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Introduction. Let (t;) be a sequence of independent random variables
uniformly distributed on [—1,1]. We are looking for the best constants
A, and B, such that for every sequence (a;) of real numbers the following
inequalities hold:

2> 1/2

Ap (E‘ iaiti 2>1/2 S (E‘ iaiti p>1/p § Bp (E‘ iaiti
i=1 i=1 i=1

These inequalities with the best possible constants have some importance
for geometric problems and elsewhere. Some estimates for A, and B, were
found by K. Ball [1]. The values of Bs,, for m positive integers are known
(cf. [4], Chapter 12.G).

Let g be a standard normal variable and

prly\ 1/p
o= e =va( TR

We will prove that
" forp € [1,2] 31/2
_ 1/2 _ )
Ap=9q_3"7" for p > 2, By =4 (p+1)t/r
(p+1)1/p Vp for p > 2.
The same inequalities for a Bernoulli sequence (g;), i.e. the sequence of
independent symmetric random variables taking on values £1, were studied
by Haagerup [3]. We will not use Haagerup’s results, but it should be
pointed out that they immediately yield the values of some A, and B,
(since Y .=, 27", has the same distribution as each of ¢;).

for p € [1, 2],

I. The inequalities in the real case. We start with some well known
facts about symmetric unimodal variables (cf. [2]); we present the proofs for
completeness.
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DEFINITION 1. A random real variable X is called symmetric unimodal
(s.u.) if it has a density with respect to the Lebesgue measure and the
density function is symmetric and nonincreasing on [0, 0o).

LEMMA 1. A real random variable X is s.u. if and only if there exists a
probability measure p on [0,00) such that the density function g(z) of X is

o0

1
g(w) = 9 Xt (x)du(t)  forxz eR.
0

Proof. Let g(x) be the density of some s.u. random variable. Since
g is nonincreasing on [0,00) we can assume that g(z) is left-continuous for
x > 0. We define the measure v on [0,00) by v[z,00) = g(z) for x > 0 and
let p(t) = 2tv(t). We have, for z > 0,

oo

9(e) = [ Xien(e) dv(t) = [ Sxien(e) du(h).
0 0

For x < 0 the above formula holds by symmetry.
Since

[ dutt) = [2tdv(t) = [ [ x_(z)dzdv(t) = [g(z)dz =1,
0 0 0

1 is a probability measure.

If 4 and g(z) satisfy the lemma’s assumptions then g(z) is obviously
symmetric and monotone on [0, c0) and since as above [ g(z)dz = 1, g(z)
is the density of some random s.u. variable.

LEMMA 2. If X ="' | X; and X; are independent s.u. random vari-
ables, then X is s.u. In particular, if X = Y ., a;it;, where the t; are
independent random variables uniformly distributed on [—1,1] and a; € R,
then X is symmetric unimodal.

Proof. It suffices to prove the lemma for n = 2 and proceed by induc-
tion.

Let X; and X5 be independent s.u. variables with density functions
g1, g2 and measures 1, o as in Lemma 1. Then X; 4+ X5 has the density

oo o0 1
9(x) = g1 % 92(x) = [ [ T-Xioea) * X(ms.s) () dpa(t) dp(s)
0 0

and obviously g is symmetric and nonincreasing on [0, c0).

COROLLARY 1. Let p > ¢ > 0 and Xy,..., X, be a sequence of indepen-
dent symmetric unimodal random variables. Then
q) 1/q

o+ 07 (B S5V = (g (B Y,
=1 =1
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Proof. By Lemma 2, the random variable X = > | X; is s.u. Let
g(x) be the density of X and u the measure given for X by Lemma 1. Then

( Y (fmp [ et dute )daz)m
_ <670<21t Rf I d:c> d,u(t))q/p.

So by the Jensen inequality,

(F132x)" 2 J (5 f rrcntorio) " duto
=1
:jo p(fl 1q/p (;t [ 1l (@) d:c) dp(t)
- p(frllq/p(f f‘x‘ 2t X e(z) d ()d>
(p+1)a/p

LEMMA 3. Let p > 1 and define
(t+ )Pt — (= 1P (t 4+ 1)PT2 — (t — 1)PT2

. q—i—l(’

(p+2) 2 3
t>1
G(t) = jort=1,
14+ )P 4+ (1 —t)PTt (14 4)P+2 — (1 — t)PF2
(p + 2) 2 - 3
for0 <t <1.

