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FACTORIZATION PROBLEMS IN CLASS NUMBER TWO

BY

FRANZ HALTER -KOCH (GRAZ)

Introduction. LetK be an algebraic number field, R its ring of integers,
G its ideal class group and N = #G > 1 its class number. For k ≥ 1 and
x ∈ R>0, let Fk(x) be the number of elements α ∈ R (up to associates)
having at most k different factorizations into irreducible elements of R.
W. Narkiewicz [9] obtained the asymptotic expression

Fk(x) ∼ ckx (log x)−1+1/N (log log x)ak ,

where ck ∈ R>0 depends on k and K, and ak ∈ N depends only on k and G.
In [4], this was generalized to abstract arithmetical formations, emphasizing
applications to algebraic function fields and to arithmetical semigroups (e.g.
Hilbert semigroups 1 + fN0 and, more generally, ray class semigroups in
algebraic number fields).

In this paper we give an explicit description of ak and ck in the simplest
non-trivial case N = 2. For ak, this is a purely combinatorial problem,
settled in Theorems 2 and 3. For the calculation of ck, it is necessary to
handle some infinite sums and products involving primes, which might be of
independent interest (Propositions 1 and 2). We formulate our investigations
in the frame of arithmetical formations having zeta functions; the analytical
main results are Theorems 1 and 4.

1. Arithmetical formations. We introduce the concept of an arith-
metical formation following [6]. By a semigroup we always mean a commu-
tative monoid satisfying the cancellation law; the identity element is denoted
by 1.

Definition. A formation consists of

1) a free abelian semigroup D with basis P 6= ∅, together with a congru-
ence relation ∼ on D such that G = D/∼ is a finite abelian group (written
additively) of order N ≥ 2,

2) a completely multiplicative function | · | : D → N with the following
three properties:

(i) |a| > 1 for all a ∈ D \ {1};
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(ii) there exist real numbers λ > 0 and 0 < δ < 1 such that, for all g ∈ G
and x ∈ R>0,

#{a ∈ g | |a| ≤ x} = λx+O(x1−δ) ;

(iii) Axiom (A∗∗), to be explained below.

Let G∗ = Hom(G,C×) be the character group of G and χ0 ∈ G∗ the
principal character. For a ∈ D, we denote by [a] ∈ G the class of a, and
for χ ∈ G∗ we set χ(a) = χ([a]). We introduce the Hecke–Landau zeta
functions

Z(s, χ) =
∑
a∈D

χ(a)|a|−s ;

the defining Dirichlet series converge for <s > 1 and have an Euler product
expansion

Z(s, χ) =
∏
p∈P

(1− χ(p)|p|−s)−1 .

The functions Z(s, χ) have analytic continuations to meromorphic functions
in the half-plane <s > 1−δ. For χ 6= χ0, Z(s, χ) is holomorphic in <s > 1−δ,
and Z(s) = Z(s, χ0) has a simple pole at s = 1 with residue λ. We have
Z(1 + it, χ) 6= 0 for all t ∈ R and χ ∈ G∗ unless t = 0 and χ2 = χ0; for this
special case, we introduce

Axiom (A∗∗). Z(1, χ) 6= 0 .

Taking logarithms in the Euler product of Z(s, χ) and applying the or-
thogonality relations for characters, we obtain for every g ∈ G and <s > 1,∑

p∈P∩g

|p|−s =
1
N

log
1

s− 1
+ hg(s) ,

where

hg(s) =
1
N

log{(s− 1)Z(s)}

+
1
N

∑
χ∈G∗

χ6=χ0

χ(g) logZ(s, χ)−
∑

p∈P∩g

∞∑
ν=2

|p|−νs .

The functions hg(s) are regular in the closed half-plane <s ≥ 1. Therefore
an arithmetical formation as introduced above is a formation in the sense of
[4], and the algebra of all complex functions which are analytic in <s ≥ 1 is
suitable for this formation.

