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Introduction. Let (ti) be a sequence of independent random variables
uniformly distributed on [−1, 1]. We are looking for the best constants
Ap and Bp such that for every sequence (ai) of real numbers the following
inequalities hold:

Ap

(
E

∣∣∣ n∑
i=1

aiti

∣∣∣2)1/2

≤
(
E

∣∣∣ n∑
i=1

aiti

∣∣∣p)1/p

≤ Bp

(
E

∣∣∣ n∑
i=1

aiti

∣∣∣2)1/2

.

These inequalities with the best possible constants have some importance
for geometric problems and elsewhere. Some estimates for Ap and Bp were
found by K. Ball [1]. The values of B2m for m positive integers are known
(cf. [4], Chapter 12.G).

Let g be a standard normal variable and

γp = (E|g|p)1/p =
√

2
(

Γ
(

p+1
2

)
√

π

)1/p

.

We will prove that

Ap =


γp for p ∈ [1, 2],

31/2

(p + 1)1/p
for p ≥ 2,

Bp =

 31/2

(p + 1)1/p
for p ∈ [1, 2],

γp for p ≥ 2.

The same inequalities for a Bernoulli sequence (εi), i.e. the sequence of
independent symmetric random variables taking on values ±1, were studied
by Haagerup [3]. We will not use Haagerup’s results, but it should be
pointed out that they immediately yield the values of some Ap and Bp

(since
∑∞

i=1 2−iεi has the same distribution as each of ti).

I. The inequalities in the real case. We start with some well known
facts about symmetric unimodal variables (cf. [2]); we present the proofs for
completeness.
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Definition 1. A random real variable X is called symmetric unimodal
(s.u.) if it has a density with respect to the Lebesgue measure and the
density function is symmetric and nonincreasing on [0,∞).
Lemma 1. A real random variable X is s.u. if and only if there exists a

probability measure µ on [0,∞) such that the density function g(x ) of X is

g(x) =
∞∫

0

1
2t

χ[−t,t](x) dµ(t) for x ∈ R.

P r o o f. Let g(x) be the density of some s.u. random variable. Since
g is nonincreasing on [0,∞) we can assume that g(x) is left-continuous for
x > 0. We define the measure ν on [0,∞) by ν[x,∞) = g(x) for x > 0 and
let µ(t) = 2tν(t). We have, for x > 0,

g(x) =
∞∫

0

χ[−t,t](x) dν(t) =
∞∫

0

1
2t

χ[−t,t](x) dµ(t).

For x < 0 the above formula holds by symmetry.
Since

∞∫
0

dµ(t) =
∞∫

0

2t dν(t) =
∞∫

0

∫
χ[−t,t](x) dx dν(t) =

∫
g(x) dx = 1,

µ is a probability measure.
If µ and g(x) satisfy the lemma’s assumptions then g(x) is obviously

symmetric and monotone on [0,∞) and since as above
∫

g(x) dx = 1, g(x)
is the density of some random s.u. variable.
Lemma 2. If X =

∑n
i=1 Xi and Xi are independent s.u. random vari-

ables, then X is s.u. In particular , if X =
∑n

i=1 aiti, where the ti are
independent random variables uniformly distributed on [−1, 1] and ai ∈ R,
then X is symmetric unimodal.

P r o o f. It suffices to prove the lemma for n = 2 and proceed by induc-
tion.

Let X1 and X2 be independent s.u. variables with density functions
g1, g2 and measures µ1, µ2 as in Lemma 1. Then X1 + X2 has the density

g(x) = g1 ∗ g2(x) =
∞∫

0

∞∫
0

1
4ts

χ[−t,t] ∗ χ[−s,s](x) dµ(t) dµ(s)

and obviously g is symmetric and nonincreasing on [0,∞).
Corollary 1. Let p > q > 0 and X1, . . . , Xn be a sequence of indepen-

dent symmetric unimodal random variables. Then

(p + 1)1/p
(
E

∣∣∣ n∑
i=1

Xi

∣∣∣p)1/p

≥ (q + 1)1/q
(
E

∣∣∣ n∑
i=1

Xi

∣∣∣q)1/q

.
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P r o o f. By Lemma 2, the random variable X =
∑n

i=1 Xi is s.u. Let
g(x) be the density of X and µ the measure given for X by Lemma 1. Then(

E
∣∣∣ n∑

i=1

Xi

∣∣∣p)q/p

=
( ∫

R
|x|p

∞∫
0

1
2t

χ[−t,t](x) dµ(t) dx

)q/p

=
( ∞∫

0

(
1
2t

∫
R
|x|pχ[−t,t](x) dx

)
dµ(t)

)q/p

.