Then G is nondecreasing on (0,00) if p > 2 and nonincreasing if 1 < p < 2.
The proof is based on the following lemma:
LEMMA 4. Let p > 1 and let
A = (=11 +17 = (1—t))
(= (LY forte[0,1],
fot) = (1 +1)P((p* = 1)t* — 3pt + 3)
— (1 =t)P(P* =Dt +3pt+3)  forte|0,1],
Jalt) = (£ + 1P((p? — 1)E2 — 3pt + 3)
—(t—1)P((p* = 1)t* +3pt+3) fort>1.
Then f1, fo and f3 are nonnegative for p > 2 and nonpositive for 1 < p < 2.
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Proof. Assume first that p > 2. We have
e f1(0) =0 and
A =pp— DU+ P2 = (1= 2) >0 for ¢ € [0,1],

e f5(0) =0 and
f5@)=@+2)(p+1)tfi(t) >0 forte[0,1].

o f3(t) =3(t* = 1)*((t+ )P~ = (t = 1)"7?)
+(p=2)t[((p+2)* =3)(t+ )P~ = (¢ - 1))
+p—-DHE+ )PP+t —-1)P"H] >0 fort>1.

For p € [1,2] the proof is analogous.

Proof of Lemma 3. Since G(t) is continuous it suffices to show that
G(t) is nondecreasing (nonincreasing for p € [1,2]) on (0,1) and (1,00). But

ron  JtTAf3(t) ift > 1,
G(t) = {t4f2(t) if0<t<l.
Hence G'(t) > 0 for p > 2 and G'(t) <0 for 1 < p <2, by Lemma 4.
LEMMA 5. If tq, to, t3 are independent random variables uniformly dis-

tributed on [—1,1] and a,b,c,d > 0, a? +b% = ¢ +d? withc > a > b > d,
then

E\t1+at2+bt3|p SE‘t1+Ct2+dt3|p forpE [1,2]
and

E|t1+at2+bt3|p ZE‘t1+Ct2+dt3|p forp > 2.

Proof. Since
d3

’xf?
dz? \ (p+1)(p+2)(p+3)
we easily check by integrating by parts that for

1
P Apr D +2)(p+3)

‘|P_

we have

1 1 1
E|t1 + aty + bt3|p = f f f |.Z‘1 “+ axro + bl’3|p d:L’l dl‘z d:Eg
-1 -1 -1

oo =

ab
a—b+1)M—b+uﬂ+m+b—1ﬁm+b—1W)
ab

<m+b+1\a+b+ﬂﬂ+@—b—1f@—b—up
|
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Let k =a? 4+ b% s =2ab. Thena —b=+vk—s,a+b=+Vk+s and

f(S) = E‘tl + aty + btg‘p

<(\/k+s+ D3VE+s+1P+(VEk—s—1)3VE—s— 1P
S

= 2¢,

C WE=s+ 1P VE=s+1P+ (VE+s— 1) VE+5— 1|P>

We are to show that for fixed k, f(s) is nondecreasing if p > 2 (nonincreasing
if p€[1,2]) on (0, k).

Since ¢(0) = 0 it suffices to prove that ¢'(s) is nondecreasing (nonin-
creasing). We have

+3
g'(s) = PGV F5) = GVE = 3),
where G(t) was defined in Lemma 3. Hence ¢”(s) > 0 for p > 2 and
g"(s) <0 for p € [1,2] (by Lemma 3) and the proof is complete.

COROLLARY 2. If X, t1, to are independent random variables, t1, to are
uniformly distributed on [—1,1], X is symmetric unimodal and a,b,c,d > 0,
a2+ b2 =c2+d? with ¢ > a > b > d, then

E|X + atq + bt2|? < E|X +ctq + dta|P forpe[l,2]
and
E|X +aty + bto|P > E|X 4 cty + dto]P forp > 2.

Proof. Let g(x) be the density function of X and p be the measure given
by Lemma 1. Let t3 be a random variable independent of 1, t uniformly
distributed on [—1,1]. We have, for p € [1,2],

E|X +aty +bts|" = [ Elx+ aty + bta|g(x) dz

—0Q

o0 1 S

= [ o [ Elt+ats + bta|? dtdu(s)
0 2s —s

= [ Elsts + aty + bta|” dp(s)
0

< [ Elsts + cty + dta|P du(s) = E|X + cty + dta|P.
0

The second equality follows from Fubini’s theorem, and the inequality is a
consequence of Lemma 5.
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For p > 2 we proceed in the same way.

