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THE FATOU THEOREM FOR NA GROUPS—A NEGATIVE RESULT

BY

JAROS LAW S O  L O W I E J (WROC LAW)

In 1969 E. M. Stein and N. J. Weiss showed that in the case of sym-
metric spaces the unrestricted almost everywhere convergence of a bounded
harmonic function to the boundary fails. The main point of their argument
is that due to the action of the maximal compact group K, the unrestricted
convergence allows for so many rotations of rectangles that they cannot form
a differentiation basis. Somewhat similar phenomena appear in the situa-
tion where there is no group of rotations. Rectangles with incomparable
sides length parallel to many directions occur while studying approaches to
a boundary X = NA/N0A of the solvable part of the Iwasawa decomposi-
tion. These boundaries are not boundaries for the whole semisimple group
G = NAK but only for the solvable part NA. They have been intensively
studied by E. Damek and A. Hulanicki [DH1] and [DH2]. The aim of this pa-
per is to show why a very natural generalization of “admissible convergence”
to the boundary of bounded harmonic functions investigated in [DH2] fails
in the case of general boundaries for NA groups.

In the second part of the paper we show sharp pointwise estimates for the
Poisson kernel on a boundary as above for harmonic functions with respect
to a very regular subelliptic operator. This is a very particular result but it
might serve as a general hint what type of estimates should be expected in
the general case.

Both parts of the paper originate in questions asked by E. Damek and
A. Hulanicki. The author is grateful to both of them for their help. He is also
greatly indebted to Jaros law Wróblewski for his generous help concerning
the construction of the counterexample.

1. Counterexample

1.1. Preliminaries. Let G be a Lie group. We say that a locally compact
space X is a G-space if there is a continuous map

G×X 3 (s, x) 7→ sx ∈ X
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such that (ss′)x = s(s′x). For bounded measures µ and ν on G and X
respectively, the convolution µ ∗ ν is a measure on X defined by∫

f(x) dµ ∗ ν(x) =
∫

f(sx) dµ(s) dν(x), f ∈ C0(X).

Let L be a left-invariant second order, degenerate elliptic differential oper-
ator without constant term on G,

L = X2
1 + X2

2 + . . . + X2
k + X0.

The operator L is the infinitesimal generator of a convolution semigroup of
probability measures {µt}t>0.

Definition 1.1.1. We say that X is an L-boundary of G if X is a
G-space and there is a probability measure ν on X such that

(1) µ̌t ∗ ν = ν for each t > 0

and δSt ∗ ν tends weak∗ to a point mass on X as t → ∞, for almost all
trajectories St of the diffusion process on G generated by L.

We consider a group S whose Lie algebra is of the form

s = n⊕ a,

where n is a nilpotent ideal in s and a is abelian. We assume that there
exists a basis X1, . . . , Xn of n such that for every H ∈ a,

adH(Xj) = λj(H)Xj ,

where λj ∈ a∗, j = 1, . . . , n. Let ∆ = {λ1, . . . , λn} and

nλ = {X ∈ n : adH(X) = λ(H)X for all H ∈ a}.

Definition 1.1.2. A subspace n′ of n is called homogeneous if

adH(n′) ⊂ n′ for all H ∈ a.

Let S = exp s, N = exp n and A = exp a. We assume that the smallest
Lie subalgebra which contains X0, X1, . . . , Xn is equal to s, which by the
Hörmander theorem implies that L is subelliptic.

Definition 1.1.3. A Borel function F is L-harmonic if

〈F,L+φ〉 = 0 for φ ∈ C∞
c (S),

where L+ = X2
1 + . . . + X2

k −X0.

We have the following simple characterization of L-harmonic functions.

Theorem 1.1.1. A bounded Borel function F is L-harmonic if and only
if F ∗ µ̌t = F for every t > 0.

For the proof see e.g. [D].
Let X0 = Y0 + Z0, where Y0 ∈ n and Z0 ∈ a. We define
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∆0 = {λ ∈ ∆ : 〈λ, Z0〉 ≥ 0}, ∆1 = ∆ \∆0,

and
n0(L) =

⊕
λ∈∆0

nλ.

