dependent function (which obviously can be uniquely expressed as
composition of a function φ on S(I) and the type t), t◦φ, is positive definite
on G if and only if φ is τ -positive definite on S(I). This allows us to study
functions on S(I) instead of on G, in particular to prove positive definiteness
of 1) spherical functions on the free product Zk ∗ . . . ∗Zk of cyclic groups of
the same order [M3, Theorem 5.8] (see [IP]) and 2) spherical functions on
the free product Zr ∗ Zs of two cyclic groups [M3, Theorem 4.5] (see [CS]).
The proofs use the fact that, having the index set I fixed, all the algebras
A(τ) are mutually isomorphic.

In this paper we prove that if all Gi’s are infinite and φ is an extreme
point in the convex cone of type-dependent positive definite functions on
G = ∗i∈I Gi then, in fact, φ is an extreme point in the convex cone of all
positive definite functions on G, unless φ = cδe, c > 0 (Theorem 3.3). The
same question without the assumption that all Gi’s are infinite presents
a more delicate problem (because the representations involved are more
complicated) and will be studied in a forthcoming paper.

In Section 4 we construct a family πz, z ∈ C, of representations of
G = G1 ∗ . . . ∗ GN , N ≥ 2, related to a family {ζi(z) ⊗ ζi(z)}N

i=1 of one-
dimensional projections on CN . The radial function φz defined by

φz(x) =


1 for x = e ,

z

(
Nz − 1
N − 1

)|x|−1

for x 6= e,

turns out to be a coefficient of πw if w2 = z. This function φz can be
viewed as a spherical function on a free product G = G1 ∗ . . .∗GN of infinite
groups. Namely, let Gk = Gk

1 ∗ . . . ∗Gk
N be the free product of finite groups
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of order k. Then a radial function φk
z is said to be spherical with eigenvalue

z if φk
z(e) = 1 and φk

z ∗µ1 = zφk
z , where µ1 denotes the probability measure

equidistributed over the set W k
1 = {x ∈ Gk : |x| = 1} (see [IP]). Such a

function is unique and given by φk
z(x) = P|x|(z; k,N), where Pn( · ; k,N) is

a polynomial of degree n defined in [M2]. Now taking k to be infinite we
cannot define spherical functions in the same way since the set W∞

1 is also
infinite. But putting

φ∞z (x) = lim
k→∞

P|x|(z; k,N)

we get the function φz. For finite k the related representations were studied
by Iozzi and Picardello [IP] and for k = ∞ by Wysoczański [W2] (see also
Szwarc [Sz1]), whose construction was based on the ideas of Pytlik and
Szwarc [PS] (cf. also [B1, FP1, FP2, Va and Sz2]). In the last section
we prove that our representations πz are topologically equivalent to those
constructed by Wysoczański [W2].

2. The construction. Assume that {Gi}i∈I is a family of discrete
groups, G = ∗i∈I

Gi, and {Pi}i∈I is a family of bounded (not necessarily
orthogonal) projections in a fixed Hilbert space H0. If x ∈ G \ {e} is as in
(1) then we put i(x) = in. Define

H =
{
f : G→ H0 :

∑
w∈G

‖f(w)‖2 <∞ and

if w ∈ G \ {e} then f(w) ∈ KerPi(w)

}
.

For any w ∈ G and any vector ξ ∈ H0 lying in KerPi(w) whenever w 6= e,
we denote by (w, ξ) the function in H which has the value ξ at w and 0
elsewhere. Hw will stand for the space of all functions inH vanishing outside
{w}, i.e. the set of all admissible pairs (w, ξ). Then we haveH =

⊕
w∈GHw.

By abuse of notation we shall identify H0 with He ⊆ H.
Now we are going to define a representation π of G acting on H. To do

that, for every i ∈ I, g ∈ Gi \ {e} and f ∈ H, we define

(2a) (πi(g)f)(w) =

 f(g−1) + Pif(e) if w = e,
(Id− Pi)f(e) if w = g,
f(g−1w) otherwise,

or, in terms of the vectors (w, ξ),

(2a′) πi(g)(w, ξ) =
{

(e, Piξ) + (g, (Id− Pi)ξ) if w = e,
(gw, ξ) otherwise.

Note in particular that ‖πi(g)‖ ≤ ‖Pi‖+ ‖Id− Pi‖. Putting πi(e) = Id it is
easy to see that πi is a representation of the group Gi. More precisely, let
P0 denote the orthogonal projection of H onto He = H0 and set Ti = PiP0
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(Ti is a projection of H onto ImPi). Then the operator πi(g) acts as the
identity on ImTi = ImPi and πi(g) acts in KerTi = (KerPi) ⊕

⊕
w 6=eHw

as a multiple of the regular representation. Moreover, if Pi is orthogonal
then the direct decomposition H = ImTi + KerTi is also orthogonal and
the representation πi of Gi is unitary.

In this way for every i ∈ I we have defined a representation πi of Gi.
By the definition of the free product of groups (see [Se]) the πi’s extend
uniquely to a representation π of G. Namely,

(2b) π(x) = πi1(g1) . . . πin(gn)

if x is as in (1). Note that if all the projections Pi are orthogonal then we
have π(x)∗ = πin(gn)∗ . . . πi1(g1)

∗ = πin(g−1
n ) . . . πi1(g

−1
1 ) = π(x−1) so π is

unitary.

