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FACTORIZATION PROBLEMS IN CLASS NUMBER TWO

BY

FRANZ HALTER-KOCH (GRAZ)

Introduction. Let K be an algebraic number field, R its ring of integers,
G its ideal class group and N = #G > 1 its class number. For k > 1 and
x € Ry, let Fi(z) be the number of elements @ € R (up to associates)
having at most k different factorizations into irreducible elements of R.
W. Narkiewicz [9] obtained the asymptotic expression

—1+1/N(

Fy(z) ~ cxx (log x) loglog )" |

where ¢, € R+ depends on k and K, and ax € N depends only on k and G.
In [4], this was generalized to abstract arithmetical formations, emphasizing
applications to algebraic function fields and to arithmetical semigroups (e.g.
Hilbert semigroups 1 + fNy and, more generally, ray class semigroups in
algebraic number fields).

In this paper we give an explicit description of ax and ¢ in the simplest
non-trivial case N = 2. For ay, this is a purely combinatorial problem,
settled in Theorems 2 and 3. For the calculation of ¢, it is necessary to
handle some infinite sums and products involving primes, which might be of
independent interest (Propositions 1 and 2). We formulate our investigations
in the frame of arithmetical formations having zeta functions; the analytical
main results are Theorems 1 and 4.

1. Arithmetical formations. We introduce the concept of an arith-
metical formation following [6]. By a semigroup we always mean a commu-
tative monoid satisfying the cancellation law; the identity element is denoted
by 1.

DEFINITION. A formation consists of

1) a free abelian semigroup D with basis P # (), together with a congru-
ence relation ~ on D such that G = D/~ is a finite abelian group (written
additively) of order N > 2,

2) a completely multiplicative function |- | : D — N with the following
three properties:

(i) la] > 1 for all a € D\ {1};
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(ii) there exist real numbers A > 0 and 0 < § < 1 such that, forallg € G
and z € Ry,

#{aegllal <z} =rx+0(z'0);
(iii) Axiom (A**), to be explained below.

Let G* = Hom(G,C*) be the character group of G and yg € G* the
principal character. For a € D, we denote by [a] € G the class of a, and
for x € G* we set x(a) = x([a]). We introduce the Hecke-Landau zeta
functions

Z(s,x) = Y x(a)la]™*;
a€D
the defining Dirichlet series converge for s > 1 and have an Euler product
expansion
Z(s,x) =[] (1= xw)pl~*)~".
peP

The functions Z(s, x) have analytic continuations to meromorphic functions
in the half-plane s > 1—0. For x # xo, Z(s, x) is holomorphic in s > 1-9§,
and Z(s) = Z(s,xo0) has a simple pole at s = 1 with residue A. We have
Z(1+it,x) # 0 for all t € R and y € G* unless t = 0 and x? = xo; for this
special case, we introduce

AxIoMm (A*). Z(1,x) #0.

Taking logarithms in the Euler product of Z(s, x) and applying the or-
thogonality relations for characters, we obtain for every g € G and Rs > 1,

_ 1 1
Z p| SZNIOgS_l“‘hg(S):

pePNg

where

hy(s) = v log{(s — 1)Z(s))

Fo Y X))~ 3 Sl

XEG™ pEPNgv=2

X#X0
The functions hy(s) are regular in the closed half-plane s > 1. Therefore
an arithmetical formation as introduced above is a formation in the sense of
[4], and the algebra of all complex functions which are analytic in fts > 1 is
suitable for this formation.

For an arithmetical formation as introduced above, our main interest lies

in the arithmetic of the semigroup

H={aeDl|a~1}={a€eD|[a]=0€eG}.
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The injection H < D is a divisor theory [4, Lemma 1], and therefore D and
G are uniquely determined by H [2, Bemerkung 4]. In the sequel, we shall
speak about the arithmetical formation [D, H], and we shall tacitly use the
notations P, |- |,G, N, Z as above.