So by the Jensen inequality,(
E

∣∣∣ n∑
i=1

Xi

∣∣∣p)q/p

≥
∞∫

0

(
1
2t

∫
R
|x|pχ[−t,t](x) dx

)q/p

dµ(t)

=
∞∫

0

q + 1
(p + 1)q/p

(
1
2t

∫
R
|x|qχ[−t,t](x) dx

)
dµ(t)

=
q + 1

(p + 1)q/p

( ∫
R

∞∫
0

|x|q 1
2t

χ[−t,t](x) dµ(t) dx

)

=
q + 1

(p + 1)q/p

(
E

∣∣∣ n∑
i=1

Xi

∣∣∣q).

Lemma 3. Let p ≥ 1 and define

G(t) =


(p + 2)

(t + 1)p+1 − (t− 1)p+1

t2
− (t + 1)p+2 − (t− 1)p+2

t3
for t ≥ 1,

(p + 2)
(1 + t)p+1 + (1− t)p+1

t2
− (1 + t)p+2 − (1− t)p+2

t3
for 0 < t < 1.

Then G is nondecreasing on (0,∞) if p ≥ 2 and nonincreasing if 1 ≤ p ≤ 2.

The proof is based on the following lemma:

Lemma 4. Let p ≥ 1 and let

f1(t) = (p− 1)((1 + t)p − (1− t)p)

− p((1 + t)p−1 − (1− t)p−1) for t ∈ [0, 1],

f2(t) = (1 + t)p((p2 − 1)t2 − 3pt + 3)

− (1− t)p((p2 − 1)t2 + 3pt + 3) for t ∈ [0, 1],

f3(t) = (t + 1)p((p2 − 1)t2 − 3pt + 3)

− (t− 1)p((p2 − 1)t2 + 3pt + 3) for t > 1.

Then f1, f2 and f3 are nonnegative for p ≥ 2 and nonpositive for 1 ≤ p ≤ 2.
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P r o o f. Assume first that p ≥ 2. We have

• f1(0) = 0 and

f ′1(t) = p(p− 1)t((1 + t)p−2 − (1− t)p−2) ≥ 0 for t ∈ [0, 1],

• f2(0) = 0 and

f ′2(t) = (p + 2)(p + 1)tf1(t) ≥ 0 for t ∈ [0, 1].

• f3(t) = 3(t2 − 1)2((t + 1)p−2 − (t− 1)p−2)

+ (p− 2)t[((p + 2)t2 − 3)((t + 1)p−1 − (t− 1)p−1)

+ (p− 1)t((t + 1)p−1 + (t− 1)p−1)] ≥ 0 for t > 1.

For p ∈ [1, 2] the proof is analogous.

P r o o f o f L e m m a 3. Since G(t) is continuous it suffices to show that
G(t) is nondecreasing (nonincreasing for p ∈ [1, 2]) on (0, 1) and (1,∞). But

G′(t) =
{

t−4f3(t) if t > 1,
t−4f2(t) if 0 < t < 1.

Hence G′(t) ≥ 0 for p ≥ 2 and G′(t) ≤ 0 for 1 ≤ p ≤ 2, by Lemma 4.

Lemma 5. If t1, t2, t3 are independent random variables uniformly dis-
tributed on [−1, 1] and a, b, c, d > 0, a2 + b2 = c2 + d2 with c ≥ a ≥ b ≥ d,
then

E|t1 + at2 + bt3|p ≤ E|t1 + ct2 + dt3|p for p ∈ [1, 2]

and
E|t1 + at2 + bt3|p ≥ E|t1 + ct2 + dt3|p for p ≥ 2.

P r o o f. Since

|x|p =
d3

dx3

(
x3|x|p

(p + 1)(p + 2)(p + 3)

)
we easily check by integrating by parts that for

cp =
1

4(p + 1)(p + 2)(p + 3)
we have

E|t1 + at2 + bt3|p =
1
8

1∫
−1

1∫
−1

1∫
−1

|x1 + ax2 + bx3|p dx1 dx2 dx3

= cp

(
(a + b + 1)3|a + b + 1|p + (a− b− 1)3|a− b− 1|p

ab

− (a− b + 1)3|a− b + 1|p + (a + b− 1)3|a + b− 1|p

ab

)
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Let k = a2 + b2, s = 2ab. Then a− b =
√

k − s, a + b =
√

k + s and

f(s) = E|t1 + at2 + bt3|p

= 2cp

(
(
√

k + s + 1)3|
√

k + s + 1|p + (
√

k − s− 1)3|
√

k − s− 1|p

s

− (
√

k − s + 1)3|
√

k − s + 1|p + (
√

k + s− 1)3|
√

k + s− 1|p

s

)
= 2cp

g(s)
s

.

