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SOME DECIDABLE THEORIES WITH FINITELY MANY COVERS
WHICH ARE DECIDABLE AND ALGORITHMICALLY FOUND

BY

CORNELIA KALFA (THESSALONIKI)

In any recursive algebraic language, I find an interval of the lattice of
equational theories, every element of which has finitely many covers. With
every finite set of equations of this language, an equational theory of this
interval is associated, which is decidable with decidable covers that can
be algorithmically found. If the language is finite, both this theory and
its covers are finitely based. Also, for every finite language and for every
natural number n, I construct a finitely based decidable theory together with
its exactly n covers which are decidable and finitely based. The construction
is algorithmic.

1. Introduction and preliminaries. Let L be an algebraic language,
i.e. a first-order language with equality, with at least one operation symbol
and no relation symbol. An L-equation is a universal sentence of the form
(V0)(¢ = 1), where ¢ and 1 are L-terms. An (equational) theory is a set
of L-equations closed under its logical consequences which are equations.
Denote by Thy, and Thy, respectively, the set of theories of L and the set of
theories of L which imply ¥. Then (Thz, C) and (Thy, C) are lattices. If
@ and V¥ are L-theories, we say that @ is a cover of ¥ if & is an immediate
successor of ¥ in the lattice (Thy, C). The first element of (Thy, C), which
always exists, is called the theory generated by X and it is denoted by O[X).
X is then called a basis of ©[X]. If a theory @ has a finite basis, it is called
finitely based.

Consider the language

L'=(f,s),
with one unary operation symbol f and at most one constant symbol s.
In Jezek [2] it is proved that every L-theory has a unique basis which is
a reduced set, i.e. a set of one of the following kinds:

(1) X =0,
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(2) X' = {fls = fi*es}, for e > 0,

(3) X' = {(V0)(f*vy = fEtduy), fls = fi*es}, ford > 0,e > 0,1 < k
and e a divisor of d,

(4) X" = {(V0)(f*v1 = fFug), fls = fitls), for I < k.

In [3] I find

(i) an algorithm which, upon the input of any finite set X' of L'-equa-
tions, outputs the reduced set which is a basis of O[X'],

(ii) an algorithm which, upon the input of any reduced set R', outputs
the finite set of all reduced sets that are bases of covers of O[X'].

In Ehrenfeucht [1] it is proved that the first-order theory generated by the
logical axiom of L'—as well as of all other trivial languages—is decidable.
From this it follows that every equational theory of L', a finite basis of
which we know, is decidable. (Given any equation £(, check by the existing
procedure whether the sentence A_ .y, &’ — €j is an L'-tautology or not.)

In this paper, I consider any recursive algebraic language L, i.e. any
algebraic language with recursive sets of operation symbols and constant
symbols. I show that the lattice (Thy,C) contains sublattice a (Thx, C)
isomorphic to the lattice (Thy, C) and, making use of the above mentioned
facts about L', I get the following results about L:

(1) All theories of the interval (Tha, C) have finitely many covers and,
provided that we know a finite basis of them, they are decidable. Moreover,
if L is finite, then all L-theories of the above interval are finitely based.

(2) There is an algorithm which, upon the input of any finite set X of
L-equations, outputs the set of all covers of O[X U AJ.

(3) In all finite L’s, there is an algorithm which, upon the input of any
natural number n, outputs a finitely based decidable L-theory of the interval
(Thy, C) together with its exactly n covers which are also finitely based and
decidable.

The problem of whether, for a given language L and a given cardinal k,
there exists an L-theory with exactly k covers is not new, and in [4] a
summary of the existing results can be found. Since with every cover of a
theory an equation can be associated, for finite L’s, the problem is restricted
only to countable k’s. In the same line with my third result, McNulty found
in [4], in all countable languages L and for all natural numbers n, finitely
based L-theories which cover exactly n others.

Before proving my claims, I make some more notational conventions:
Va, Tery, and Eq; stand for the sets of variables, terms and equations of L,
respectively. An equation (Vo)(p = 1) is denoted, from now on, simply by
¢ = 1. Gothic letters 2, B, ... are used for L-algebras, ||, |B],... for their
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universes and o for the interpretation of the L-expression ¢ in 2. Finally,
Mody, and Mod s are used to denote the class of all L-algebras and the class
of all L-algebras satisfying X' C Eq;, respectively.