In [DH3] all the boundaries for the pair (S, L) have been described. They
are S-spaces (with the natural action of S) X = S/N0A, where N0 = exp n0

and n0 is a homogeneous subalgebra of n containing n0(L). Moreover, the
Poisson kernel ν has smooth bounded density

dν(x) = PX(x)dx.

Therefore by (1) and Theorem 1.1.1 for f ∈ Lp(X), 1 ≤ p ≤ ∞, the function

(2) F (s) =
∫

X

f(sx) dν(x)

is L-harmonic on S. We call it the Poisson integral of f . Now we define
convergence to the boundary X, which is modeled on the definition of ad-
missible convergence in the case of symmetric spaces, but somewhat more
general, as is natural in the context of NA groups. Let K be a compact
subset of S and yAK = {yaz : a ∈ A, z ∈ K} for a fixed y ∈ N .

Definition 1.1.4. We say that sn tends admissibly to the boundary X
if sn ∈ yAK and

lim
n→∞

〈λ, log a(sn)〉 = −∞ for every λ ∈ ∆1,

where a(s) = a for s = xa with x ∈ N and a ∈ A.

Let p be the natural projection from S onto X,

p : S 3 s → se ∈ S/N0A = X,

where e = N0A. There is a natural question connected with the above defi-
nition. Does the Poisson integral F (sn) tend to its boundary value f(p(y))
when sn stays in yAK? The answer is affirmative and easy if f is e.g. a con-
tinuous function with compact support on X. Also the following theorem
holds:

Theorem 1.1.2 ([DH3]). Let f ∈ Lp(X) for some p > 1. For every y0

in N0 there is a subset Xy0 in X such that the Lebesgue measure of X \Xy0

is 0, and if y = y1y0 and p(y) ∈ Xy0 then

lim
〈λ,log a〉→−∞,λ∈∆1

∫
X

f(y1y0azx)PX(x) dx = f(p(y))

uniformly in z ∈ K, for every compact subset K of S.

Of course one would like to eliminate the dependence of the exceptional
set Xy0 on y0. It would be sufficient to have the same Xy0 for y0 in every
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compact set K ⊂ N0. This in turn would follow if we could enlarge our
approach region to ⋃

p(y)=x,y∈K0

yAK = Γx

for two fixed compact sets K ⊂ S and K0 ⊂ N0. This type of convergence
with s ∈ Γx and lim〈λ, log a(s)〉 = −∞ is called strong admissible in [SW].
Though strong admissible convergence of the Poisson integral of a function
f in Cc(X) to f does hold, it can fail on a set of positive measure for
f ∈ L∞(X). We show this in the next section when N is a Heisenberg
group.

1.2. A boundary of the Heisenberg group. Let N = R3 be the Lie group
with multiplication given by

(x, y, z)(x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′).

Then n = R3 with the bracket

[(x, y, z), (x′, y′, z′)] = (0, 0, xy′ − x′y)

is the Lie algebra of N . Let S = NA be a semidirect product of N and A,
where A acts on N by the automorphisms

δa((x, y, z)) = (ax, ay, a2z), a > 0.

The function
|(x, y, z)| = |x|+ |y|+ |z|1/2

is a homogeneous norm on N with the property

|δa(x, y, z)| = a|(x, y, z)|.
We denote by s the Lie algebra of S. Then s is a semidirect product of n
and the Lie algebra a of A with the bracket

[(x, y, z, a), (x′, y′, z′, a′)] = (ax′ − a′x, ay′ − a′y, 2az′ − 2a′z + xy′ − x′y, 0).

Let E1, E2, E3 ∈ s be the standard basis of the Heisenberg Lie algebra,
i.e. [E1, E2] = E3 and E0 = −∂a, where ∂a is differentiation on R, and let

L = E2
1 + E2

2 + E2
3 + E0.