We are to show that for fixed k, f(s) is nondecreasing if p ≥ 2 (nonincreasing
if p ∈ [1, 2]) on (0, k).

Since g(0) = 0 it suffices to prove that g′(s) is nondecreasing (nonin-
creasing). We have

g′′(s) =
p + 3

4
(G(

√
k + s)−G(

√
k − s)),

where G(t) was defined in Lemma 3. Hence g′′(s) ≥ 0 for p ≥ 2 and
g′′(s) ≤ 0 for p ∈ [1, 2] (by Lemma 3) and the proof is complete.

Corollary 2. If X, t1, t2 are independent random variables, t1, t2 are
uniformly distributed on [−1, 1], X is symmetric unimodal and a, b, c, d > 0,
a2 + b2 = c2 + d2 with c ≥ a ≥ b ≥ d, then

E|X + at1 + bt2|p ≤ E|X + ct1 + dt2|p for p ∈ [1, 2]
and

E|X + at1 + bt2|p ≥ E|X + ct1 + dt2|p for p ≥ 2.

P r o o f. Let g(x) be the density function of X and µ be the measure given
by Lemma 1. Let t3 be a random variable independent of t1, t2 uniformly
distributed on [−1, 1]. We have, for p ∈ [1, 2],

E|X + at1 + bt2|p =
∞∫

−∞
E|x + at1 + bt2|pg(x) dx

=
∞∫

0

1
2s

s∫
−s

E|t + at1 + bt2|p dt dµ(s)

=
∞∫

0

E|st3 + at1 + bt2|p dµ(s)

≤
∞∫

0

E|st3 + ct1 + dt2|p dµ(s) = E|X + ct1 + dt2|p.

The second equality follows from Fubini’s theorem, and the inequality is a
consequence of Lemma 5.
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For p ≥ 2 we proceed in the same way.

Definition 2. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two se-
quences of real numbers. We say that x is majorized by y and write x ≺ y
if

∑n
i=1 xi =

∑n
i=1 yi and

∑k
i=1 x∗i ≤

∑k
i=1 y∗i for k = 1, . . . , n, where (x∗i )

and (y∗i ) are the nonincreasing rearrangements of x and y.

Proposition 1. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two se-
quences of real numbers such that (a2

i ) ≺ (b2
i ) and t1, . . . , tn be a sequence

of independent random variables uniformly distributed on [−1, 1]. Then(
E

∣∣∣ n∑
i=1

aiti

∣∣∣p)1/p

≤
(
E

∣∣∣ n∑
i=1

biti

∣∣∣p)1/p

for p ∈ [1, 2]

and (
E

∣∣∣ n∑
i=1

aiti

∣∣∣p)1/p

≥
(
E

∣∣∣ n∑
i=1

biti

∣∣∣p)1/p

for p ≥ 2.

P r o o f. By the lemma of Muirhead (cf. [4], Chapter 1.B) it suffices
to prove the inequalities if a2

i = b2
i for i 6= j, k, a2

j = tb2
j + (1 − t)b2

k and
a2

k = tb2
k + (1− t)b2

j for some j, k ∈ {1, . . . , n} and t ∈ (0, 1). By symmetry
we can also assume that ai and bi are nonnegative. So finally Proposition 1
follows from Corollary 2 if we set X =

∑
i 6=j,k aiti.

Let g be a standard normal variable and

γp = (E|g|p)1/p =
√

2
(

Γ
(

p+1
2

)
√

π

)1/p

.

We have the following

Theorem 1. If t1, . . . , tn is a sequence of independent random variables
uniformly distributed on [−1, 1], and a1, . . . , an are real numbers, then(

E
∣∣∣ n∑

i=1

aiti

∣∣∣2)1/2

≤ γ−1
p

(
E

∣∣∣ n∑
i=1

aiti

∣∣∣p)1/p

for p ∈ [1, 2]

and (
E

∣∣∣ n∑
i=1

aiti

∣∣∣p)1/p

≤ γp

(
E

∣∣∣ n∑
i=1

aiti

∣∣∣2)1/2

for p ∈ [2,∞).