2. Embedding. Let L be any recursive algebraic language with at least
one operation symbol @ of rank r(Q). If L has only operation symbols, i.e.
if it is of the form

L={Q}U{Qi}icr),
with @; an operation symbol of rank (i), take
L'=(f).
If L has at least one constant symbol ¢, i.e. if it is of the form
L ={Q}U{Qi}icr, {c}U{ci}jen),
take
L'=(f,s).

Consider the recursive functions b’ : Tery, — Tery, and h : Tery, — Tery,,
given by the rules

h/(vi) = Uy,
B (s) =c,
W (f9) = QR ()W (') ... W' ()

and

>

(Ui) = Vi,
(¢) = h(c;) = s,
h(Q192 ... 0 (q)) = fh(D1),

h(Qi9102 ... Vr(y) = h(D1),
for the terms existing in the particular language. Denote also by h’ the
induced recursive functions on Eq;,, and on its power set P(Eq;, ), and
by h the induced recursive functions on Eq; and P(Eq;). Obuviously, h'
and h act as interpretors from the one language to the other.

Consider also the class-functions H’ : Mod;, — Mod;, and H : Mod; —
Mody given, respectively, by the rules

@) = 2,
CH) _ CH’(QU) — ¥
j )
QH/(Q[/)(E) _ fﬂ/(al), for a = <a17 ey a‘T‘(Q)>’
Q')

1

>

(6) =ay, fora= <a1,...,CLT(i)>,
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and
[H (2] = 2],
SHE — 2
FE () = Q*(a,a, ..., a).
It can be easily shown that
(V" € Mod/)(H(H' (")) =2A'),

from which it follows that H' is injective and H is surjective.
Finally, consider the set of L-equations

A ={Quiva... v () = Quivy...v1}
U{Qivr...vpy =v1:i€lfU{c;=c:je ]}

Informally speaking, A eliminates all symbols but @) and ¢, and makes
act as unary operation symbol. I will prove that

THEOREM 1. The function g : Thr, — Thy given by the rule
V@' € Thy,, ¢(?')=0O[N(P)UA] € Thy,
is a lattice isomorphism of (Thy,, C) onto (Thy, C).
For the proof of Theorem 1, I need three lemmas:
LEMMA 2. (a) (V' € Terp)(h(W'(t')) =1).
(b) (Vt € Terp)(AE b/ (h(t)) =t).
Proof. By two easy inductions on the complexity of the term. m

LEMMA 3. (a) (Y €Modp )(VE' CEq. ) (A E X' < H (A ER (X)),
(b) (VA € Mody/)(VE C Eqp ) F h(X) < H' (W) E X).

(c) (V2 € Mody)(VE' € Eqp, )(AE K/(X') & HQ) E 2).

(d) (V2 € Mod)(YY C Eq, )(A E ¥ < H(2A) E h(X)).

Proof. One can prove by induction that
(1) (V' € Modp,)(Vt' € Terp, )t = w' (') ),
From (1), (a) follows. Since all H'(’)’s are models of A, (1) implies that
(V' € Mody,)(Vt € Tery)(h(t)% = b/ (h(t))T ) = ¢H' (),

from which (b) immediately follows.
One can also prove by induction that

(VL € Mody,)(Vt' € Terp ) (") = b/ (¢")%)
and use it to prove (c) and (d). m

LEMMA 4. (a) (VX' C Eq,,)(Ve' € Bqp ) (X' E & < h'(Z') E W(')).
(b) (VX C Eq,)(Ve € Eq, )(Z U AE ¢ < h(Z) E h(e)).

Proof. I leave the easiest part to the reader and prove (b):
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Suppose that XU A E . Then from the fact that all H'(’)’s are models
of A and from Lemma 3(b) it follows that 2" F h(X) = H'(A') F ¥ =
HRAYEXYUA= H®A')Ee=2AFE h(e). Consequently, h(X) E h(e).

Suppose that h(X) F h(g). Then from Lemma 3(d) it follows that 2 F
YUA=HR)EWXY)= H®A)E h(c) = AFe. Consequently, X U AF e.

