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LOWER BOUNDS FOR THE SOLUTIONS IN THE SECOND CASE
OF FERMAT’S EQUATION WITH PRIME POWER EXPONENTS

BY

MAOHUA LE (CHANGSHA)

Let p be an odd prime, and let n be a positive integer. Further, let x, y,
z be integers satisfying

(1) xpn

+ ypn

= zpn

, p |xyz, 0 < x < y < z, gcd(x, y) = 1 .

Recently, Zhong [2] proved that y > p3npn−n/2 and z − x > p3npn−n−1/4.
In this note we partly improve the above result as follows:

Theorem. If p ≡ 3 (mod 4), then y > p6npn−3n2−2n+3/21/pn

and z −
x > p6npn−3n2−3n+3/21−1/pn

.

P r o o f. It is a well known fact that (1) is impossible for p = 3, so we
may assume that p > 3.

We first deal with the case that p |x. Let pα ‖x. Then from (1) we get

(2) z − y = pαpn−nxpn

0 ,

(3)
zpi − ypi

zpi−1 − ypi−1 = pxpn

i , i = 1, . . . , n ,

where x0, x1, . . . , xn are positive integers satisfying p - x0x1 . . . xn and

(4) x = pαx0x1 . . . xn .

For any coprime integers X, Y , by the proof of the Theorem in [1], we
find that if p ≡ 3 (mod 4) then (Xp − Y p)/(X − Y ) = A2 + pB2, where A,
B are integers satisfying gcd(A,B) = 1 and A ≡ 0 (mod (X − Y )). Hence,
by (3), we have

zpi − ypi

zpi−1 − ypi−1 = A2
i + pB2

i = pxpn

i , i = 1, . . . , n ,
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whence we get

(5) B2
i + p

(
Ai

p

)2

= xpn

i , i = 1, . . . , n ,

where Ai, Bi (i = 1, . . . , n) are integers satisfying gcd(Ai, Bi) = 1 and

Ai ≡ 0 (mod (zpi−1
− ypi−1

)) , i = 1, . . . , n .

Further, by (2), Ai/p (i = 1, . . . , n) are integers satisfying

(6)
Ai

p
≡ 0 (mod pαpn−n+i−2) , i = 1, . . . , n .

Notice that p > 3 and the class number of the imaginary quadratic field
Q(
√
−p) is less than p. By an argument similar to the proof of the Theorem

in [1], we see from (5) that there exist integers Xi, Yi (i = 1, . . . , n) satisfying

(7) xi = X2
i + pY 2

i , gcd(Xi, Yi) = 1 , i = 1, . . . , n ,

and

(8) Bi +
Ai

p

√
−p = (Xi + Yi

√
−p)pn

, i = 1, . . . , n .

From (8),

(9)
Ai

p
= pnYi

(pn−1)/2∑
j=0

(−1)j

(
pn

2j + 1

)
pj−nXpn−2j−1

i Y 2j
i , i = 1, . . . , n .

Notice that if p > 3 and j > 0, then j > (log(2j + 1))/ log p and(
pn

2j + 1

)
pj−n =

(
pn − 1

2j

)
pj

2j + 1
≡ 0 (mod p) .

Since p - xi (i = 1, . . . , n), we have p - Xi (i = 1, . . . , n) by (7), and hence

(10) Yi ≡ 0 (mod pαpn−2n+i−2) , i = 1, . . . , n ,

by (6) and (9). Since xi > 1 (i = 1, . . . , n) , we have Yi 6= 0 (i = 1, . . . , n)
by (7). Thus, we obtain

xi > p2αpn−4n+2i−3 , i = 1, . . . , n ,

by (7) and (10), and hence

(11) x > pα+Σn
i=1(2αpn−4n+2i−3) = p2αnpn−3n2−2n+α

by (4). Notice that α ≥ 3 by [2]. We get x > p6npn−3n2−2n+3 by (11).
Using the same method, we can prove that y > p6npn−3n2−2n+3 and

z > p6npn−3n2−2n+3 correspond to p | y and p | z respectively. Thus, y >
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p6npn−3n2−2n+3/21/pn

since 21/pn

y > z. Simultaneously, we have

z − x =
ypn

zpn−1 + xzpn−2 + . . . + xpn−1
>

ypn

pnzpn−1

>
ypn

pn(21/pny)pn−1
=

y

21−1/pnpn
> p6npn−3n2−3n+3/21−1/pn

.

The theorem is proved.
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