Lemma 2.1. If x is as in (1) and ξ ∈ H0, then

π(x)(e, ξ) = (e, Pi1 . . . Pinξ) +
n∑

k=1

(g1 . . . gk, (Id− Pik
)Pik+1 . . . Pinξ).

P r o o f. If n = 0 then the formula is obvious. Assume that it holds for
elements of length n and pick x as in (1). We shall consider an element g0x
of length n+ 1 with g0 ∈ Gi0 \ {e}, i0 6= i1. By our assumption and (2) we
have

π(g0x)(e, ξ) = π(g0)(e, Pi1 . . . Pinξ)

+
n∑

k=1

(g0g1 . . . gk, (Id− Pik
)Pik+1 . . . Pin

ξ)

= (e, Pi0Pi1 . . . Pinξ)

+
n∑

k=0

(g0g1 . . . gk, (Id− Pik
)Pik+1 . . . Pin

ξ),

which completes the proof.

Let A be a family of bounded operators on some Hilbert space. A closed
subspace M is called invariant for A if AM ⊆M for each A ∈ A. Note that
if M is invariant for A then M⊥ is invariant for A∗ = {A∗ : A ∈ A}. The
family A is called topologically irreducible (cf. [Di]) if there is no nontrivial
closed invariant subspace for A. Hence if A is irreducible then so is A∗.

Theorem 2.2. Let {Pi}i∈I be a family of bounded projections in a fixed
Hilbert space H0 and let π be the representation of G =∗i∈I

Gi defined by
(2). Then
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(i) if all Pi are orthogonal then π is unitary ;
(ii) if x ∈ G, t(x) = i1 . . . in and ξ ∈ H0 then P0π(x)ξ = Pi1 . . . Pinξ,

where P0 denotes the orthogonal projection of H onto H0;
(iii) if the family {Pi}i∈I is nontrivial (i.e. Pi 6= 0 for some i ∈ I) and

topologically irreducible (on H0) then π is also topologically irreducible (on
H) provided that all Gi’s are infinite;

(iv) assume that ‖(Id− Pi0)Pi1 . . . Pin‖ ≤ an and ‖Pi1 . . . Pin‖ ≤ an for
any n ≥ 0 and any sequence i0, i1, . . . , in ∈ I satisfying i0 6= i1 6= . . . 6= in;
then

(3) ‖π(x)‖ ≤
|x|∑
s=0

as.

In particular , if the series
∑
an is convergent then π is uniformly bounded.

P r o o f. We have already noted statement (i). Moreover, (ii) is a conse-
quence of Lemma 2.1. Assume that the family of projections {Pi}i∈I on H0

is nontrivial and irreducible and that all Gi’s are infinite. For each i ∈ I let
{gk,i}∞k=1 be a sequence of distinct elements of the group Gi. For any i ∈ I
and a natural number n define the operator Tn,i on H by

Tn,i =
1
n

n∑
k=1

π(gk,i).

Then ‖Tn,i‖ ≤ ‖Pi‖+ ‖Id− Pi‖. Moreover, for ξ ∈ H0,

Tn,i(e, ξ) = (e, Piξ) +
1
n

n∑
k=1

(gk,i, (Id− Pi)ξ)

and for any w 6= e and any (w, ξ) ∈ Hw,

Tn,i(w, ξ) =
1
n

n∑
k=1

(gk,iw, ξ).

Now, fix f ∈ H, ε > 0 and decompose G = B0∪̇B1∪̇B2 and f = f0 +f1 +f2,
supp fs ⊆ Bs, in such a way that B0 = {e}, B1 is finite and ‖f2‖ ≤ ε(2‖Pi‖+
2‖Id− Pi‖)−1. We obtain

‖Tn,if − (e, Pif(e))‖

≤ ‖Tn,i(e, (Id− Pi)f(e))‖+
∑

w∈B1

‖Tn,i(w, f(w))‖+ ‖Tn,if2‖

≤ 1√
n
‖(Id− Pi)f(e)‖+

1√
n

∑
w∈B1

‖f(w)‖+
ε

2
≤ ε

for n sufficiently large. Therefore the sequence Tn,i is strongly convergent
to the operator Ti = PiP0.
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Let M be a closed subspace invariant for the representation π. Then
Tn,iM ⊆ M for all natural numbers n and so TiM ⊆ M for all i ∈ I. If
TiM 6= {0} for some i ∈ I then M ∩H0 is a nonzero invariant subspace for
the family {Pi}i∈I (as Ti restricted to H0 is just Pi) so M ∩H0 = H0 and
H0 ⊆M . Then for any x ∈ G and (x, ξ) ∈ Hx we have (x, ξ) = π(x)(e, ξ) ∈
M (as M is invariant). This implies Hx ⊆M for all x ∈ G and so M = H.