The most important examples of arithmetical formations to be consid-
ered in this paper are ray class semigroups in algebraic number fields (see
[2, Beispiel 4] and [8, Ch. VI, §1]):

Let K be an algebraic number field, ¢ a cycle of K, Z(c) the group of
fractional ideals of K relatively prime to ¢, Zyp(c) the semigroup of integral
ideals in Z(¢), K(¢) = {(a) € Z(¢) | « € KX, a =1 mod*c}, S(c) =
Z(c)/K(c) the ray class group modulo ¢ and I" C §(¢) a subgroup. Then

T () = {a € Ty(c) | aK(c) € I'}

is a subsemigroup of Zy(c). We set D = Zy(c), H = Z' (¢) and |a| = N(a);
then [D, H| becomes a formation with divisor class group G ~ S(c)/I" (see
[7, Siitze LXIV, XCVI] and [8, Ch. XIII, §3]).

Every character y € G* induces a (not necessarily primitive) ideal char-
acter y1 mod ¢ by

o= {00 2T

and

Z(S7 X) = CK(‘S? Xl)
is the classical Hecke zeta function for x;. If ¢ = 1, then S(c) is the usual
ideal class group, and if I' = {1}, then H = Z''(c) is the semigroup of
non-zero principal ideals of K (which reflects the arithmetic in the ring of
integers in K).

The following special case will be dealt with in detail: Let ¢ be a (primi-
tive) Hecke character of order 2 with conductor ¢, identify ¢ with the induced
homomorphism ¢ : S(¢) — {£1}, set I' = Ker(p) C S(c) and H, = Z'(c).
Then [Zy(c), H,] is an arithmetical formation whose class group G is of order
N =2, and ¢ induces the non-trivial character on G. Associated with this
arithmetical formation, there are two zeta functions, Z(s) and Z(s, ¢), and
we obtain

Z(s) = (i (s) [T =9Mp)™®) and  Z(s,0) = L(s,9);
ple

here ( is the Dedekind zeta function of K, L(s,¢) is the usual L-series,
and consequently (x(,)(s) = Cx(s)L(s, ), where K(p) is the quadratic
extension field of K attached to ¢ by class field theory. The following
examples will be reconsidered at the end of §4.
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EXAMPLE 1. K =Q, ¢ =400, Zy(c) = {a € N | a = 1 mod 2}, p = (),
H, = 1+4No, Z(s) = (1-27°)((s), Z(s,¢) = L(s,¢) and K (p) = Q(v-1).

EXAMPLE 2. K = Q, ¢ = 5, Io(c:{ € N|a# 0mod5}, ¢ = (2),
H,={aeN|a=+1mod5}, Z(s) =(1—-5"°)((s), Z(s,¢) = L(s, ) and
K(p) = Q(v5).

EXAMPLE 3. K = Q(v/=5), ¢ = (1), Zo(c) is the semigroup of all non-
zero ideals of Z[v/—5], H, is the semigroup of all non-zero principal ideals
of Z[\/=5], ¢ is the non-trivial character on the ideal class group of K,

Z(s) = Cx(s) and K(p) = Q(v/5,v/=5).

2. Factorizations and types. Let [D, H| be an arithmetical forma-
tion. For H, we use the notions of divisibility theory as introduced in [1, §6].
We are interested in the number f(«) of distinct factorizations of an element
a € H into irreducibles (two factorizations are called distinct if they differ
not only in the order of their factors). For k € N, we consider the function

Fp(z)=#{a € H| |o| <=z, f(a) <k}.

For the determination of its asymptotic behaviour, we introduce the no-
tion of types (cf. [9], [4] and [3] for a more systematical treatment of this
concept).

DEFINITION. A type is a sequence

t= ((tg,u)VEN)OségEG )

where t,, € Ny, ty,, = 0 for almost all indices (g,v), and

Z Ztg7yg:0€G;

0#g€eG v2>1
the number
(t) = #{(9,v) [ tg, = 1} € No
is called the depth of t. Under componentwise addition, the set of types
is a semigroup 7 (G), and we adopt the notions of divisibility theory also
for T(G). Every t € 7(G) has a factorization into irreducible elements of
7(G), and we denote by f(¢) the number of distinct such factorizations.