The above constants are the best possible.

P r o o f. Let p ∈ [1, 2]. By Proposition 1,

E
∣∣∣ n∑

i=1

aiti

∣∣∣p ≥ ( n∑
i=1

|ai|2
)p/2

E

∣∣∣∣ n∑
i=1

1√
n

ti

∣∣∣∣p.
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But by the central limit theorem limn→∞E|
∑n

i=1(1/
√

n)ti|p = (
√

1/3 γp)p

so (
E

∣∣∣ n∑
i=1

aiti

∣∣∣p)1/p

≥
( n∑

i=1

|ai|2
)1/2√

1/3 γp = γp

(
E

∣∣∣ n∑
i=1

aiti

∣∣∣2)1/2

.

This proves the first inequality of the theorem. The second one can be
established in an analogous way.

The central limit theorem shows that these constants cannot be im-
proved. As a corollary from Proposition 1 we get the following answer to a
question posed by A. Pe lczyński:

Proposition 2. If t1, . . . , tn is a sequence of independent random vari-
ables uniformly distributed on [−1, 1], ε1, . . . , εn is a Bernoulli sequence of
random variables and a1, . . . , an are real numbers, then

1
2
E

∣∣∣ n∑
i=1

aiεi

∣∣∣ ≤ E
∣∣∣ n∑

i=1

aiti

∣∣∣ ≤ 2
3
E

∣∣∣ n∑
i=1

aiεi

∣∣∣.
The above constants are optimal.

P r o o f. Since for fixed a the function b 7→ E|at1 + bt2| is symmetric and
convex it takes its maximal value on [−|a|, |a|] at b = |a|. Hence

E|at1 + bt2| ≤ max(|a|, |b|)E|t1 + t2| =
2
3

max(|a|, |b|).

Let us first prove the second inequality of the proposition. By symmetry
we can assume that a1 ≥ . . . ≥ an ≥ 0. There are two possibilities:

C a s e 1: a2
1 ≥

∑n
i=2 a2

i . Proposition 1 then yields

E
∣∣∣ n∑

i=1

aiti

∣∣∣ ≤ E
∣∣∣a1t1 +

( n∑
i=2

a2
i

)1/2

t2

∣∣∣.
Hence since E|

∑n
i=1 aiεi| ≥ a1, by (1) the inequality holds.

C a s e 2: a2
1 <

∑n
i=2 a2

i . From Proposition 1 we deduce that

E
∣∣∣ n∑

i=1

aiti

∣∣∣ ≤ E

∣∣∣∣
√∑n

i=1 a2
i

2
t1 +

√∑n
i=1 a2

i

2
t2

∣∣∣∣ =
√

2
3

√√√√ n∑
i=1

a2
i .

This combined with the Khinchin inequality√√√√ n∑
i=1

a2
i ≤

√
2E

∣∣∣ n∑
i=1

aiεi

∣∣∣ (cf. [5])

completes the proof in this case.
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Let σ = σ(sign(t1), . . . , sign(tn)). Then E((t1, . . . , tn) | σ) has the same
distribution as 1

2 (ε1, . . . , εn) and the first inequality of the proposition is a
simple consequence of the Jensen inequality.

To see that the constants are optimal it suffices to take n = 1, a1 = 1
for the first inequality and n = 2, a1 = a2 = 1 for the second.

II. The vector case. In the sequel we will consider the linear space
Rn with a norm ‖ · ‖. The Lebesgue measure on Rn will be denoted by
| · |. We will consider some analogues in Rn of unimodal real variables. Our
definitions are different from what can be found in the literature (cf. [2]).

Definition 3. Let X be a bounded random vector with values in Rn.
We call X convex-uniform (c.u.) if X is uniformly distributed on some

open bounded convex symmetric set AX , i.e. for each measurable set
B ⊂ Rn,

Pr(X ∈ B) =
|B ∩AX |
|AX |

.

We say that X is semi-convex-uniform (s.c.u.) if X has a density g
and there exist a natural number k, functions g1, . . . , gk, and nonnegative
numbers α1, . . . , αk with

∑k
i=1 αi = 1 such that g =

∑k
i=1 αigi and gi is the

density of some c.u. random vector Xi for i = 1, . . . , k.
X is approximately-convex-uniform (a.c.u.) if there exist M > 0 and

a sequence X1, X2, . . . of s.c.u. random vectors bounded in norm by M
converging in distribution to X.

