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PLANAR RATIONAL COMPACTA
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1. Introduction. In this paper we consider rational subspaces of the
plane. A rational space is a space which has a basis of open sets with
countable boundaries. In the special case where the boundaries are finite,
the space is called rim-finite.

G. Nobeling [8] has proved that the family of all rim-finite spaces does
not contain a universal element. The same is true even for the family of
planar rim-finite spaces. This fact is included in a wider result (see [1] and
[4]) concerning some families of planar rim-scattered spaces.

S. Tliadis [3] (see also [7]) proved that there exists a universal rational
space. Therefore there exists a rational space which contains topologically
all rational compacta.

In [6] J. Mayer and E. Tymchatyn constructed a planar continuum of
rim-type a+1 which is a containing space for all planar compacta of rim-type
< a, where « is a countable ordinal.

In this paper we give a simple, direct and visualized example of a planar
rational connected and locally connected space which is a containing space
for all planar rational compacta. This provides an affirmative answer to
Problem 5(2) of [2].

2. Definitions and notations. Let E? be the plane with a system
Ozy of orthogonal coordinates. By a simple closed curve we mean a subset
of E? which is homeomorphic to the set {(z,y) : 22 +y? = 1}, and by a disk
a subset of E? homeomorphic to {(z,y) : 2 +y* < 1}. An arc is a subset A
of E? for which there exists a homeomorphism h of I = [0, 1] onto A. The
points h(0) and h(1) are the endpoints of the arc and the set A\ h({0,1})
is its interior.

Let G C D C E?. By Clp(G), Intp(G) and Bdp(G) we denote the clo-
sure, interior, and boundary of G, respectively, in D. We omit the subscript
“D” if D = E?. For each € > 0 we denote by N(G,¢) the set of all points of
E? whose distance from G is less than ¢. By w we denote the set {0,1,2,...}
of all non-negative integers.
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A space Y is called a containing space for a family F of spaces if for
every X € F, there exists a homeomorphism of X onto a subset of Y. If in
addition Y € F, then Y is called a universal space for the family F.

We denote by L,, n = 1,2,..., the set of all ordered n-tuples 1 ...,
where iy = 0 or 1, for every t = 1,...,n, and by L¢ the set {#}. By I,
where i = iy ...i, € L,, n > 1, we denote the set of all points of I = [0, 1]
for which the kth digit of the dyadic expansion, kK = 1,...,n, coincides with
ik. Also we set Iy = 1.

Let W, = {I[; x I : i,j € L.}, n € w. Obviously for every n € w the
family W, is a finite closed covering of I2. If a is an endpoint of I; and b is
an endpoint of I3, then the sets {a} x I; and I; x {b} are called edges and
the point (a,b) € E? is called a vertez of W,. The sets of all edges and of
all vertices of W,, are denoted by E(W,,) and V (W,,), respectively. We set
Bd(W,) = U{BA(F) : F e W,} =U{e:ec EW,)}.

Let D be a disk of the plane. A finite closed covering V of D is said
to be an n-subdivision (or subdivision) of D, where n € w, if there exists a
homeomorphism h of D onto I? such that V = {h™1(F) : F € W, }. Every
such homeomorphism is called a V-homeomorphism. The sets h~!(e), where
e € EOW,), are called edges of V and the points h=1(v), where v € V(W,,),
are called vertices of V. We denote by E(V) and V (V) the sets of all edges
and of all vertices of V, respectively. We set Bd(V) = |{Bd(F) : F €
V} =U{e: e € E(V)} and mesh(V) = max{diam(F) : F € V}. Obviously
Bd(V) = h=1{(Bd(W)). Also, for G C D we set

st(G,V) = {F e V: FnG # 0}

We say that a subdivision V of D is rational with respect to a set X C D
if for every edge e of V the set e X is a countable subset of the interior of
e. Note that in this case no point of X is a vertex of V.

Let n1,ns € w, n1 < ny. We say that an ns-subdivision V, of D is
inscribed in an ni-subdivision V; of D if: («) each element of V; is contained
in some element of V; and (3) for every F' € V; the set of all elements of
V, which are contained in F' is an (ny — nq)-subdivision of the disk F'. We
observe that in this case Bd(V1) C Bd(Vs).