For an arithmetical formation as introduced above, our main interest lies
in the arithmetic of the semigroup

H = {a ∈ D | a ∼ 1} = {a ∈ D | [a] = 0 ∈ G} .
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The injection H ↪→ D is a divisor theory [4, Lemma 1], and therefore D and
G are uniquely determined by H [2, Bemerkung 4]. In the sequel, we shall
speak about the arithmetical formation [D,H], and we shall tacitly use the
notations P, | · |, G,N,Z as above.

The most important examples of arithmetical formations to be consid-
ered in this paper are ray class semigroups in algebraic number fields (see
[2, Beispiel 4] and [8, Ch. VI, §1]):

Let K be an algebraic number field, c a cycle of K, I(c) the group of
fractional ideals of K relatively prime to c, I0(c) the semigroup of integral
ideals in I(c), K(c) = {(α) ∈ I(c) | α ∈ K× , α ≡ 1 mod×c }, S(c) =
I(c)/K(c) the ray class group modulo c and Γ ⊂ S(c) a subgroup. Then

IΓ (c) = {a ∈ I0(c) | aK(c) ∈ Γ}

is a subsemigroup of I0(c). We set D = I0(c), H = IΓ (c) and |a| = N(a);
then [D,H] becomes a formation with divisor class group G ' S(c)/Γ (see
[7, Sätze LXIV, XCVI] and [8, Ch. XIII, §3]).

Every character χ ∈ G∗ induces a (not necessarily primitive) ideal char-
acter χ1 mod c by

χ1(a) =
{
χ(aK(c)Γ ) if a ∈ I(c),
0 if a 6∈ I(c),

and

Z(s, χ) = ζK(s, χ1)

is the classical Hecke zeta function for χ1. If c = 1, then S(c) is the usual
ideal class group, and if Γ = {1}, then H = IΓ (c) is the semigroup of
non-zero principal ideals of K (which reflects the arithmetic in the ring of
integers in K).

The following special case will be dealt with in detail: Let ϕ be a (primi-
tive) Hecke character of order 2 with conductor c, identify ϕ with the induced
homomorphism ϕ : S(c) → {±1}, set Γ = Ker(ϕ) ⊂ S(c) and Hϕ = IΓ (c).
Then [I0(c),Hϕ] is an arithmetical formation whose class group G is of order
N = 2, and ϕ induces the non-trivial character on G. Associated with this
arithmetical formation, there are two zeta functions, Z(s) and Z(s, ϕ), and
we obtain

Z(s) = ζK(s)
∏
p | c

(1−N(p)−s) and Z(s, ϕ) = L(s, ϕ) ;

here ζK is the Dedekind zeta function of K, L(s, ϕ) is the usual L-series,
and consequently ζK(ϕ)(s) = ζK(s)L(s, ϕ), where K(ϕ) is the quadratic
extension field of K attached to ϕ by class field theory. The following
examples will be reconsidered at the end of §4.
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Example 1. K = Q, c = 4∞, I0(c) = {a ∈ N | a ≡ 1 mod 2}, ϕ =
(−4
•

)
,

Hϕ = 1+4N0, Z(s) = (1−2−s)ζ(s), Z(s, ϕ) = L(s, ϕ) andK(ϕ) = Q(
√
−1).

Example 2. K = Q, c = 5, I0(c) = {a ∈ N | a 6≡ 0 mod 5}, ϕ =
(

5
•
)
,

Hϕ = {a ∈ N | a ≡ ±1 mod 5}, Z(s) = (1− 5−s)ζ(s), Z(s, ϕ) = L(s, ϕ) and
K(ϕ) = Q(

√
5).

Example 3. K = Q(
√
−5), c = (1), I0(c) is the semigroup of all non-

zero ideals of Z[
√
−5], Hϕ is the semigroup of all non-zero principal ideals

of Z[
√
−5], ϕ is the non-trivial character on the ideal class group of K,

Z(s) = ζK(s) and K(ϕ) = Q(
√

5,
√
−5).