Proof of Theorem 1. g is injective: Suppose that g(P)) = g(P5).
Then, by Lemmas 2(a) and 4(b), we get ¢’ € &} = h/(¢') € K/ (P)) U A =
(@) UAEW(E) = (D) UAE KW(E) = h(W (D)) E h(R () = &4 F
e/ = &' € @,. The converse is proved similarly.

g is surjective: Consider any ¢ € Th,. From Lemmas 2(a) and 4(b) it
follows that h(®) F &' = h(®) F h(R'(¢')) = P E W (') = h() e & =
h(h'(e")) € h(P) = ¢’ € h(P). So h(P) € Thy,.

Also, ¢ € g(h(®?)) & W(h(P) U A E e & h(W(h(P))) E h(e) &
hMP)Eh(e) & PUAEe & €.

I have proved that (V@ € Th)(3h(®) € Thr/)(g(h(P)) = D).

The rest of the proof is left to the reader. m

3. Corollaries

COROLLARY 5. For every @ € Thy,, the set of covers of g(®') is the set
{g(&") : ¥ is a cover of ?'}.

Proof. Since g is a lattice isomorphism, it follows that & covers &} iff
g(P}) covers g(P4). From this and the fact that g is surjective, the assertion
follows. m

COROLLARY 6. Every L-theory in Th has finitely many covers.

Proof. In [3] it is proved that all L’-theories have finitely many covers.
So, the set of covers {g(¥') : ¥’ is a cover of g~ (P)} of @ € Thy is finite. m

COROLLARY 7. There is an algorithm which, upon the input of any finite
set X of L-equations, outputs the finite set of all covers of O[X U A].

Proof. Firstly, I show that
(2) (V&' € Thy ) (VY CEqp )(O]Y] =& < O[h (X)) U A] = g(P)).
Indeed, € € g(®) = R(OX])UAE e = h(M(OX'])) E h(e) = 2 =
h(h'(X")) E h(e) = W' (X") U AE . This proves (2).

Now, I write the required algorithm: Given any finite X' C Eq;,

(a) Find h(5).

(b) Find, by the algorithm constructed in [3], the finite set B of all

reduced sets which are bases of covers of O[h(X)].
(c) Find the finite set {h'(R’) : R’ € B}.
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By (2) and the fact that g is injective, {h'(R') U A : R’ € B} is a set of
representatives of the bases of all covers of O[X]. m

COROLLARY 8. For every finite ¥ C Eq;, the theory O[X U A] is decid-
able. So, every theory in Thy, a finite basis of which we know, is decidable.

Proof. Given any € € Eq;,

(a) Find h(X) and h(e).
(b) Check whether h(X) E h(e) (since ©[h(X)] is decidable, this can be
done). If yes, then YU AE e. If no, then X U AF €.

So ©[X' U 4] is decidable. m
COROLLARY 9. Every L-theory in Th of a finite L is finitely based.

Proof. In [2] it is proved that all L’-theories are finitely based. If @ is
an L-theory and Y is a finite basis of g=1(®), then, by (2) in the proof of
Corollary 7, h'(X) U A is a finite basis of ¢. =

COROLLARY 10. If L is finite, there is an algorithm which, upon the
mput of any natural number n, outputs a finitely based, decidable L-theory
together with its exactly n covers which are also finitely based and decidable.

Proof. From Theorems 2.0 and 2.1 of [3] it follows that the theory of
(f) based on the equation

E’ fUp = ‘]('ppo...pn,Ul7

where p; is the ¢th prime number, has as covers exactly the n theories based
on the equations

/. — fP1---Pi—1Pi+41-..P
g =f ot P,

for i € {1,...,n}. It also follows that the theory of (f,s), based on the
equation

el 5= fp1;02---Pn8’
has as covers exactly the n theories based on the equations

/v ¢ — fP1---Di—1Pi41...P
gl 5= fProPimiPitiePng,

So, by Corollary 5 and (2), the L-theories based on the finite sets {h' (')} UA
have as covers exactly the n theories based on the finite sets {h'(e;)} U A.
By Corollary 8, all these theories are decidable.

The above construction is, obviously, algorithmic: Given n € N, one
can write down the (n 4+ 1)-tuple of L’-equations (¢,e!,¢5,... el ), then
the (n + 1)-tuple of L-equations (h'(¢’),h'(¢}),...,h'(e},)) and finally the
(n + 1)-tuple of finite sets of L-equations ({A'(¢")} U A,{R'(¢})} U 4,...
L (E)IUA). .
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