Atypet = ((tgv)v>1)o2gcc € T(G) is called normalized if for every 0 #
g € G there exists an integer A\, € Ng such that 1 <1 <t50 <... <ty
and t,, = 0 for v > \g; in this case we write t = ((tg,,)v<a, )o£gea-

Now let [D, H] be an arbitrary arithmetical formation. We are going to
describe factorizations in H by means of 7 (G). For o € H, we set

T

geGr=1
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where Ay € No, pg.1,...,p0g,2, € PN g are distinct, t,, € Nand 1 <, <
tg2 < ... Sitga,; we call

7(a@) = ((tg.)vxr,Jozgea € T(G)
the type of a. It is not difficult to see that f(a) = f(7(«)) (cf. [3] for
details).

For k € N, we set
T(G) = {t € T(G) | £(t) < k}:
then we obviously have, for x € R,
Fi(x) = #{ae H ||o| <z, 7(a) € Tu(G)},

and it was proved in [9] (see also [4], [3]) that

ak = ax(G) = sup{8(t) | £ € Tu(G)}
is a positive integer. Now we are able to state the theorem concerning the

asymptotic behaviour of Fj(x) in arithmetical formations.

THEOREM 1. Let [D, H] be an arithmetical formation, k € N and a, =
ax(G). Then we have, as x — 00,

71+1/N(

Fy(z) ~ cpz (log x) loglog ) |

where

_ G .
Cr = W zt: ki Cy;

here we have
G(s)=(s—1)""N ] (a—1pl™*)",
peEPNH

the sum is over all normalized types t € Ti.(G) such that §(t) = ay, and for
a normalized type t = ((tg,,)v<x,)ozgec the quantities ry and Cy are defined
as follows:

ke= [ #{m €6, |tynp) =tgw forallv <A},
0#9g€G

and if dy € Ng are integers defined by t,, =1 for1 <v <d, andty, > 1
fordy, <v < Ay, then

Ag
Cy= H Z H law|

0#9€G (q;9) v=dg+1
where (q;g) denotes the sum over all tuples (qq,4+1,...,qz,) of distinct
primes q; € PNyg.

Proof. See [4, Theorem 1]; there the constant ¢ is not given explicitly,
but it can be reconstructed from the proof. m
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Remark. Using the methods of [5], the assertion of Theorem 1 can
be refined by giving further terms of the asymptotic expansion of Fj(x) if
[D, H] arises from a ray class semigroup in an algebraic number field.

To make Theorem 1 more explicit, it is necessary to calculate ax(G),
determine all normalized types t € 7;(G) with 6(t) = ar(G) and manage
the calculation of the infinite series occurring in the definition of C;. In this
paper we shall solve these problems for the simplest non-trivial case, where
G = () is a group of 2 elements.

3. Combinatorial theory of types over Cs. Let G = C5 be a
group of two elements. Then 7 (C5) consists of all sequences (t,),>1, where
t, € Ny, t, = 0 for almost all v > 1 and Zy>1 t, = 0 mod 2; the normalized
types are finite sequences (t1,...,ty) in N satisfying t; +...+#, = 0 mod 2.

Forn,k € Ng, n+k >0, n+ k= 0mod 2, we set

tk) = (1,...,1,k) € T(Cy) and C(n, k) = f(t™H).
N——
THEOREM 2. Forn,k € Ng, n+ k>0, n+ k = 0 mod 2, we have
[k/2]

Clnk)= > <k _”2U> (n—k+ 20— 1),

v=0
where
“!:{1-3-5-...% if 1 € N is odd,
1 otherwise.
Proof. For n > 1, every factorization of t(™*) into irreducible types

contains exactly one irreducible factor of the form (1,0,...,0,1,0,...,0).
Therefore the numbers C'(n, k) satisfy the following recursion formulas:
C(l,k)=C(0,k)=1 for k> 0;
C(n+1,0)=C(n,1) forn>1;

C(n,0)=(n—1)C(n—2,0) forn>2;
Cn,k)=n—-1)Cn—-2k)+Cn—1,k—1) forn>2, k>1.
These are satisfied by the expression given in Theorem 1. =

THEOREM 3. For k € N, let n € N be mazimal such that (2n — 1)!l < k.
Then

ax(Ca) = 2n,
and
{t € To,(Cy) | t normalized, §(t) =2n} = {t®™2) | j e J,},

where Jy is given as follows:
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Je={0}if k=13<k<8 15<k<59, 105 <k <524, 945 < k <
5669, 10395 < k < 72764 orn>7, 2n— DI <k < (2n— 1! (n+1);

Jo={0,1} if k=9, 60 < k < 74, 525 < k < 734, 5670 < k < 8819,
72765 < k < 124739 orn > 7, (2n— DIl (n+ 1) < k < (2n + 1)1;

Jr ={0,1,2} if k=175, 735 < k <762, 8820 < k < 9449 or 124740 <
k< 135134;

Jp = {0,1,2,3) if k=763 or 9450 < k < 9494;

Jp = {0,1,2,3,4} if k = 9495;

Jo = Noif k=2 10<k <14, 76 < k < 104, 764 < k < 944 or
9496 < k <10394.