DEFINITION 2. Let z = (z1,...,2,) and y = (y1,...,Yn) be two se-
quences of real numbers. We say that x is majorized by y and write x < y
if Y x=> .,y and Zle z; < Zle yf for k =1,...,n, where (z})
and (y;) are the nonincreasing rearrangements of x and y.

PROPOSITION 1. Let a = (a1,...,a,) and b = (by,...,b,) be two se-
quences of real numbers such that (a?) < (b?) and t1,...,t, be a sequence
of independent random variables uniformly distributed on [—1,1]. Then

(E’ En: aiti p) e S (E) zn: biti p) e forp (S [1, 2]
and =1 =1
i P\ 1/p " »\1/p
<E’;aztl > Z (E);bltl ) fOT’pZ 2.

Proof. By the lemma of Muirhead (cf. [4], Chapter 1.B) it suffices
to prove the inequalities if a? = b? for i # j,k, a? = tb? + (1 — t)b? and
ay = tbi + (1 —t)b5 for some j,k € {1,...,n} and t € (0,1). By symmetry
we can also assume that a; and b; are nonnegative. So finally Proposition 1
follows from Corollary 2 if we set X =5, 2k Qiti-

Let g be a standard normal variable and

Y = (Elg|P)V/P = \/§<F(\P}rl)> 1/p.

We have the following

THEOREM 1. If t1,...,t, is a sequence of independent random variables
uniformly distributed on [—1,1], and aq,...,a, are real numbers, then

" 2\ 1/2 n
(E‘ Zaiti ) < ’7p_1 (E‘Zaltl
i=1 1=1

p\ 1/p
)7 oy

and

2\ 1/2
) forp € [2,00).

" p\1/p -~
(E‘ E a;t; ) S’YP(E‘ E a;t;
i=1 i=1

The above constants are the best possible.

Proof. Let p € [1,2]. By Proposition 1,

E( aits| > ( ya-\2)p E‘ —t;
; 1Y Zl 7 ; \/ﬁ K2

1=

p
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But by the central limit theorem lim,, oo E| Y i, (1/yv/n)t:|P = (1/1/37,)?

SO
(E‘ zn:aiti p)l/p > (Zn: ’%"2) v V1/3y = Vp(E‘ Zn:aiti 2)1/2-
i=1 i=1 i=1

This proves the first inequality of the theorem. The second one can be
established in an analogous way.

The central limit theorem shows that these constants cannot be im-
proved. As a corollary from Proposition 1 we get the following answer to a
question posed by A. Pelczyriski:

PROPOSITION 2. Ifty,...,t, is a sequence of independent random vari-
ables uniformly distributed on [—1,1], €1,...,&, is a Bernoulli sequence of
random variables and a1, ..., a, are real numbers, then

1 n n
iElzaiEi SE‘ZGJZ
i=1 i=1

The above constants are optimal.

9 n
S gE’ ; a;e;

Proof. Since for fixed a the function b — FElat; + bto| is symmetric and
convex it takes its maximal value on [—|al, |a|] at b = |a|. Hence

2
Elaty + bta| < max(Jal, b)) Elt1 + t2| = 3 max(al, [B]).

Let us first prove the second inequality of the proposition. By symmetry
we can assume that a; > ... > a, > 0. There are two possibilities:

Case 1: a? > )", a?. Proposition 1 then yields

n n 1/2
E‘Zaztl SE‘CL{M%’(ZCL?) tz’
i=1 2

Hence since E| "7 | a;e;| > a1, by (1) the inequality holds.

1=

Case 2: af < Y. ,a?. From Proposition 1 we deduce that

n IS a2 IS a2 2
E‘ Zaiti < E’ 2121 a; tl + 2121 a; tz‘ — \3[
i=1

This combined with the Khinchin inequality

ia? < \@E‘ iaiai
i=1 i=1

completes the proof in this case.

(cf. [5])
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Let 0 = o(sign(t1),...,sign(t,)). Then E((t1,...,t,) | o) has the same
distribution as %(51, ...,€n) and the first inequality of the proposition is a
simple consequence of the Jensen inequality.

To see that the constants are optimal it suffices to take n =1, a1 =1
for the first inequality and n = 2, a; = as = 1 for the second.