2. Factorizations and types. Let [D,H] be an arithmetical forma-
tion. For H, we use the notions of divisibility theory as introduced in [1, §6].
We are interested in the number f(α) of distinct factorizations of an element
α ∈ H into irreducibles (two factorizations are called distinct if they differ
not only in the order of their factors). For k ∈ N, we consider the function

Fk(x) = #{α ∈ H | |α| ≤ x, f(α) ≤ k} .
For the determination of its asymptotic behaviour, we introduce the no-
tion of types (cf. [9], [4] and [3] for a more systematical treatment of this
concept).

Definition. A type is a sequence

t = ((tg,ν)ν∈N)0 6=g∈G ,

where tg,ν ∈ N0, tg,ν = 0 for almost all indices (g, ν), and∑
0 6=g∈G

∑
ν≥1

tg,ν g = 0 ∈ G ;

the number
δ(t) = #{(g, ν) | tg,ν = 1} ∈ N0

is called the depth of t. Under componentwise addition, the set of types
is a semigroup T (G), and we adopt the notions of divisibility theory also
for T (G). Every t ∈ T (G) has a factorization into irreducible elements of
T (G), and we denote by f(t) the number of distinct such factorizations.

A type t = ((tg,ν)ν≥1)0 6=g∈G ∈ T (G) is called normalized if for every 0 6=
g ∈ G there exists an integer λg ∈ N0 such that 1 ≤ tg,1 ≤ tg,2 ≤ . . . ≤ tg,λg

and tg,ν = 0 for ν > λg; in this case we write t = ((tg,ν)ν≤λg
)0 6=g∈G.

Now let [D,H] be an arbitrary arithmetical formation. We are going to
describe factorizations in H by means of T (G). For α ∈ H, we set

α =
∏
g∈G

λg∏
ν=1

ptg,ν
g,ν
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where λg ∈ N0, pg,1, . . . , pg,λg ∈ P ∩ g are distinct, tg,ν ∈ N and 1 ≤ tg,1 ≤
tg,2 ≤ . . . ≤ tg,λg ; we call

τ (α) = ((tg,ν)ν≤λg
)0 6=g∈G ∈ T (G)

the type of α. It is not difficult to see that f(α) = f(τ (α)) (cf. [3] for
details).

For k ∈ N, we set

Tk(G) = {t ∈ T (G) | f(t) ≤ k} ;

then we obviously have, for x ∈ R>0,

Fk(x) = #{α ∈ H | |α| ≤ x, τ (α) ∈ Tk(G)} ,
and it was proved in [9] (see also [4], [3]) that

ak = ak(G) = sup{δ(t) | t ∈ Tk(G)}
is a positive integer. Now we are able to state the theorem concerning the
asymptotic behaviour of Fk(x) in arithmetical formations.

Theorem 1. Let [D,H] be an arithmetical formation, k ∈ N and ak =
ak(G). Then we have, as x→∞,

Fk(x) ∼ ckx (log x)−1+1/N (log log x)ak ,

where

ck =
G(1)

NdΓ (1/N)

∑
t

κtCt ;

here we have

G(s) = (s− 1)−1/N
∏

p∈P∩H

(1− |p|−s)−1 ,

the sum is over all normalized types t ∈ Tk(G) such that δ(t) = ak, and for
a normalized type t = ((tg,ν)ν≤λg )0 6=g∈G the quantities κt and Ct are defined
as follows:

κt =
∏

0 6=g∈G

#{π ∈ Sλt
| tg,π(ν) = tg,ν for all ν ≤ λg}−1 ,

and if dg ∈ N0 are integers defined by tg,ν = 1 for 1 ≤ ν ≤ dg and tg,ν > 1
for dg < ν ≤ λg, then

Ct =
∏

0 6=g∈G

∑
(q;g)

λg∏
ν=dg+1

|qν |−tg,ν ,

where (q; g) denotes the sum over all tuples (qdg+1, . . . , qλg ) of distinct
primes qj ∈ P ∩ g.