Then N0(L) = {0}. Now n0 = {(x, 0, 0) : x ∈ R} is a homogeneous subal-
gebra of n, and let

N0 = exp n0.

Let X = S/N0A = N/N0. In our case we may write X = {(x2, x3) :
x2, x3 ∈ R}. If f ∈ L∞(X) then by (2) the function

(3) F (s) =
∫

X

f(sx)PX(x) dx
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is L-harmonic on S. From the Harnack inequality it is easy to see that
PX(x) 6= 0 for x ∈ X, thus there exist constants C > 0 and r > 0 such that

(4) PX(x) ≥ CχB(r)(x)

for all x ∈ X, where B(r) = {(x2, x3) ∈ X : |x2| + |x3|1/2 < r}. Without
loss of generality we may assume that r = 1. From (4) and (3) we have for
f ∈ L∞(R2), f ≥ 0,

F (ya) =
∫

R2

f(yax)PX(x) dx ≥ C
∫

R2

f(yax)χB(1)(x) dx.

Changing variables, we obtain

F (ya) ≥ C
1

|B(a)|
∫

R2

f(yx)χB(a)(x) dx,

where
yx = (x2 + y2, x3 + y3 + y1x2)

is the action of an element y = (y1, y2, y3) ∈ N on x = (x2, x3) ∈ X.
Let R(a/2) be a rectangle with sides of length a/2 and a2/4 centered

at 0, such that R(a/2) ⊂ B(a). Then |B(a)| = (32/3)|R(a/2)|. Thus we
may replace B(a) by R(a/2), and take f(x) = χT (x) for a measurable set
T . Then

(5) F (ya)

≥ C
1

|R(a/2)|
∫

R2

χT (x2 + y2, x3 + y3 + y1x2)χR(a/2)(x2, x3) dx2 dx3.

We see that (x2 +y2, x3 +y3 +y1x2) in (5) means that we translate T by the
vector [−y2,−y3] and next rotate. From now on we assume that we rotate
only in the range from π/4 to π + π/4, which means |y1| ≤ 1. By these
operations we get T y1

(y2,y3)
and thus

F (ya) ≥ C
|T y1

(y2,y3)
∩R(a/2)|

|R(a/2)|
.

Now instead of translating and rotating T we fix T and translate and rotate
R(a/2). This does not change anything. Hence, to prove that the Fatou
theorem is not true in our case it is enough to take for T the set constructed
in the proof of Theorem 1.3.2.

1.3. Differentiation basis

1.3.1. Introduction

Definition 1.3.1. We say that B =
⋃

x∈R2 B(x) is a differentiation
basis if for each x ∈ R2, B(x) is a collection of bounded measurable sets with
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positive measure containing x and such that there is at least one sequence
{Rk} ⊂ B(x) with δ(Rk) → 0, where δ(·) is diameter.

Let B =
⋃

x∈R2 B(x) be a differentiation basis.

Definition 1.3.2. We say that B is a density basis if for each measurable
set A and for almost every x ∈ R2 we have

(6) lim
k→∞

|A ∩Rk|/|Rk| = χA(x),

where {Rk} is any sequence of B(x)’s contracting to x.

Now we define a differentiation basis in the following manner. Let

(7) B =
⋃

x∈R2

B(x),

where B(x) = {all open rectangles containing x with sides of length a and
a2, where 0 < a < 1 and the angle between the side of length a and the
x-axis ranges from π/4 to π/4 + π}.

We will prove that B is not a density basis. It is enough to find measur-
able sets T and M ⊂ T c, |M | > 0, such that for each x ∈ M there exists a
sequence {Rk} ⊂ B(x) contracting to x such that

|T ∩Rk|/|Rk| > C > 0,

where C is a constant independent of k. To do this we use the construction
of a Perron tree based on I. J. Schoenberg’s paper [Sch], to which we refer
for more details.

1.3.2. Construction of a Perron tree. We define by induction a family
of sets {Tn}n≥2, each of which will be called a Perron tree.