Assume that TiM = {0} for all i ∈ I and let m : G→ H0 be any function
in M ⊆ H. Then we have 0 = Tim = PiP0m = Pim(e) for all i ∈ I. Since
the subspace

⋂
i∈I KerPi of H0 is invariant for {Pi}i∈I and the family is

nontrivial we have m(e) = 0. We are going to prove that m(w) = 0 for all
w ∈ G. Assume that this holds for all m ∈ M and all w ∈ G such that
|w| < n (n ≥ 1). Take x as in (1). As m(e) = 0 and M is invariant we have
m(x) = (π(g−1

1 )m)(g2 . . . gn) = 0.
We now turn to (iv). Let x be a fixed element as in (1) and for 1 ≤ r ≤ n

put wr = x−1g1 . . . gr = (gr+1 . . . gn)−1. By Lemma 2.1 we have

π(x)(wr, ξ) = π(g1 . . . gr)(e, ξ)

= (e, Pi1 . . . Pir
ξ) +

r∑
k=1

(g1 . . . gk, (Id− Pik
)Pik+1 . . . Pir

ξ)

and if w is none of wr, 1 ≤ r ≤ n, then π(x)(w, ξ) = (xw, ξ). Hence

(4) (π(x)f)(w)

=


f(x−1) +

n∑
r=1

Pi1 . . . Pirf(wr) if w = e,

n∑
r=k

(Id− Pik
)Pik+1 . . . Pirf(wr) if w = g1 . . . gk, 1 ≤ k ≤ n,

f(x−1w) otherwise.

For 0 ≤ s ≤ n define the operator As acting on H in the following way:

(A0f)(w) =
{

(Id− Pik
)f(wk) if w = g1 . . . gk, 1 ≤ k ≤ n,

f(x−1w) otherwise,

and if 1 ≤ s ≤ n then we put

(Asf)(w)

=

{
Pi1Pi2 . . . Pis

f(ws) if w = e,
(Id− Pik

)Pik+1 . . . Pik+s
f(wk+s) if w = g1 . . . gk, 1 ≤ k ≤ n− s,

0 otherwise
(in particular, (Anf)(e) = Pi1 . . . Pinf(e), and for w 6= e, (Anf)(w) = 0).
Then ‖As‖ ≤ as and by (4), π(x) =

∑n
s=0As, which gives us (3) and

completes the proof.
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R e m a r k. Note that if Pi = 0 for every i ∈ I and H0 = C then π is just
the regular representation of G, so the first assumption in (iii) is essential.

Corollary 2.3. Let G = ∗i∈I Gi and let {Pi}i∈I be a family of or-
thogonal projections in a Hilbert space H0. Then

(a) the operator-valued function U on G given by U(e) = Id and U(x) =
Pi1 . . . Pin for x as in (1) is positive definite;

(b) for any vector ξ0 ∈ H0 the complex-valued function x 7→
〈ξ0, Pi1 . . . Pinξ0〉 for x as in (1) is positive definite.

P r o o f. The statement (a) is an obvious consequence of (i) and (ii) in
Theorem 2.2 (see [NF, Theorem 7.1]) and it easily entails (b).

R e m a r k. Let us note that the operator-valued function U is a free
product function (see [Bo2]). Hence Corollary 2.4 can also be obtained as a
consequence of [Bo2, Theorem 7.1].

3. The ∗-semigroup S(I) and free product of infinite groups.
Let I be a set and let S(I) denote the set of all formal words of the form

(5) u = i1 . . . in, where n ≥ 0, ik ∈ I, i1 6= . . . 6= in.

We shall regard S(I) as a unital ∗-semigroup generated by I with the empty
word e as unit and defined by the following relations:

ii = i∗ = i for any i ∈ I.
In particular, if u = i1 . . . in and v = j1 . . . jm then u∗ = in . . . i1 and
uv = i1 . . . inj2 . . . jm provided n 6= 0 6= m and in = j1; otherwise uv =
i1 . . . inj1 . . . jm.

Proposition 3.1. Let φ be a complex function on S(I). Then φ is
positive definite if and only if there exists a family {Pi}i∈I of orthogonal
projections on some Hilbert space H0 and a vector ζ0 ∈ H0 such that for
any u = i1 . . . in ∈ S(I),

φ(u) = 〈ζ0, Pi1Pi2 . . . Pinζ0〉.
P r o o f. By [BCR, Theorem 4.1.14] it is enough to prove that if φ is

positive definite then |φ(u)| ≤ φ(e) for any u ∈ S(I). Let φ be a posi-
tive definite function on S(I) and let u = i1 . . . in ∈ S(I). Then we set
uk = ik+1 . . . in, 0 ≤ k ≤ n. By [BCR, Remark 4.1.6] for any u, v ∈
S(I) we have φ(u∗u) ≥ 0 and φ(v∗u)φ(u∗v) ≤ φ(v∗v)φ(u∗u). Therefore
φ(u∗k+1uk)φ(u∗kuk+1) ≤ φ(u∗k+1uk+1)φ(u∗kuk) for 0 ≤ k ≤ n. But u∗kuk+1 =
u∗k+1uk = u∗kuk, hence 0 ≤ φ(u∗kuk) ≤ φ(u∗k+1uk+1). Since un = e and u0 =
u we get φ(u∗u) ≤ φ(e). So |φ(u)|2 = φ(e∗u)φ(u∗e) ≤ φ(e)φ(u∗u) ≤ φ2(e).

