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LOWER BOUNDS FOR THE SOLUTIONS IN THE SECOND CASE
OF FERMAT’S EQUATION WITH PRIME POWER EXPONENTS

BY

MAOHUA LE (CHANGSHA)

Let p be an odd prime, and let n be a positive integer. Further, let x, y,
z be integers satisfying

(1) 2 g =2, playr, 0<z<y<z gedr,y) =1.
Recently, Zhong [2] proved that y > 103%20”7”/2 and z —x > pgnpninil/ll'

In this note we partly improve the above result as follows:

THEOREM. If p =3 (mod 4), then y > pG”pn_3”2_2”+3/21/”n and z —
> pan"73n273n+3/2171/p".

Proof. It is a well known fact that (1) is impossible for p = 3, so we
may assume that p > 3.

We first deal with the case that p|z. Let p® || . Then from (1) we get

(2) z—y=p" ag
2P — P o )
(3) P G i=1...,n,
where xg,x1,...,z, are positive integers satisfying pfxoz; ...z, and
(4) x=pYTox1 ... Ty .

For any coprime integers X, Y, by the proof of the Theorem in [1], we
find that if p =3 (mod 4) then (X? — Y?)/(X —Y) = A2 + pB?, where A,
B are integers satisfying gcd(A,B) =1 and A=0 (mod (X —Y')). Hence,
by (3), we have

A2 2 p" .
—— 5 = Ay +pB; =px; , i=1,....n,
zp —yp
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whence we get

AN\ n
(5) Bf—kp(p) =2 i=1,...,n,

where A;, B; (i =1,...,n) are integers satisfying ged(A;, B;) = 1 and
1

AiEO(mod(zpFl—ypi ), i=1,...,n.

Further, by (2), A;/p (i =1,...,n) are integers satisfying

(6) =0 (mod p™?" ") i=1,...,n.
p
Notice that p > 3 and the class number of the imaginary quadratic field
Q(y/=p) is less than p. By an argument similar to the proof of the Theorem
in [1], we see from (5) that there exist integers X;,Y; (i = 1,...,n) satisfying

(7) ;= X2 +pY?, ged(X;,Y) =1, i=1,...,n,
and

A; n .
(8) BZ+?\/_ :(Xz"i'}/z\/—p)p ) Z:17"'7n'
From (8),

(" —1)/2 N
( P

Ai j j— "—2j—1y,2j .
9) — =p"Y; -1’ nxP TETy =1,...,n.
( ) p p ]ZO ( ) 2.7+1>p] 7 (3 ? ? ? 7n

Notice that if p > 3 and j > 0, then j > (log(2j + 1))/ log p and

PN . (P11 P
<2j+1)p < 2j >2j+1 (mod p)

Since ptz; (i =1,...,n), we have ptX; (i =1,...,n) by (7), and hence
(10) Y; =0 (mod p®?" ~2+i=2) =1, ... .n,

by (6) and (9). Since z; > 1 (i=1,...,n) ,wehave Y; #0 (i =1,...,n)
by (7). Thus, we obtain

x; >p2ap"74n+2i73, i — 1,,__’n’
by (7) and (10), and hence
(11) £ > pt Ui (ap" —Ant2i=3) _ 2amp” —3n®~2nta

by (4). Notice that a > 3 by [2]. We get & > ptn?" —3n" =243 by (11),
Using the same method, we can prove that y > p6np"*3”2*2”+3 and

z > p6"pn_3"2_2”+3 correspond to p|y and p|z respectively. Thus, y >
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p6”pn’3“2’2"+3/21/pn since 21/P"y > z. Simultaneously, we have

yp" yp"
Z—T = >
2Pl fogaP" =2 gl T prgpt—l
yP i Yy 6np™ —3n%—3n+3 /o1—1/p"
- pr(21/P )Pt =1 21=1/p" pn > P /2 '
The theorem is proved.
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