If we have a triangle S of height 1 having its base on a line y = k for
some k, then we let S sprout by the following procedure: Extend the lateral
sides of S upward beyond its vertex until they reach the line y = k + 2,
next join the points from the line y = k + 2 to the vertices of S lying on the
line y = k.

Let T2 be an isosceles triangle ABC of height 2 having its base AB on
the line y = 0 and right-angled at C, and let S1

2 = T2 ∩ {y ≥ 1}. We let S1
2

sprout and obtain a closed polygon which is called T3. If we have Tn then
the intersection Tn ∩ {y ≥ n− 1} is composed of 2n−2 triangles, denoted by
S1

n, S2
n, . . . , S2n−2

n from right to left. If we let sprout Si
n, i = 1, . . . , 2n−2, we

obtain Tn+1.

1.3.3. Some properties of the Perron tree. Let T i
n denote the triangle

similar to Si
n, obtained from Si

n by extending its lateral sides down to the
line y = 0, and let T̂ i

n denote the triangle similar to T i
n, obtained from T i

n

by extending its lateral sides down two times.
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For our construction we need the following theorem and lemma.

Theorem 1.3.1 ([Sch]). Let PQV be a triangle similar to ABC, of the
same height n as Tn, and having its base PQ on the line y = 0. If we divide
its base PQ into 2n−2 equal parts and dissect PQV accordingly into the
triangles τn

1 , τn
2 , . . . , τn

2n−2 , then an appropriate horizontal translation will
make Tn

i coincide with τn
i , i = 1, . . . , 2n−2. Moreover , at no stage of the

construction of Tn is there an overlap between the 2n−2 triangles of new
growth of Tn, so that Tn is bounded by a simple closed polygon, and

|Tn| = 2n.

The proof of this theorem is in [Sch]. The following lemma and the idea
of its proof come from [G].

Lemma 1.3.1. Let Pn =
⋃2n−2

i=1 (T̂ i
n − T i

n). Then

|Pn| ≥ n2.

P r o o f. Extend the lateral sides of the triangle ABC (see construction
of the Perron tree) down until they reach the line y = −n; the two points
R and S so obtained together with A and B compose a trapezium ABRS.
Since |ABRS| = n2 + 2n − 4 ≥ n2 for n ≥ 2, it is enough to show that
ABRS ⊂ Pn.

Let x ∈ ABRS, and for i = 1, . . . , 2n−2 let si be the vertex of Si
n which

lies on the line y = n, and βi be the angle between the line passing through
the points si, x and the x-axis. Then

(8) π/4 ≤ β2n−2 < β2n−2−1 < . . . < β2 < β1 ≤ π + π/4.

Let αi, α
′
i be the angles between the lateral sides of Si

n and the x-axis. Then
using Theorem 1.3.1 we have

π/4 = α1 < α′1 = α2 < α′2 = α3 < . . .(9)
< α′2n−2−1 = α2n−2 < α′2n−2 = π + π/4.

Now it is very easy to see from (8) and (9) that there exists 1 ≤ j ≤ 2n−2

such that αj ≤ βj ≤ α′j , but this exactly means that x ∈ T̂ j
n − T j

n.

We will use the following notation: T ∗
n means that we shrink the Perron

tree Tn in the ratio n to 1, thus T ∗
n has height 1 and width 2(n− 2)/n < 2,

T ∗∗
n means that we shrink T ∗

n in the ratio 2n to 1. We do the same with Pn.
By Theorem 1.3.1, |T ∗

n | = 2/n; moreover, T i∗∗
n has height 1/2n and base of

length 8/22n.

Theorem 1.3.2. The differentiation basis B defined by (7) is not a den-
sity basis.