Proof. Let £k € N be given, and let n € N be maximal such that
(2n — 1N < k.

By Theorem 2, f(t2™9) = (2n — 1)!! and §(¢t*»0)) = 2n. Therefore
we must prove that §(t) > 2n implies f(¢) > k for every normalized type t;
but if §(t) > 2n, then t?7*2.0) divides ¢, and therefore f(t) > f(¢t(?7+2.0)) =
2n+ 1! > k.

By the same argument, every normalized type ¢t € 7 (Cs) satisfying
f(t) < k and 6(t) = 2n is of the form t = t®™2) for some | € Ny. In
order to finish the proof of Theorem 3, we must determine all [ € Ny satis-
fying C'(2n,2l) < k.

n=1:k<2 C(2,0) =1, C(2,2]) =2 for all [ > 1; therefore J; = {0}
and JQ = Ng.

n=2:3<k<14, C(4,0) =3, C(4,2) =9, C(4,2]) = 10 for all [ > 2;
therefore J, = {0} for 3 <k <8, Jy ={0,1} and J, = Ny for 10 < k < 14.

n=3:15 < k < 104, C(6,0) = 15, C(6,2) = 60, C(6,4) = 75,
C(6,20) = 76 for all [ > 3; therefore J, = {0} for 15 < k <59, J, = {0,1}
for 60 < k <74, J, ={0,1,2} for k =75 and J, = Ny for 76 < k < 104.

n =4,5,6 : Similar.

n>7:02n2 =2n—-D(n+1) < 2n+ 1!, and C(2n,4) =
(2n — DYN(n? +5n+6)/6 > (2n + 1)!!; therefore we obtain J, = {0} for
Cn—-DN<k<@2n-1)!(n+1),and Ji = {0,1} for 2n —1)!I (n +1) <
k< (@n+ 1)l m

4. Analytical theory of factorizations in class number two. From
Theorems 1 and 3 we deduce:

THEOREM 4. Let [D, H| be an arithmetical formation with class group
of order N = 2, and k € N. Let n € N be mazimal with (2n — 1)!! < k.
Then we have, as k — oo,

Fy(x) ~ ¢ (log log :C)Q” ,

x
Vlogx
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where
G(1
k= 52n (o0m)\ I/ ZSQJ’
221(2n)! fgeJk
So=1, Si= Y |pI™" fori>2,
peP\H
and

Gls)=(s=1* T[ =)

peEPNH

Though ¢, is given explicitly in Theorem 4, G(1) cannot be calculated
from the definition of G(s), and for small j the series defining Sy; converge
very slowly. Therefore we shall now describe techniques which allow us to
compute ¢ in specific examples.

Let [D, H] be an arithmetical formation whose class group G is of order
N = 2, and let x be the non-trivial character of G. Then the formation has
two zeta functions, Z(s) and Z(s, x), and we define its total zeta function by

Z*(s) = Z(s)Z(s,X) -

Z*(s) is a meromorphic function in the half-plane Rs > 1 — ¢, having a
simple pole at s = 1, and we set

K =Res{Z"(s): s =1}.
If
Gos)= [ @—1lpl™)~",

pePNH
then the following formulas permit a calculation of G(1).

PROPOSITION 1. Let notations be as above and m € N. Then we have
G(1) = H - VK H VIp|? =1
pEPﬂH Vipl? = pEP\H p]

m—1 271

H{ e } Go@? ",

6=t I{ 7}

Proof. From the identity

and moreover
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we obtain
G(1) = ;m%(s 1)"°Gy(s) = ®

which implies the first formula. The second one follows by induction on m;
for the third one observe that

lim Go(2™)? " =1. =

m—00

For the calculation of S} for [ > 2 we introduce the function
Z p(n Z(ns, x)
Z(ns) ’
where p denotes the Mdébius function. It is connected with the sums S; by
the following formulas.