Corollary 3.2. Let {Gi}i∈I be any family of groups, G = ∗i∈I Gi

and let φ be a positive (resp. negative) definite function on the ∗-semigroup
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S(I). Then the composite function φ ◦ t (i.e. φ ◦ t(x) = φ(t(x)) ) is positive
(resp. negative) definite on G.

P r o o f. If φ is a positive definite function then by Corollary 2.3(b) so is
φ ◦ t. Suppose that φ is negative definite on S(I). Then, by Schoenberg’s
theorem (see [BCR, Theorem 3.2.2]) for any positive λ the function φλ =
exp(−λφ) is positive definite on S(I). Hence φλ ◦ t is positive definite on
G. Applying Schoenberg’s theorem to φλ ◦ t we see that φ ◦ t is negative
definite on G.

We conclude with the following theorem stating the correspondence be-
tween the class of positive definite functions on a free product of infinite
groups and the class of positive definite functions on the ∗-semigroup S(I).
The first statement is in fact a special case of [M3, Theorem 3.2.]. Note that
each type-dependent function on G =∗i∈I Gi can be uniquely expressed as
a composition of the form φ ◦ t.

Theorem 3.3. Let {Gi}i∈I be any family of infinite groups, G=∗i∈I Gi,
and let φ be any complex function on S(I). Then

(i) φ ◦ t is positive (resp. negative) definite on G if and only if φ is
positive (resp. negative) definite on S(I);

(ii) if φ is an extreme point in the convex cone of positive definite func-
tions on S(I) and φ is not of the form cδe, c > 0, then φ ◦ t is an extreme
point in the convex cone of all positive definite functions on G.

P r o o f. (i) By the last corollary we need to show only one implication.
Suppose that φ◦t is positive definite. For any i ∈ I and any natural number
p we choose a subset A(i, p) of Gi \ {e} of cardinality p (recall that Gi’s are
infinite). If u = i1 . . . in ∈ S(I) then we put

A(u, p) = {g1 . . . gn ∈ G : gk ∈ A(ik, p)}.

Note that CardA(u, p) = p|u|, where |u| denotes the length of u. We are
going to prove that for any u, v ∈ S(I),

(6) Sp(u, v) :=
∑

x∈A(u,p)
y∈A(v,p)

φ(t(y−1x))p−|u| p−|v| → φ(v∗u)

as p → ∞. First of all, note that if x and y have the first letters distinct
(though they may be of the same type) then t(y−1x) = t(y)∗t(x). Therefore
if u and v have the first letters distinct or one of them is e then Sp(u, v) =
φ(v∗u). Suppose that u = i1 . . . in 6= e, v = j1 . . . jm 6= e and i1 = j1 and
let C denote the set of all pairs (x, y) ∈ A(u, p)×A(v, p) such that the first
letters of x and y are the same. It is clear that CardC = p|u|+|v|−1. Then
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φ(t(y−1x)) = φ(v∗u) for (x, y) ∈ A(u, p)×A(v, p) \ C. Hence∣∣∣φ(v∗u)−
∑

x∈A(u,p)
y∈A(v,p)

φ(t(y−1x))p−|u|p−|v|
∣∣∣

=
∣∣∣p−1φ(v∗u)−

∑
(x,y)∈C

φ(t(y−1x))p−|u|p−|v|
∣∣∣

≤ p−1|φ(v∗u)|+
∑

(x,y)∈C

|φ(t(y−1x))|p−|u|p−|v| ≤ 2p−1φ(e)

(the last inequality holds because |φ(u)| ≤ φ(e) for any u ∈ S(I), as φ ◦ t is
positive definite on G). This proves (6).

Now let u1, . . . , um be any distinct elements of S(I) and let α1, . . . , αm

be any complex numbers. We have to prove that
m∑

r,s=1

φ(u∗sur)αrαs ≥ 0.

For any natural number p we define the function fp on G by

fp(x) =
{
αrp

−|x| if x ∈ A(ur, p) for some 1 ≤ r ≤ m,
0 otherwise.

The function φ ◦ t is positive definite on G and so using (6) we get

0 ≤
∑

x,y∈G

φ(t(y−1x))fp(x)fp(y)

=
m∑

r,s=1

Sp(ur, us)αrαs →
m∑

r,s=1

φ(u∗sur)αrαs

as p → ∞ and so φ is positive definite on S(I). In the case of a nega-
tive definite function we can apply Schoenberg’s theorem as in the proof of
Corollary 4.2.

Now suppose that φ is an extreme point in the convex cone of all positive
definite functions on S(I). Then φ is a matrix coefficient of an irreducible
∗-representation (H0, π) of S(I). Hence for u = i1 . . . in,

φ(u) = 〈ζ0, Pi1 . . . Pin
ζ0〉,

where Pi = π(i) and {Pi}i∈I is an irreducible family of orthogonal projec-
tions on H0, ζ0 ∈ H0. Since φ is not of the form cδe the family is nontrivial.
By Theorem 2.2(i), (ii), φ ◦ t is a coefficient of an irreducible unitary repre-
sentation of G, which concludes the proof.