P r o o f. Let A = [−1, 1] × [−1, 1] and let {εn}n≥1 be a decreasing se-
quence of positive numbers such that

∑∞
i=1 εi ≤ 1/2. Choose n1 such that
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|T ∗
n1
| ≤ ε1. Next divide A into 2n1 ×2n1 equal squares. Into each such small

square we put a copy of T ∗∗
n1
∪ P ∗∗

n1
. Let T1 be union of all the T ∗∗

n1
’s in A

and P1 the union of all the P ∗∗
n1

’s in A. We do the same with ε2, ε3, . . . and
obtain sequences {Tk}k≥1 and {Pk}k≥1 such that

(10) |Tk| ≤ εk

and

(11) |Pk| ≥ 1

for k ≥ 1. Let

T =
∞⋃

k=1

Tk, P =
∞⋂

n=1

∞⋃
k=n

Pk.

Then in view of (10),

|T | =
∣∣∣ ∞⋃

k=1

Tk

∣∣∣ ≤ ∞∑
k=1

|Tk| ≤ 1/2,

and by (11),

|P | ≥ lim inf
k→∞

|Pk| ≥ 1.

Let M = P \ T . Then

|M | = |P \ T | ≥ 1− 1/2 = 1/2.

Every x ∈ M lies in infinitely many Pk’s. Let x ∈ Pk for some k. Then
there exists 1 ≤ i ≤ 2nk−2 such that x ∈ T̂ i∗∗

nk
− T i∗∗

nk
. We take a rectangle

Bk ∈ B(x) with sides of length 4/2nk and 16/22nk such that Bk ⊃ T̂ i∗∗
nk

.
Then T ∩Bk ⊃ T i∗∗

nk
and

|T ∩Bk| ≥ |T i∗∗
nk
| = 4/23nk , |Bk| = 64/23nk .

This implies

(12) |T ∩Bk|/|Bk| ≥ 1/16.

Since x lies in infinitely many Pk’s, there exists a sequence {Bk}k≥1 ⊂ B(x)
such that (12) is valid for all Bk. On the other hand, χT (x) = 0. Of course
Bk is contracting to x. This means that condition (6) fails on the set M of
positive measure and consequently B is not a density basis.

2. Estimation

2.1. In this part we restrict our attention to the group S = NA with A
being one-dimensional. Then the action δa of A on n becomes

δaXj = eλj(log a)Xj = adj Xj
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for some numbers 1 ≤ d1 ≤ . . . ≤ dn. The number Q =
∑n

j=1 dj is called
the homogeneous dimension of n. The formula

exp ◦ δa ◦ exp−1

defines dilations on N , i.e. N becomes a homogeneous group [FS]. The
dilations on N will also be denoted by δa. Denote by ‖ · ‖ the Euclidean
norm in n, and define the corresponding left-invariant distance

τ(x) = inf
1∫

0

‖γ̇(t)‖ dt,

where the infimum is taken over all C1 curves γ in N such that γ(0) = e
and γ(1) = x. Then Br(x) = {y ∈ N : τ(x−1y) < r} is the ball of radius r
centered at x. We use B(r) instead of Br(e). For a function f ∈ Cb(N) we
write ‖f‖ = sup{|f(x)| : x ∈ N}.

Let f ∈ C∞
c (B(1)) be a nonnegative function such that

∫
N

f(x) dx = 1,
and τ ∗ f(x) =

∫
τ(xy−1)f(y) dy. Then for any left-invariant vector field X

we have (see [H1])

(13) |X2(τ ∗ f)(x)| ≤
∫
|Xf(y)|‖AdyX‖ dy

for all x ∈ N .

2.2. A maximum principle. On the group S we will investigate operators
of the form

L =
k∑

j=1

a2dj X2
j + a2∂2

a − κa∂a,

where κ > −1 is a constant, Xj ∈ n for j = 1, . . . , k, and ∂a is differentiation
along R.

We will need the following maximum principle for functions defined on
Sa = {xb : x ∈ N, b > a}. Let D(a, b, r) = {xc : x ∈ Br(e), a < c < b} and
let C =

∑k
j=1 ‖X2

j (τ ∗ f)‖. Then by (13), C < ∞.