P r o o f. See [4, Theorem 1]; there the constant ck is not given explicitly,
but it can be reconstructed from the proof.
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R e m a r k. Using the methods of [5], the assertion of Theorem 1 can
be refined by giving further terms of the asymptotic expansion of Fk(x) if
[D,H] arises from a ray class semigroup in an algebraic number field.

To make Theorem 1 more explicit, it is necessary to calculate ak(G),
determine all normalized types t ∈ Tk(G) with δ(t) = ak(G) and manage
the calculation of the infinite series occurring in the definition of Ct. In this
paper we shall solve these problems for the simplest non-trivial case, where
G = C2 is a group of 2 elements.

3. Combinatorial theory of types over C2. Let G = C2 be a
group of two elements. Then T (C2) consists of all sequences (tν)ν≥1, where
tν ∈ N0, tν = 0 for almost all ν ≥ 1 and

∑
ν≥1 tν ≡ 0 mod 2; the normalized

types are finite sequences (t1, . . . , tλ) in N satisfying t1 + . . .+ tλ ≡ 0 mod 2.
For n, k ∈ N0, n+ k > 0, n+ k ≡ 0 mod 2, we set

t(n,k) = (1, . . . , 1︸ ︷︷ ︸
n

, k) ∈ T (C2) and C(n, k) = f(t(n,k)) .

Theorem 2. For n, k ∈ N0, n+ k > 0, n+ k ≡ 0 mod 2, we have

C(n, k) =
[k/2]∑
ν=0

(
n

k − 2ν

)
(n− k + 2ν − 1)!! ,

where

l !! =
{ 1 · 3 · 5 · . . . · l if l ∈ N is odd,

1 otherwise.
P r o o f. For n ≥ 1, every factorization of t(n,k) into irreducible types

contains exactly one irreducible factor of the form (1, 0, . . . , 0, 1, 0, . . . , 0).
Therefore the numbers C(n, k) satisfy the following recursion formulas:

C(1, k) = C(0, k) = 1 for k ≥ 0 ;
C(n+ 1, 0) = C(n, 1) for n ≥ 1 ;

C(n, 0) = (n− 1)C(n− 2, 0) for n ≥ 2 ;
C(n, k) = (n− 1)C(n− 2, k) + C(n− 1, k − 1) for n ≥ 2, k ≥ 1 .

These are satisfied by the expression given in Theorem 1.

Theorem 3. For k ∈ N, let n ∈ N be maximal such that (2n− 1)!! ≤ k.
Then

ak(C2) = 2n ,

and

{t ∈ Tk(C2) | t normalized, δ(t) = 2n} = {t(2n,2j) | j ∈ Jk} ,

where Jk is given as follows:
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Jk = {0} if k = 1, 3 ≤ k ≤ 8, 15 ≤ k ≤ 59, 105 ≤ k ≤ 524, 945 ≤ k ≤
5669, 10395 ≤ k ≤ 72764 or n ≥ 7, (2n− 1)!! ≤ k < (2n− 1)!! (n+ 1);

Jk = {0, 1} if k = 9, 60 ≤ k ≤ 74, 525 ≤ k ≤ 734, 5670 ≤ k ≤ 8819,
72765 ≤ k ≤ 124739 or n ≥ 7, (2n− 1)!! (n+ 1) ≤ k < (2n+ 1)!!;

Jk = {0, 1, 2} if k = 75, 735 ≤ k ≤ 762, 8820 ≤ k ≤ 9449 or 124740 ≤
k ≤ 135134;

Jk = {0, 1, 2, 3} if k = 763 or 9450 ≤ k ≤ 9494;
Jk = {0, 1, 2, 3, 4} if k = 9495;
Jk = N0 if k = 2, 10 ≤ k ≤ 14, 76 ≤ k ≤ 104, 764 ≤ k ≤ 944 or

9496 ≤ k ≤ 10394.

P r o o f. Let k ∈ N be given, and let n ∈ N be maximal such that
(2n− 1)!! ≤ k.