3. Containing space. Let
Qa={p/2" €I\{0,1} :pnew}, Qr={p/3"€l:pncuw}

and

Y =\ ((I\Qr)xQa)U(Qa x (I\Qr))).

We shall prove that Y is a containing space for the family of all planar
rational compacta. It is easy to verify that 12\ [J{Bd(W,) :n € w} C Y.
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We observe that this remains true if Q4 and Q7 are replaced by any pair
of disjoint countable dense subsets of I.

4. LEMMA. The space Y is rational, connected and locally connected.

Proof. We observe that the set K = (Qr x I) U (I x Qr) is connected
and K CY C I? = CI(K). So Y is connected.
For y € Y and i € w we set

U;(y) =Y Nintp(st(y, W;)).

It is easy to verify (as for the space Y') that U;(y) is connected. Moreover,
Bdy (Ui(y)) is countable. Also it is easy to see that {U;(y) : ¢ € w} is a basis
of open neighbourhoods of ¢ in Y. Thus Y is a planar rational connected
and locally connected space.

5. LEMMA. Let D be a disk of the plane, a,b € Bd(D), a # b, and
X C D\{a,b} be a rational compact space. Then there exists an arc A C D
with endpoints a,b such that AN X is countable.

Proof. Let A;, As; be the arcs of D with endpoints a,b such that
A1 U Ay = Bd(D). It is clear that X N A; and X N Ay are closed disjoint
subsets of X N D. Thus there exists a closed countable subset F' of X N D
which separates (in XND) the sets XNA; and XNAjz (see [5], §51, IV, Th. 9).
Let G'1, G2 be disjoint open subsets of XN D such that (XND)\F = G1UG>,
XﬂAl Q G1 andXﬂAg Q GQ.

Let F} = Cl(Gl) U Al, Fy = CI(GQ) U AQ, r e A \ {a,b} and Yy €
Az \ {a,b}. Since F; and F, are compact and Fy N Fy C F'U{a,b} is totally
disconnected, there exists (see [9], p. 108, Th. (3.1)) a simple closed curve
J which separates the points x and y in the plane such that J N (F; U Fy) C
F U/{a,b}.

From the above it follows that J N (A; U As) = {a,b}. Since J separates
x and y, the simple closed curve J intersects the disk D in an arc A with
endpoints a, b. We have ANX C (JND)NX C JN(FLUF,UF) C FU{a,b}.
Hence A N X is countable. Thus A is the required arc.

6. THEOREM. The space Y is a containing space for all planar rational
compacta.

Proof. Let X be a planar rational compact space and D be a disk of the
plane such that X C Int(D). We construct a homeomorphism h : D — I?
such that h(X) C Y. For every i € w we shall define by induction a natural
number n;, an n;-subdivision V; of D, rational with respect to X, and a
V;-homeomorphism h; such that:

(1) Viy1 is inscribed in V;,
(2) mesh(V;41) < 1/2¢+1,
(3) hitilBa,) = hilsay),
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(4) hi(Bd(V,)nX) C Y.

Let i = 0. We set np = 0 and Vo = {D}. Let hg be a homeomorphism
of D onto I2. Obviously hg is a Vo-homeomorphism and (4) is satisfied for
i = 0 because Bd(Vy) N X = ). The other properties concern the case i > 0.

Suppose that for every ¢ < k we have defined a natural number n;, an
n;-subdivision V; of D, rational with respect to X, and a V;-homeomorphism
h; such that (1)—(3) are satisfied if i + 1 < k, and (4) is satisfied if i < k.
We define a natural number ny41, an ng41-subdivision Vi1 of D, rational
with respect to X, and a Vii-homeomorphism hy41 such that (1)—(3) are
satisfied if 1 +1 < k + 1, and (4) is satisfied if i < k + 1.

There exists an integer j € w such that diam(h, '(F)) < 1/2**! for
every F' € Wy, +;. Since I?\ hi(X) is a dense subset of 12, V is ra-
tional with respect to X and since V(W,,+;) N Y = 0 there exists a V-
homeomorphism A, such that hj |ga(v,) = hklBave), M (X)NV Wh4j) =0
and diam((h},)"1(F)) < 1/2**1 for every F € Wi, 1.