Lemma 6. Let X and Y be independent convex-uniform random vectors
with values in Rn. Then X + Y is a.c.u.

P r o o f. Let AX and AY be the convex sets from Definition 3. For
v ∈ Rn define

Pv = {(x, y) ∈ AX ×AY : x + y = v},
Fv = {(x, y) ∈ Rn × Rn : x + y = v}.

There exists a constant K such that X + Y has a density g given by

g(v) = Kλ2n−1(Pv),

where λ2n−1 is the Lebesgue measure on the (2n− 1)-dimensional subspace
Fv. First we show that for each a > 0 the set

Sa = {v ∈ Rn : g(v) ≥ a}

is convex. Indeed, let v, w ∈ Sa and α ∈ (0, 1). Since

Pαv+(1−α)w ⊃ αPv + (1− α)Pw

we get by the Brunn–Minkowski inequality (cf. [2])
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g(αv + (1− α)w) = Kλ2n−1(Pαv+(1−α)w) ≥ Kλ2n−1(Pv)αλ2n−1(Pw)1−α

≥ g(v)αg(w)1−α ≥ aαa1−α = a.

Since the sets AX and AY are bounded, so is the function g and there
exists a number M such that Sa = ∅ for a > M . For a natural number j
define

fj =
jM∑
k=0

Pr(g(X + Y ) ∈ (k/j, (k + 1)/j])%k/j ,

where %a is the density of a random vector uniformly distributed on Sa.
Then fj is the density of some semi-convex-uniform random vector Zj . It
is easy to observe that the sequence Zj is uniformly bounded and converges
in distribution to X + Y . And this means that X + Y is a.c.u.

Corollary 3. If X1, . . . , Xk is a sequence of independent a.c.u. random
variables with values in Rn, then

∑k
i=1 Xi is an a.c.u. random vector.

P r o o f. For k = 2 the corollary is a simple consequence of Lemma 6, for
k > 2 we proceed by induction.

Lemma 7. If p > q > 0 and X is a convex-uniform random vector with
values in Rn, then(

p + n

n

)1/p

(E‖X‖p)1/p ≥
(

q + n

n

)1/q

(E‖X‖q)1/q.

P r o o f. With the notation of Definition 3,

E‖X‖p =
1

|AX |
∫

AX

‖x‖p dx.

Let ε > 0. Then

(1+ε)n+p
∫

AX

‖x‖p dx =
∫

(1+ε)AX

‖x‖p dx =
( ∫

AX

+
∫

(1+ε)AX−AX

)
‖x‖p dx

≥
∫

AX

‖x‖p dx + |(1 + ε)AX −AX |1−p/q
( ∫

(1+ε)AX−AX

‖x‖q dx
)p/q

=
∫

AX

‖x‖p dx + (((1 + ε)n − 1)|AX |)1−p/q
(

(1 + ε)n+q − 1)
∫

AX

‖x‖qdx
)p/q

.

Therefore(
(1 + ε)n+p − 1
(1 + ε)n − 1

)1/p( 1
|AX |
∫

AX

‖x‖p dx

)1/p

≥
(

(1 + ε)n+q − 1
(1 + ε)n − 1

)1/q( 1
|AX |
∫

AX

‖x‖q dx

)1/q

.
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The inequality of the lemma is obtained by letting ε → 0.

Proposition 3. If p > q > 0 and X1, . . . , Xk are independent a.c.u.
random vectors with values in Rn, then for S =

∑k
i=1 Xi,(

p + n

n

)1/p

(E‖S‖p)1/p ≥
(

q + n

n

)1/q

(E‖S‖q)1/q.

P r o o f. According to Corollary 3 we can assume that k = 1. By an
approximation argument it suffices to prove the inequality for S a s.c.u.
random vector. But in this case it is a simple consequence of Lemma 7 and
the Jensen inequality.

Finally, since xiti is an a.c.u. random vector we obtain the following
corollary:

Corollary 4. If p > q > 0 and t1, . . . , tk are independent random
variables uniformly distributed on [−1, 1] and x1, . . . , xk are vectors in Rn,
then for S =

∑k
i=1 tixi,(

p + n

n

)1/p

(E‖S‖p)1/p ≥
(

q + n

n

)1/q

(E‖S‖q)1/q.

R e m a r k. The above results are also valid for p > q > −n and the
proofs are very similar.
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