By Theorem 2, f(t(2n,0)) = (2n − 1)!! and δ(t(2n,0)) = 2n. Therefore
we must prove that δ(t) > 2n implies f(t) > k for every normalized type t;
but if δ(t) > 2n, then t(2n+2,0) divides t, and therefore f(t) ≥ f(t(2n+2,0)) =
(2n+ 1)!! > k.

By the same argument, every normalized type t ∈ T (C2) satisfying
f(t) ≤ k and δ(t) = 2n is of the form t = t(2n,2l) for some l ∈ N0. In
order to finish the proof of Theorem 3, we must determine all l ∈ N0 satis-
fying C(2n, 2l) ≤ k.

n = 1 : k ≤ 2, C(2, 0) = 1, C(2, 2l) = 2 for all l ≥ 1; therefore J1 = {0}
and J2 = N0.

n = 2 : 3 ≤ k ≤ 14, C(4, 0) = 3, C(4, 2) = 9, C(4, 2l) = 10 for all l ≥ 2;
therefore Jk = {0} for 3 ≤ k ≤ 8, J9 = {0, 1} and Jk = N0 for 10 ≤ k ≤ 14.

n = 3 : 15 ≤ k ≤ 104, C(6, 0) = 15, C(6, 2) = 60, C(6, 4) = 75,
C(6, 2l) = 76 for all l ≥ 3; therefore Jk = {0} for 15 ≤ k ≤ 59, Jk = {0, 1}
for 60 ≤ k ≤ 74, Jk = {0, 1, 2} for k = 75 and Jk = N0 for 76 ≤ k ≤ 104.

n = 4, 5, 6 : Similar.
n ≥ 7 : C(2n, 2) = (2n − 1)!! (n + 1) < (2n + 1)!!, and C(2n, 4) =

(2n − 1)!!(n2 + 5n+ 6)/6 ≥ (2n + 1)!!; therefore we obtain Jk = {0} for
(2n− 1)!! ≤ k < (2n− 1)!! (n+ 1), and Jk = {0, 1} for (2n− 1)!! (n+ 1) ≤
k < (2n+ 1)!!.

4. Analytical theory of factorizations in class number two. From
Theorems 1 and 3 we deduce:

Theorem 4. Let [D,H] be an arithmetical formation with class group
of order N = 2, and k ∈ N. Let n ∈ N be maximal with (2n − 1)!! ≤ k.
Then we have, as k →∞,

Fk(x) ∼ ck
x√
log x

(log log x)2n ,
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where

ck =
G(1)

22n(2n)!
√
π

∑
j∈Jk

S2j ,

S0 = 1, Sl =
∑

p∈P\H

|p|−l for l ≥ 2 ,

and
G(s) = (s− 1)1/2

∏
p∈P∩H

(1− |p|−s)−1 .

Though ck is given explicitly in Theorem 4, G(1) cannot be calculated
from the definition of G(s), and for small j the series defining S2j converge
very slowly. Therefore we shall now describe techniques which allow us to
compute ck in specific examples.

Let [D,H] be an arithmetical formation whose class group G is of order
N = 2, and let χ be the non-trivial character of G. Then the formation has
two zeta functions, Z(s) and Z(s, χ), and we define its total zeta function by

Z∗(s) = Z(s)Z(s, χ) .

Z∗(s) is a meromorphic function in the half-plane <s > 1 − δ, having a
simple pole at s = 1, and we set

K = Res{Z∗(s) : s = 1} .
If

G0(s) =
∏

p∈P∩H

(1− |p|−s)−1 ,

then the following formulas permit a calculation of G(1).

Proposition 1. Let notations be as above and m ∈ N. Then we have

G(1) =

√
K

Z(2)

∏
p∈P∩H

|p|√
|p|2 − 1

=
√
K

∏
p∈P\H

√
|p|2 − 1
|p|

=

√
K

Z(2)

m−1∏
j=1

{
Z∗(2j)
Z(2j+1)

}2−j−1

G0(2m)2
−m

,

and moreover

G(1) =

√
K

Z(2)

∞∏
j=1

{
Z∗(2j)
Z(2j+1)

}2−j−1

.