Theorem 2.2.1 ([DH2]). Let 0 < ε < 1, 0 < a0 < a1 and let σ,R be
constants satisfying

0 < σ ≤ 2d1, κ + 1− σ > 0,

R > max
{

C

σ(κ + 1− σ)
max(a2d1

1 , a2dk
1 ), 2

}
.

Suppose that F is a twice continuously differentiable function on D = D(a0,
a1(2/ε)1/σ, Rε−2dk/σ), LF ≥ 0 in D, F is continuous in D and |F | < 1. If
F (xa0) ≤ 0 for x ∈ B(Rε−2dk/σ) then F (a1) ≤ ε.
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Corollary 2.2.1. For every ε > 0 and b > 0 there exists R = R(ε, b) > 0
such that for all a < b,

F (b) ≤ max
x∈B(R)

F (xa) + ε

for all F ∈ C2(Sa) ∩ C(Sa) with LF ≥ 0 and |F | ≤ 1.

Corollary 2.2.2 (Maximum principle). If F ∈ C2(Sa) ∩ C(Sa),
LF ≥ 0 and F is bounded in Sa, then for every b > a and y ∈ N ,

F (yb) ≤ sup
x∈N

F (xa).

2.3. Properties of harmonic measures. The Dirichlet problem in Sa has
a solution, i.e. the following theorem is true.

Theorem 2.3.1 ([DH2]). For every bounded continuous function f on N
there exists a bounded harmonic function F on Sa which is continuous on
Sa and such that F (xa) = f(x) for x ∈ N .

By the above theorem and the maximum principle we have

R e m a r k 2.3.1. There exists exactly one function F which satisfies the
conditions of Theorem 2.3.1.

For each s ∈ Sa and f ∈ Cb(N) let

ms(f) = F (s),

where F is the function of Theorem 2.3.1. Them ms is a well defined linear
functional with norm 1. Moreover, if f ≥ 0 then ms(f) ≥ 0, i.e. ms

is a positive functional. If we restrict the domain of ms to Cc(N) then
‖ms‖Cc(N) = 1. Indeed, in view of Corollary 2.2.1 for every ε > 0 there
exists Rε > 0 such that

F (s) ≤ max
x∈B(Rε)

f(x) + ε.

Take fε ∈ Cc(N) such that fε(x) = −1 for x ∈ B(Rε) and fε(x) = 0 for
x ∈ Bc(Rε + 1). Then |F (s)| ≥ 1− ε.

By the Riesz theorem there exists a probability measure µs
a on N such

that
ms(f) =

∫
N

f(y) µs
a(dy).

Thus
F (xb) =

∫
N

f(y) µx,b
a (dy) for x ∈ N, b > a.

Since L is left-invariant,

(14) F (xb) =
∫

N

f(xy) µe,b
a (dy).
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We write µb
a instead of µe,b

a , and let Ha be the set all functions harmonic in
Sa and continuous in Sa.

For every 0 < a < b < c,

µ̌c
a = µ̌b

a ∗ µ̌c
b;

this is an easy consequence of Remark 2.3.1 and (14).

Lemma 2.3.1. Let b > 0 and R = R(ε, b) be as in Corollary 2.2.1. Then
for every a < b,

µb
a(Bc(2R)) ≤ ε.

P r o o f. Let f ∈ Cb(N) be a function such that 0 ≤ f ≤ 1, f(x) = 0 for
x ∈ B(R) and f(x) = 1 for x ∈ Bc(2R). If F ∈ Ha and F (xa) = f(x) then

F (b) =
∫

N

f(y) µb
a(dy) ≤ µb

a(Bc(2R))

and thus µb
a(Bc(2R)) ≤ ε.

Notice that if we take arbitrary b > a > 0 and 1 > ε > 0, and σ,R as in
Theorem 2.2.1, then in view of Lemma 2.3.1 and Corollary 2.2.1,

µb
a(Bc(2Rε−2dk/σ)) ≤ ε,

hence
µb

a(Bc(r)) ≤ (2R)σ/(2dk)r−σ/(2dk).