PROPOSITION 2. Let notations be as above.
(i) Forl > 1, we have
H(l) = S2l — 25[ 3

(ii) Forl>1 and m € N,

m—1

= 27T H(241) + 27 Sy
v=0

and
oo

Si==>Y 27" H(2W).

v=0
Proof. (i) From

Zusx) _ pp (4l

|| —ns)—1
Zns) A4, G=1pl)
we obtain
7’LS X —2 —kns
log ——= Z Z ?W ks
pEP\H k=1
k=1 mod 2

and consequently

> Mg e 3 S B Y ()

peEP\H m=1 1<k|m
k=1 mod 2
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It is easily checked that

. 1 ifm=1,
> u(}{) = {—1 if m =2,
1<k|m 0 if m> 2,
k=1 mod 2

which gives the result.
(ii) follows from (i) by induction on m, observing that lim,, . 27™Sam,
0. m

Remark. The infinite product in Proposition 1 and the infinite series
in Proposition 2 turn out to converge very rapidly. They have been used for
the calculations in the subsequent examples.

EXAMPLE 1. H = 144Ng, D = 142Ny, ¢ = (54), Z(s) = (1=27*)(s),
Z(s,) = Lis, ) and Z*(s) = (1 - 27) Gy (s); K = £

G(1) So Sy Se Sg
0.5798 0.1484 0.0128 0.0014 0.0002

ExaMPLE 2. H ={a € N|a=+1lmod5}, D ={a e N|a#0
mod 5}, ¢ = (3), Z(s) = (1 =57°)¢(s), Z(s,¢) = L(s,) and Z*(s) =

(1 =57)Co(ym (8); K = 2z log 7.

S

G(1) So Sy Se Ss S10 S12
0.2353 0.3965 0.0753 0.0170 0.0041 0.0010 0.0002

EXAMPLE 3. H is the semigroup of non-zero principal ideals of Z[v/—5],
D is the semigroup of all non-zero ideals of Z[v/—5], G is the ideal class group
of Z[v/—5] and ¢ is the non-trivial ideal class character, ¢ : D — {£1},

H = ¢7'(1); Z(s) = (g(y=5)(s) = C(s)L(s, x), where x = (=2%); we set
¢ =(2), 0= (=) and obtain

Z7(s) = Co(vz,v=5)(s) = C(s)L(s, x)L(s,¥) L(s,0) ,

whence Z(s,p) = L(s,9)L(s,0); K = %log 1+2\/g.

G(1) S, S4 Se Sg
0.2331 0.1353 0.0128 0.0014 0.0002




FACTORIZATION PROBLEMS 265

REFERENCES

R. Gilmer, Commutative Semigroup Rings, Univ. of Chicago Press, Chicago 1984.
F. Halter-Koch, Halbgruppen mit Divisorentheorie, Exposition. Math. 8 (1990),
29-66.

—, Typenhalbgruppen und Faktorisierungsprobleme, Resultate Math. 22 (1992), 545
559.

F. Halter-Koch and W. Miiller, Quantitative aspects of non-unique factorization:
A general theory with applications to algebraic function fields, J. Reine Angew. Math.
421 (1991), 159-188.

J. Kaczorowski, Some remarks on factorizations in algebraic number fields, Acta
Arith. 43 (1983), 53-68.

J. Knopfmacher, Abstract Analytic Number Theory, North-Holland, 1975.

E. Landau, Uber Ideale und Primideale in Idealklassen, Math. Z. 2 (1918), 52-154.
S. Lang, Algebraic Number Theory, Addison-Wesley, 1970.

W. Narkiewicz, Numbers with unique factorization in an algebraic number field,
Acta Arith. 21 (1972), 313-322.

INSTITUT FUR MATHEMATIK
KARL-FRANZENS-UNIVERSITAT
HEINRICHSTRASSE 36/1V

A-8010 GRAZ, OSTERREICH

Rec¢u par la Rédaction le 17.6.1992;
en version modifiée le 25.1.1993