Let ng+1 = ng + 4 and

Vlir—f—l = {(h;c)_l(F) B € Wnk+l}'
Then V;_; is an ny;-subdivision of D with mesh(V ;) < 1/2*"! which
is inscribed in V. However, this subdivision is not, in general, rational with
respect to X. The ngyq-subdivision Vi1 of D will be obtained by some
modification of V _ ;.

For every edge e € E(V;,_;) \ Bd(Vx) we denote by D, a disk such that:
(@) € C D, (8) DeNBA(Vy) € enBA(Vk), () De, NDe, C e1Ney if €1 # eo,
and (6) for every F € V; ., diam(F UJ{D. : e C F}) < 1/2FFL,

For every e € E(V;, ;) we define an arc ¢ as follows: (o) if e C Bd(Vy),
then € = e, and () if e  Bd(V%), then € is the arc A of Lemma 5, where D
is the disk D, and a, b are the endpoints of e. Thus every F' € V; ,, defines
a simple closed curve Jp, which is the union of arcs €, where e C Bd(F).
Let F be the disk having as boundary the simple closed curve Jrp. We set

Vie1 ={F:F¢ Vi)

For every e € E(V,,,) we define a homeomorphism hf,, of € into
Bd(Wh,.,,) as follows: (a) if ¢ = e € Bd(Vy), then hiﬂ = hgle, and
(B) if e  Bd(Vy), then hf_ , is a homeomorphism of € onto hj (e) such that

hi+1|{a,b} = h;c’{a,b}a
where a, b are the endpoints of €, and
hi 1 (€NX) CY Nhye).

The existence of such a homeomorphism is based on the fact that e N X
is countable, and h)(e) NY is countable and dense in hj(e). For every
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F € V41 we denote by h,f +1 @ homeomorphism of F onto h}.(F') such that
hkﬁ‘+1‘é = hiﬂ for every e C F. Let hi+1 be a homeomorphism of D onto
I? for which hiyilp = hkF+1 for every F € Viy1.
It is easy to verify that Vi1 is an ngy1-subdivision of D, rational with
respect to X, and hj41 is a Viy1-homeomorphism with properties (1)—(4).
Furthermore, for every « € D and i, j € w, j > i, by the definition of V;
we have

(5) hi(st(z, Vi) = st(hi(x), Wh,),
by (1) it follows that
(6) st(z,V;) C st(z, V),
and by (3) we have
(7) hj(st(z, Vi) = hi(st(z, V;)).
Now we define a map h : D — I? setting for every x € D,

h(z) = ﬂ{hi(st(x,vz»)) (1 Ew}

and prove that h is a homeomorphism such that h(X) C Y.

First note that by (6) and (7), hit1(st(z, Vit1)) C hi(st(z,V;)) for every
x € D and i € w. On the other hand, by (5), lim;_, diam(h;(st(x,V;)))
= 0. Hence () h;(st(z,V;)) is a singleton. Thus h is well defined.

Let x1,29 € D and x1 # z2. By (2) there exists i € w such that
st(z1,V;) Nst(xe,V;) = 0. Hence h;(st(z1,V;)) N hi(st(z2,V;)) = 0 and
therefore h(x1) # h(z2), that is, h is one-to-one.

We prove that h is continuous. Let h(x) = y and U be an open neigh-
bourhood of y in I?. There exists i € w such that st(y, W,,) € U. By
(5), hi(st(z,V;)) € U. For the continuity of h it is sufficient to prove
that h(Int(st(z,V;))) € U. Let z € Int(st(x,V;)). It is easy to see that
st(z,V;) Cst(x,V;). Hence h(z) € hi(st(z,V;)) C hi(st(x,V;)) C U. Thus h
is continuous and therefore h is a homeomorphism.

To prove that h(X) C Y, we observe that if x € Bd(V;), then h;(z) =
hj(x) € h;(st(x,V;)) for every j > i. Thus h(x) = h;(x). Since h;(Bd(V;)) =
Bd(W,,) we see that if x & {Bd(V;) : i € w}, then h(z) & [J{BdWh,) :
icw}l=U{BAdW;):jew}

Let € X. If x ¢ |J,Bd(Vs), then h(z) ¢ U, Bd(W;). Since I*\
U; Bd(W;) C Y, we have h(z) € Y. If z € {J,Bd(V;), then h(z) = hi(z)
for some i € w. By (4) it follows that h(z) € Y. Thus h(X) C Y.
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