R e m a r k. Note that the function δe is extreme on the ∗-semigroup S(I)
being its character but obviously δe is not extreme on G.
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4. One-dimensional projections. In this section we will be concerned
only with the case of one-dimensional projections. Let us start with the
following

Proposition 4.1. Let H0 be a Hilbert space and for every i ∈ I let Pi

be a one-dimensional projection on H0, i.e. Pi(ξ) = (ζi ⊗ ηi)ξ = 〈ξ, ηi〉ζi,
for some vectors ζi, ηi satisfying 〈ζi, ηi〉 = 1. Then

(i) the family {Pi}i∈I is irreducible if and only if both the subsets {ζi}i∈I

and {ηi}i∈I are linearly dense and there is no nontrivial partition I = I1∪I2
such that {ζi : i ∈ I1} ⊥ {ηi : i ∈ I2};

(ii) for any ζ0, η0 ∈ H0 and i1, i2, . . . , in ∈ I,

〈η0, Pi1Pi2 . . . Pinζ0〉 = 〈η0, ζi1〉〈ηi1 , ζi2〉〈ηi2 , ζi3〉 . . . 〈ηin , ζ0〉;

(iii) for any i1, i2, . . . , in ∈ I,

‖Pi1Pi2 . . . Pin‖ = ‖ζi1‖ · |〈ηi1 , ζi2〉〈ηi2 , ζi3〉 . . . 〈ηin−1 , ζin〉| · ‖ηin‖.

P r o o f. To see (i) we note that if one of the conditions is not satisfied
then one of the invariant subspaces

M1 = 〈ζi : i ∈ I〉, M2 = 〈ηi : i ∈ I〉⊥, M3 = 〈ζi : i ∈ I1〉

is nontrivial (for A ⊆ H0, 〈A〉 denotes the closed subspace generated by A).
Suppose that the conditions are satisfied and that M is a closed invariant
subspace. Put I1 = {i ∈ I : PiM 6= {0}}, I2 = I\I1. Then {ζi : i ∈ I1} ⊆M
and {ηi : i ∈ I2} ⊥ M so one of I1, I2 is empty and the subspace M must
be trivial. By induction on n one can prove (ii), and (iii) is a consequence
of (ii).

Combining Theorem 2.2 and Proposition 4.1 we obtain the following
generalization of [Sz1, Corollary 1] (see [M3, Example 2.3.2])

Corollary 4.2. Let {vi}i∈I∪{0} be a family of unit vectors in a Hilbert
space H0 and let aij = 〈vi, vj〉, i, j ∈ I ∪ {0}, G = ∗i∈I

Gi. Then the
function φ on G given by

φ(x) = a0i1ai1i2ai2i3 . . . ain0 for x as in (1),

φ(e) = 1, is positive definite. Moreover , if the family {vi}i∈I is linearly
dense in H0, 〈vi, vj〉 6= 0 for i, j ∈ I and all Gi’s are infinite then φ is
extreme.

From now on we restrict our attention to the following case. Let I =
{1, . . . , N}, N ≥ 2, and let ξ1, . . . , ξN be an orthonormal basis in H0 = CN .
Then we put

ζ0 =
1√
N

(ξ1 + . . .+ ξN )
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and for 1 ≤ i ≤ N ,

ζi =

√
N − 1
N

ξi −
1√

N(N − 1)

N∑
j=1
j 6=i

ξj .

It is easy to check that

(7) 〈ζi, ζj〉 =


1 if i = j,
0 if i = 0 or j = 0 and i 6= j,
−1/(N − 1) if i 6= j, 1 ≤ i, j ≤ N

(in particular ζ1 + . . .+ ζN = 0). For 1 ≤ i ≤ N and for any fixed complex
number z define

ζi(z) = zζ0 +
√

1− z2ζi

(to avoid dealing with square roots of complex numbers one can substitute
z = cosα and

√
1− z2 = sinα, α ∈ C). Then, by (7), 〈ζi(z), ζi(z)〉 = 1 and

for i 6= j,

(8) 〈ζi(z), ζj(z)〉 = z2 − 1− z2

N − 1
=
Nz2 − 1
N − 1

.

In particular, Pi = ζi(z)⊗ ζi(z) is a projection. Applying Theorem 2.2 and
Proposition 4.1 we easily obtain

Theorem 4.3. Let G = G1 ∗ . . . ∗ GN be a free product of arbitrary
groups, z ∈ C, and let πz be the representation of G in CN given by the
family {Pi = ζi(z)⊗ ζi(z)}N

i=1 and defined by (2). Then

(i) if z ∈ [−1, 1] then πz is unitary ;

(ii) 〈πz(x)ζ0, ζ0〉 =


1 if x = e,

z2

(
Nz2 − 1
N − 1

)|x|−1

if x 6= e;

(iii) if all Gi are infinite, z ∈ C and z2 6= 0, 1, 1/N then πz is topologi-
cally irreducible;

(iv) if z ∈ C and |Nz2 − 1| < N − 1 then πz is uniformly bounded and
for any x ∈ G,

‖πz(x)‖ ≤ (|z2|+ |1− z2|)
(

1 +
|z2|+ |1− z2|
1−

∣∣Nz2−1
N−1

∣∣
)
.