P r o o f. From the identity

G0(s)2 =
Z∗(s)
Z(2s)

G0(2s)
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we obtain

G(1) = lim
s→1

(s− 1)1/2G0(s) =

√
K

Z(2)
G0(2) ,

which implies the first formula. The second one follows by induction on m;
for the third one observe that

lim
m→∞

G0(2m)2
−m

= 1 .

For the calculation of Sl for l ≥ 2 we introduce the function

H(s) =
∞∑

n=1

µ(n)
n

log
Z(ns, χ)
Z(ns)

,

where µ denotes the Möbius function. It is connected with the sums Sl by
the following formulas.

Proposition 2. Let notations be as above.

(i) For l > 1, we have

H(l) = S2l − 2Sl ;

(ii) For l > 1 and m ∈ N,

Sl = −
m−1∑
ν=0

2−ν−1H(2ν l) + 2−mS2ml ,

and

Sl = −
∞∑

ν=0

2−ν−1H(2lν) .

P r o o f. (i) From

Z(ns, χ)
Z(ns)

=
∏

p∈P\H

(1 + |p|−ns)−1

(1− |p|−ns)−1

we obtain

log
Z(ns, χ)
Z(ns)

=
∑

p∈P\H

∞∑
k=1

k≡1 mod 2

−2
k
|p|−kns ,

and consequently
∞∑

n=1

µ(n)
n

log
Z(ns, χ)
Z(ns)

=
∑

p∈P\H

∞∑
m=1

−2
m
|p|−ms

∑
1≤k|m

k≡1 mod 2

µ

(
m

k

)
.
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It is easily checked that∑
1≤k|m

k≡1 mod 2

µ

(
m

k

)
=

{ 1 if m = 1,
−1 if m = 2,
0 if m > 2,

which gives the result.
(ii) follows from (i) by induction on m, observing that limm→∞ 2−mS2ml

= 0.

R e m a r k. The infinite product in Proposition 1 and the infinite series
in Proposition 2 turn out to converge very rapidly. They have been used for
the calculations in the subsequent examples.

Example 1. H = 1+4N0, D = 1+2N0, ϕ =
(−4
•

)
, Z(s) = (1−2−s)ζ(s),

Z(s, ϕ) = L(s, ϕ) and Z∗(s) = (1− 2−s)ζQ(
√
−1)(s); K = π

8 .

G(1) S2 S4 S6 S8
0.5798 0.1484 0.0128 0.0014 0.0002

Example 2. H = {a ∈ N | a ≡ ±1 mod 5}, D = {a ∈ N | a 6≡ 0
mod 5}, ϕ =

(
5
•
)
, Z(s) = (1 − 5−s)ζ(s), Z(s, ϕ) = L(s, ϕ) and Z∗(s) =

(1− 5−s)ζQ(
√

r)(s); K = 2
5
√

5
log 1+

√
5

2 .

G(1) S2 S4 S6 S8 S10 S12
0.2353 0.3965 0.0753 0.0170 0.0041 0.0010 0.0002

Example 3. H is the semigroup of non-zero principal ideals of Z[
√
−5],

D is the semigroup of all non-zero ideals of Z[
√
−5], G is the ideal class group

of Z[
√
−5] and ϕ is the non-trivial ideal class character, ϕ : D → {±1},

H = ϕ−1(1); Z(s) = ζQ(
√
−5)(s) = ζ(s)L(s, χ), where χ =

(−20
•

)
; we set

ψ =
(

5
•
)
, θ =

(−4
•

)
and obtain

Z∗(s) = ζQ(
√

5,
√
−5)(s) = ζ(s)L(s, χ)L(s, ψ)L(s, θ) ,

whence Z(s, ϕ) = L(s, ψ)L(s, θ); K = 1
5 log 1+

√
5

2 .

G(1) S2 S4 S6 S8
0.2331 0.1353 0.0128 0.0014 0.0002
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