II. The vector case. In the sequel we will consider the linear space
R™ with a norm | - ||. The Lebesgue measure on R™ will be denoted by
| - |. We will consider some analogues in R™ of unimodal real variables. Our
definitions are different from what can be found in the literature (cf. [2]).

DEFINITION 3. Let X be a bounded random vector with values in R™.
We call X convez-uniform (c.u.) if X is uniformly distributed on some

open bounded convex symmetric set Ax, i.e. for each measurable set
B C R”,

pr(x e B) = BOAX]
| Ax|

We say that X is semi-convez-uniform (s.c.u.) if X has a density ¢
and there exist a natural number k, functions ¢, ..., gx, and nonnegative
numbers aq, ..., ap with Zle a; = 1 such that g = Zle a;g; and g; is the
density of some c.u. random vector X; fori=1,..., k.

X is approximately-convex-uniform (a.c.u.) if there exist M > 0 and
a sequence X1, Xs,... of s.cu. random vectors bounded in norm by M

converging in distribution to X.

LEMMA 6. Let X and Y be independent convex-uniform random vectors
with values in R™. Then X +Y is a.c.u.

Proof. Let Ax and Ay be the convex sets from Definition 3. For
v € R™ define

P, ={(z,y) € Ax x Ay 1z +y = v},
F, ={(z,y) e R"" xR" : x +y = v}.
There exists a constant K such that X 4+ Y has a density g given by
g(’l)) = K)\anl(Pv)a

where 9,1 is the Lebesgue measure on the (2n — 1)-dimensional subspace
F,. First we show that for each a > 0 the set

Se={veR":g(v) > a}
is convex. Indeed, let v,w € S, and « € (0,1). Since
Povi(i—ayw D Py + (1 — a) P,

we get by the Brunn—Minkowski inequality (cf. [2])
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g(av + (1 - a) ) K)\Zn 1( av+(1— a)u)) > K)\2n 1( ) )\271 1(P )l—a
> g(v)*g(w)' " > a%'"* = a.
Since the sets Ax and Ay are bounded, so is the function g and there

exists a number M such that S, = () for a > M. For a natural number j
define

iM

=Y Pr(g(X +Y) € (k/j, (k+1)/i)ors;,

k=0
where g, is the density of a random vector uniformly distributed on S,.
Then f; is the density of some semi-convex-uniform random vector Z;. It
is easy to observe that the sequence Z; is uniformly bounded and converges
in distribution to X 4+ Y. And this means that X + Y is a.c.u.

COROLLARY 3. If X1, ..., Xk is a sequence of independent a.c.u. random
variables with values in R™, then Zle X, s an a.c.u. random vector.

Proof. For k = 2 the corollary is a simple consequence of Lemma 6, for
k > 2 we proceed by induction.

LEMMA 7. If p > q > 0 and X is a convez-uniform random vector with
values in R™, then

1/p 1/q
(“”) (BIX|P) > <q“’) (EIXYe,
n n

Proof. With the notation of Definition 3,

1
E|X|? = —— [ llz]” dz.
Ax|

Let ¢ > 0. Then

ey [ alrde = [ felraz=( [+ [ le|rde

Ax (1+€)AX Ax (1+€)Ax—AX

p/q
> [ el de+ 10 +e)Ax - Ax( [ Jaf?da)
AX (1+E)Ax—AX

/q
= [ el da + (14" = DAx 71 ((1+ )"0 -1 f Jaljodz)"".
Ax

Therefore

(55 (i ] )

n 1/q 1/q
( 1+€ +q—1> < 1 f H:L‘qu.’E) .
1+¢e)n !AX|AX
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The inequality of the lemma is obtained by letting ¢ — 0.

ProrposiTIiON 3. If p > g > 0 and X4,..., X are independent a.c.u.
random vectors with values in R™, then for S = Zle X,

1/p 1/q
(252) “aelsieyr = (L) sl

Proof. According to Corollary 3 we can assume that £ = 1. By an
approximation argument it suffices to prove the inequality for S a s.c.u.
random vector. But in this case it is a simple consequence of Lemma 7 and
the Jensen inequality.

Finally, since x;t; is an a.c.u. random vector we obtain the following
corollary:

COROLLARY 4. If p > q > 0 and ty1,...,tx are independent random
variables uniformly distributed on [—1,1] and x1,...,x) are vectors in R™,

then for S = Zle tixs,

1/p 1/q
(B52) “aelsieyrr = (L52) s

n

Remark. The above results are also valid for p > ¢ > —n and the
proofs are very similar.
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