In particular , for z ∈ [0, 1] the function φz given by

φz(x) =


1 for x = e,

z

(
Nz − 1
N − 1

)|x|−1

for x 6= e,

is a positive definite function on G = G1 ∗ . . .∗GN ; it is an extreme positive
definite function provided z 6= 0, 1/N and all Gi’s are infinite.
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P r o o f. If z ∈ [−1, 1] then Pi’s are orthogonal, which gives us (i). Both
(ii) and (iii) are consequences of (8) because {ζi(z)}N

i=1 is a linear basis of
H0 unless z = 0, 1 or −1. Finally, by (8),

‖Pi1 . . . Pin
‖ = (|z2|+ |1− z2|)

∣∣∣∣Nz2 − 1
N − 1

∣∣∣∣n−1

for n ≥ 1 and i1 6= . . . 6= in.

Moreover, one can easily check that if P is a one-dimensional projection on
a Hilbert space then ‖Id−P‖ = ‖P‖. Therefore, in the notation of Theorem
2.2(iv), a0 = |z2|+ |1− z2| and

an ≤ (|z2|+ |1− z2|)2
∣∣∣∣Nz2 − 1
N − 1

∣∣∣∣n−1

for n ≥ 1,

which leads to (iv) and completes the proof.

Let us change our parameter putting

u =
Nz2 − 1
N − 1

, i.e. z2 =
(N − 1)u+ 1

N

(this parametrization was used in [M1, Sz1, W1 and W2]). Writing Πu = πz

we can rephrase the last theorem as follows:

Theorem 4.3′. (i′) If u ∈ [−1/(N − 1), 1] then Πu is unitary ;

(ii′) 〈Πu(x)ζ0, ζ0〉 =

{ 1 if x = e,
(N − 1)u+ 1

N
u|x|−1 if x 6= e;

(iii′) if all Gi are infinite, u ∈ C and u 6= 0, 1,−1/(N − 1), then Πu is
irreducible;

(iv′) if |u| < 1 then Πu is uniformly bounded and for any x ∈ G

‖Πu(x)‖ ≤ |(N − 1)u+ 1|+ (N − 1)|1− u|
N

×
(

1 +
|(N − 1)u+ 1|+ (N − 1)|1− u|

N(1− |u|)

)
.

In particular , for u ∈ [−1/(N − 1), 1] the function ψu given by

ψu(x) =

{ 1 for x = e,
(N − 1)u+ 1

N
un−1 for x 6= e, |x| = n,

is a positive definite function on G = G1 ∗ . . .∗GN ; it is an extreme positive
definite function provided z 6= −1/(N − 1), 0 and all Gi’s are infinite.

R e m a r k s. (a) The positive definiteness of ψu, u ∈ [−1/(N − 1), 1], was
first proved in [M1] and the fact that for u 6= −1/(N − 1), 0 the function
ψu is extreme is due to Szwarc [Sz1]. An analytic series of representations
giving ψu’s as coefficients was constructed by Wysoczański [W1, W2]. In



REPRESENTATIONS OF FREE PRODUCTS 205

the next section we will show that our series πz is topologically equivalent
to his.

(b) Let us mention that Wysoczański [W1] has proved that if G = G1 ∗
. . . ∗GN and |u| < 1 then

‖ψu‖B2 ≤
N − 1
N

|1− u|(9)

+
|[(N − 1)u+ 1](1− u)|

N(1− |u2|)

{∣∣∣∣u+
1

N − 1

∣∣∣∣ +
N − 2
N − 1

}
(‖ ·‖B2 denotes the norm in the algebra of Herz–Schur multipliers—see [BF]
for instance) and that the equality holds provided all Gi are infinite.

5. Relation to Wysoczański’s construction. In this section we
prove that the representations πz of G = G1 ∗ . . . ∗ GN are equivalent to
those studied by Wysoczański [W2]. Firstly we present a brief exposition of
his construction. We will, however, change the parameter by substituting
(Nz2 − 1)/(N − 1) instead of z in all formulas of [W2] indicating this by a
tilde, so that π̃z will stand for πu of [W2], u = (Nz2 − 1)/(N − 1), while
(πz,H) will denote the representations defined in the previous section.

Let

X1 = {(x, j) : x ∈ G, j ∈ I and if x 6= e then j 6= i(x)}

(recall that for x 6= e as in (1) we have defined i(x) = in; here and subse-
quently I = {1, . . . , N}, N ≥ 2). Then, for every z ∈ C, i ∈ I, we define
a representation Ãz(g) of Gi acting on `2(X1) putting Ãz(e) = Id and for
g ∈ Gi \ {e},

Ãz(g)(e, i) = (e, i),(10a)

Ãz(g)(e, j) =
Nz2 − 1
N − 1

(e, i) + (g, j) if j 6= i,(10b)

Ãz(g)(g−1, j) = (e, j)− Nz2 − 1
N − 1

(e, i),(10c)

Ãz(g)(x, j) = (gx, j) if x 6= e, g−1(10d)

(we will identify X1 with the natural orthonormal basis of `2(X1)). By the
definition of the free product Ãz extends uniquely to the whole of G. From
now on we assume that z 6= 0, 1,−1. We define an operator Ṽz acting on
`2(X1) by putting for j ∈ I,

(11a) Ṽz(e, j) = (e, j) +
(
−1
N

+
1
Nz

√
1− z2

N − 1

) N∑
k=1

(e, k),
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and for x 6= e such that t(x) = i1 . . . in, and j 6= in,

(11b) Ṽz(x, j) = (x, j) +
(

−1
N − 1

+
1

(N − 1)z
√
N

) ∑
k 6=in

(x, k).