Since the right hand side of the above inequality does not depend on a, the
family of measures {µb

a}0<a<b is tight.
Now we will show that {µ̌b

a}b>a is an approximate identity as b → a,
where dµ̌(x) = dµ(x−1). Let Φ be a Hunt function on N , i.e. Φ, XjΦ and
XiXjΦ are bounded, Φ(x) > 0 for x 6= e and Φ(e) = 0 (cf. e.g. [H]).

Theorem 2.3.2. Fix M > 0 and f ∈ C0(N). For every ε > 0 there
exists δ > 0 such that if 0 < a < b < M and b− a < δ, then

‖f ∗ µ̌b
a − f‖C0 < ε.

P r o o f. Let γ, γ0, R and α be constants satisfying

0 < γ < 1, 0 < γ0 < 1, κ + 1− γ − γ0 > 0, γ + γ0 < 1,

R >

k∑
j=1

‖X2
j Φ‖, α > (γγ0)−1 max(M2dk−γ , 1).

Then the function G(xb) = −α(b − a)γ − R−1Φ(x) is subharmonic in N ×
(a,M). Indeed,

(b2∂2
b − κb∂b)G(xb) = αγb(b− a)γ−2(κ(b− a) + (1− γ))

≥ αγγ0b
2(b− a)γ−2
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and ∣∣∣ k∑
j=1

b2dj X2
j (R−1Φ(x))

∣∣∣ ≤ R−1 max(b2d1 , b2dk)
k∑

j=1

‖X2
j Φ‖

≤ max(b2d1 , b2dk).
Thus

LG(xb) ≥ αγγ0b
2(b− a)γ−2 −max(b2d1 , b2dk).

If b < 1 then (b − a)γ−2 > 1 and b2d1−2 ≤ 1 while if b ≥ 1 then αγγ0 ≥
b2dk(b− a)2−γ for b < M . This proves that LG ≥ 0 in N × (a,M).

Let

F (xb) = R−1
∫

N

Φ(xy−1) µ̌b
a(dy), F (xa) = R−1Φ(x).

Then L(G + F ) ≥ 0 in N × (a,M) and (G + F )(xa) = 0 for x ∈ N . In view
of the maximum principle,

(15)
∫

N

Φ(y−1) µ̌b
a(dy) ≤ Rα(b− a)γ for 0 < a < b < M.

Since Φ(x) > 0 for x 6= e, (15) implies that for every ε > 0 and every
neighborhood U of the identity there is δ > 0 such that

µ̌b
a(U) ≥ 1− ε for b− a < δ, 0 < a < b < M.

The rest of the proof is trivial.

Theorem 2.3.3. There is a probability measure µb on N such that

µb
a ⇒ µb as a → 0.

P r o o f. Since the family {µb
a}0<a<b is tight, it is enough to show that

if µb
an

⇒ µb
1 and µb

bn
⇒ µb

2, where {an} and {bn} are arbitrary sequences
tending to 0, then µb

1 = µb
2. Without lost of generality we may assume that

an > bn for n = 1, 2, . . . We have

µ̌b
bn

= µ̌an

bn
∗ µ̌b

an
,

which in view of Theorem 2.3.2 shows that µ̌b
bn
⇒ µ̌b

1.

2.4. Pointwise estimates for the Poisson kernel. In this section we
assume that d1 = . . . = dk = 1. Let pt(x)dx be the semigroup of measures
generated by L = X2

1 + . . . + X2
k − ∂t. Then p1 is a bounded function and

(16) pt(x) = t−Q/2p1(δt−1/2(x))

(cf. e.g. [FS]). Moreover, in [H] it is proved that there is c > 0 such that

(17)
∫

N

pt(x) exp(sτ(x)) dx ≤ exp(tc(s + s2))
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for all s > 0. In fact, (17) gives a better integral estimate, which is included
in the following lemma.

Lemma 2.4.1. Let c > 0 be a constant such that∫
N

p1(x) exp(sτ(x)) dx ≤ exp(c(s + s2)).