This operator is bounded, invertible [W2, Lemma 10] and

Ṽ −1
z (e, j) = (e, j) +

(
−1
N

+
z

N

√
N − 1
1− z2

) N∑
k=1

(e, k),(12a)

Ṽ −1
z (x, j) = (x, j) +

(
−1

N − 1
+

z
√
N

N − 1

) ∑
k 6=in

(x, k).(12b)

Now Wysoczański’s family of representations of G is given by

π̃z(x) = Ṽ −1
z Ãz(x)Ṽz

(see [W2, Theorem 11]). We are in a position to formulate the main result
of this section stating that this construction is topologically equivalent to
that presented in the previous section.

Theorem 5.1. Let z ∈ C \ {0, 1,−1}. Then there exists a bounded ,
invertible operator Tz : `2(X1) → H intertwining π̃z and πz. This operator
satisfies ‖Tz‖ =

√
|z2|+ |1− z2|, ‖T−1

z ‖ = 1 and is an isometry for z ∈
(−1, 0) ∪ (0, 1).

P r o o f. Fix z ∈ C \ {0, 1,−1}. For any i ∈ I, j ∈ I \ {i} we define a
vector in H0 = CN by

η
(i)
j (z) =

1− z
√
N√

(N − 1)(1− z2)
(ζ0 − zζi(z))(13a)

+

√
N − 1

N(1− z2)

(
ζj(z)−

Nz2 − 1
N − 1

ζi(z)
)
.

By the definition of ζi(z), ζj(z) we have

(13b) η
(i)
j (z) =

√
1− z2

N − 1
ζ0 +

1− z
√
N√

N(N − 1)
ζi +

√
N − 1
N

ζj ,

or, more explicitly,

η
(i)
j (z) =

(√
1− z2

N(N − 1)
− z√

N

)
ξi

+
(√

1− z2

N(N − 1)
+

z

(N − 1)
√
N

+
N − 2
N − 1

)
ξj
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+
(√

1− z2

N(N − 1)
+

z

(N − 1)
√
N
− 1
N − 1

) ∑
k 6=i,j

ξk .

By (7), (8) and (13a) we have 〈η(i)
j (z), ζi(z)〉 = 0. Moreover,

(14a) 〈η(i)
j (z), η(i)

j (z)〉 =
|z2|+ |1− z2| − 1

N − 1
+ 1,

and, if N ≥ 3, j, k ∈ I \ {i}, j 6= k, then

(14b) 〈η(i)
j (z), η(i)

k (z)〉 =
|z2|+ |1− z2| − 1

N − 1

(to see this one can use (7) and (13b)). Therefore for any linear combination
u =

∑
j 6=i αjη

(i)
j (z) we have

(15a) 〈u, u〉 =
∑
j 6=i

|αj |2 +
|z2|+ |1− z2| − 1

N − 1

∣∣∣ ∑
j 6=i

αj

∣∣∣2.
In particular, {η(i)

j (z)}j 6=i is a linear basis of KerPi and for z2 ∈ (0, 1) this
is an orthonormal basis. Using the Schwarz inequality we get

(15b) 〈u, u〉 ≤ (|z2|+ |1− z2|)
∑
j 6=i

|αi|2.

Fix i ∈ I = {1, . . . , N} and define Ti : `2(I \ {i}) → KerPi by putting
Ti(j) = η

(i)
j (z). By (15b) we have ‖Ti‖ ≤

√
|z2|+ |1− z2| and by (15a),

Ti is invertible and ‖T−1
i ‖ ≤ 1. It is easy to verify that both estimates are

sharp. Now we define Tz : `2(X1) → H by

(16a) Tz(e, i) = (e, ξi)

(recall that {ξ1, . . . , ξN} is the orthonormal basis ofH0 = CN ) and for x 6= e,
t(x) = i1 . . . in and j 6= in,

(16b) Tz(x, j) = (x, η(in)
j (z)).

Fix x 6= e and assume that t(x) = i1 . . . in. Then Tz maps `2({(x, j) : j ∈
I \ {in}} onto Hx

∼= KerPin so that the restriction of Tz to `2({(x, j) : j ∈
I \ {in}} can be identified with Tin . Therefore ‖Tz‖ =

√
|z2|+ |1− z2|, Tz

is invertible, ‖T−1
z ‖ = 1 and for z ∈ (0, 1), Tz is an isometry.

Now we are going to prove that Tz intertwines π̃z with πz, i.e. Tzπ̃z(x) =
πz(x)Tz for any x ∈ G. All we have to do is to check that for any i ∈ I,
g ∈ Gi \ {e} and (x, j) ∈ X1,

(17) TzṼ
−1
z Ãz(g)(x, j) = πz(g)TzṼ

−1
z (x, j).
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We will need the following two formulas (cf. (12)):

(18) ξi +
(
−1
N

+
z

N

√
N − 1
1− z2

) N∑
k=1

ξk =

√
N − 1

N(1− z2)
ζi(z),

i ∈ I, and, for j 6= i,

(19) η
(i)
j (z)+

(
−1

N − 1
+
z
√
N

N − 1

) ∑
k 6=i

η
(i)
k (z) =

√
N − 1

N(1− z2)
(Id−Pi)ζj(z).

The first formula is easy to check. To prove the second one recall that∑N
j=1 ζj = 0. Hence, by (13b),∑

k 6=i

η
(i)
k (z) =

√
(N − 1)(1− z2)ζ0 − z

√
N − 1ζi =

√
N − 1
1− z2

(ζ0 − zζi(z)),

which, upon using (13a), easily leads to (19). Therefore for j ∈ I we have

(20) TzṼ
−1
z (e, j) =

√
N − 1

N(1− z2)
(e, ζj(z));

and for x 6= e as in (1) and j 6= in,

(21) TzṼ
−1
z (x, j) =

√
N − 1

N(1− z2)
(x, (Id− Pin

)ζj(z)).

Now we can prove (17). If x = e, j = i then

TzṼ
−1
z Ãz(g)(e, i) = TzṼ

−1
z (e, i) =

√
N − 1

N(1− z2)
(e, ζi(z))

=

√
N − 1

N(1− z2)
πz(g)(e, ζi(z)) = πz(g)TzṼ

−1
z (e, i).

For j 6= i we get

TzṼ
−1
z Ãz(g)(e, j)

= TzṼ
−1
z

(
Nz2 − 1
N − 1

(e, i) + (g, j)
)

=
Nz2 − 1
N − 1

√
N − 1

N(1− z2)
(e, ζi(z)) +

√
N − 1

N(1− z2)
(g, (Id− Pi)ζj(z))

=

√
N − 1

N(1− z2)
[(e, Piζj(z)) + (g, (Id− Pi)ζj(z))]
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=

√
N − 1

N(1− z2)
πz(g)(e, ζj(z)) = πz(g)TzṼ

−1
z (e, j).

Now take x = g−1 and j 6= i. Then

TzṼ
−1
z Ãz(g)(g−1, j) = TzṼ

−1
z

(
(e, j)− Nz2 − 1

N − 1
(e, i)

)

=

√
N − 1

N(1− z2)

(
e, ζj(z)−

Nz2 − 1
N − 1

ζi(z)
)

=

√
N − 1

N(1− z2)
(e, (Id− Pi)ζj(z))

= πz(g)TzṼ
−1
z (g−1, j).

Finally, if x 6= e, g−1 is as in (1) then

TzṼ
−1
z Ãz(g)(x, j) = TzṼ

−1
z (gx, j)

=

√
N − 1

N(1− z2)
(gx, (Id− Pin

)ζj(z))

=

√
N − 1

N(1− z2)
πz(g)(x, (Id− Pin

)ζj(z))

= πz(g)TzṼ
−1
z (x, j),

which finishes the proof.

R e m a r k s. 1) We have obtained the family πz, z ∈ C, of representations
of the group G = G1∗. . .∗GN as a special case of the construction presented
in Section 2. We could do this a little bit more generally taking for example
{ζi(zi)⊗ ζi(zi)}N

i=1, zi ∈ C, as the initial family of projections, with zi’s not
necessarily all equal.

2) In view of Theorem 5.1 and Theorem 4.3(iv) we have, for any complex
z satisfying |Nz2 − 1| < N − 1, the following estimate of Wysoczański’s
representation:

‖π̃z(x)‖ ≤ (|z2|+ |1− z2|)3/2

(
1 +

|z2|+ |1− z2|
1−

∣∣Nz2−1
N−1

∣∣
)
.

Therefore, coming back to his parametrization, for u ∈ C, |u| < 1, the right
hand side of [W2, Theorem 11] can be replaced by
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(
|(N − 1)u+ 1|+ (N − 1)|1− u|

N

)3/2

×
(

1 +
|(N − 1)u+ 1|+ (N − 1)|1− u|

N(1− |u|)

)
or, as |(N − 1)u+ 1| ≤ N |u|+ |1− u|, by

(|u|+ |1− u|)3/2 1 + |1− u|
1− |u|

,

which no longer depends on N .
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[NF] B. Sz. -Nagy and C. Foia ş, Harmonic Analysis of Operators on Hilbert Space,
North-Holland, 1970.

[PS] T. Pyt l ik and R. Szwarc, An analytic family of uniformly bounded representa-
tions of free groups, Acta Math. 157 (1986), 286–309.

[Se] J.-P. Serre, Trees, Springer, Berlin, 1980.
[Sz1] R. Szwarc, Matrix coefficients of irreducible representations of free products of

groups, Studia Math. 94 (1989), 179–185.
[Sz2] —, Groups acting on trees and approximation properties of the Fourier algebra,

J. Funct. Anal. 95 (1991), 320–343.



REPRESENTATIONS OF FREE PRODUCTS 211

[Va] A. Valette, Cocycles d’arbres et représentations uniformément bornées, C. R.
Acad. Sci. Paris Sér. I 310 (1990), 703–708.
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Reçu par la Rédaction le 6.5.1994;
en version modifiée le 21.11.1994