Then for 0 < ε < 1/(4c),

(18)
∫

N

p1(x) exp(ετ2(x)) dx < ∞.

P r o o f. By assumption,∫
N

p1(x) exp(sτ(x)− cs2 − (c + 1)s) dx ≤ exp(−s).

Integrating both sides with respect to s, we obtain

(19)
∞∫

0

∫
N

p1 exp(s(τ(x)− c− 1)− cs2) dx ds ≤ 1.

Since

−cs2 + (τ(x)− c− 1)s = −
(

sc1/2 − 1
2c1/2

(τ(x)− c− 1)
)2

+
1
4c

(τ(x)− c− 1)2,

the left hand side of (19) is equivalent to∫
N

p1(x) exp
(

1
4c

(τ(x)− c− 1)2
)

×
∞∫

0

exp
(
−

(
sc1/2 − 1

2c1/2
(τ(x)− c− 1)

)2)
ds dx.

Now we calculate the inner integral to get

(20)
∫

{x:τ>c+1}

p1(x) exp(ετ(x)2)

× exp
[(

1
4c
− ε

)
τ(x)2 − c + 1

2c
τ(x) +

(c + 1)2

4c

]
dx ≤ c′.

Since the expression in square brackets, as a function of τ(x), has a minimum
when 0 < ε < 1/(4c), we put this value to (20) and we obtain (18).
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Lemma 2.4.2. Let c be the constant in Lemma 2.4.1. Then for 0 ≤ ε ≤
1/(4c),

p1(x) ≤ c′ exp
(
− ε

4
τ(x)2

)
.

P r o o f. In view of the semigroup property,

p1(x) exp
(

ε

4
τ(x)2

)
= exp

(
ε

4
τ(x)2

)
p1/2 ∗ p1/2(x)

=
∫

exp
(

ε

4
τ(x)2

)
p1/2(xy−1)p1/2(y) dy.

Notice that τ(x)2 ≤ 2τ(xy−1)2 + 2τ(y)2. Thus

p1(x) exp
(

ε

4
τ(x)2

)
≤
∫

exp(ε/(2τ(xy−1)2))p1/2(xy−1) exp(ε/(2τ(y)2))p1/2(y) dy

≤
{∫

exp(ετ(xy−1)2)p1/2(xy−1)2 dy
}1/2{∫

exp(ετ(y)2)p1/2(y)2 dy
}1/2

≤ ‖p1/2‖L∞(N)

∫
exp(ετ(y)2)p1/2(y) dy.

The following theorem comes from [Br] (where it is proved for more
general operators defined on Rn × R+).

Theorem 2.4.1 ([Br]). Let w(x, t) be a bounded function on NA such
that ( k∑

j=1

X2
j − ∂t

)
w(x, t) = 0 for x ∈ N, t > 0,

on the boundary w(x, 0) = φ(x), and

u(x, t) =
1

Γ (1/(2κ) + 1/2)

∞∫
0

e−σσ1/(2κ)−1/2w(x, t2/(4σ)) dσ

where κ > −1. Then the function u(x, t) satisfies the equation( k∑
j=1

X2
j + ∂2

t −
κ

t
∂t

)
u(x, t) = 0 for x ∈ N, t > 0,

and u(x, 0) = φ(x).

Let Pt(x) dx = µt(x). Theorem 2.4.1 implies

Pt(x) =
1

Γ (1/(2κ) + 1/2)

∞∫
0

e−σσ1/(2κ)−1/2pt2/(4σ)(x) dσ.
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Using (16) and our estimation for pt included in Lemma 2.4.2 we have

Pt(x) ≤ c′
∞∫

0

e−σσ1/(2κ)−1/2t−Q(4σ)Q/2e−4ετ(x)2σ/t2 dσ.

This yields

Pt(x) ≤ c′
tκ+1

(t2 + 4ετ(x)2)(Q+κ+1)/2

for sufficiently small ε.
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