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AND V. T R N K O V Á (PRAHA)

1. Introduction. Suppose that an algebra B is a reduct of an alge-
bra A. (In this case we also say that A is an expansion of B.) Clearly,
the endomorphism monoid End(A) of A is a submonoid of End(B). We are
interested in the question of which pairs of monoids (M,N) can be repre-
sented as (End(A),End(B)), with A an expansion of B, and in the various
ways these representable pairs can be represented. Which pairs can be rep-
resented was settled in [4]. There it was shown that any representable pair
of monoids can be represented by a pair of algebras A and B where A has
three unary operations and B has two unary operations. In this paper we
are interested in the existence of other kinds of such representations.

Results of this nature are most fully expressed in the language of cat-
egory theory. So we interrupt our introduction to give some categorical
preliminaries. We urge the knowledgeable reader to skip these preliminaries
and refer back to them only as necessary.

2. Preliminaries. A concrete category is a pair (K,Ψ) where Ψ is a
faithful functor from the category K into Set, the category of sets. Suppose
that (K0, Ψ) and (H0, Λ) are concrete categories. Suppose that the functors
Φ0 and Φ1 in the commutative diagram (1) are faithful and Φ0 is full (and
thus all four functors in the diagram are faithful):

(1)
K0

Ψ−→ Set
Φ0

y yΦ1

H0
Λ−→ Set

Then Φ0 is a strong embedding of the concrete category (K0, Ψ) into the
concrete category (H0, Λ) carried by the set functor Φ1.
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We remind the reader that a commutative square of functors

(2)
P

Ψ−→ K1

Φ0

y yΦ1

H0
Λ−→ H1

is a pullback iff for any other commutative square of functors

(3)
P̂

Ψ̂−→ K1

Φ̂0

y yΦ1

H0
Λ−→ H1

there exists a unique functor Υ so that the following diagram commutes:

(4)
P̂ ==== P̂ ==== P̂

Φ̂0

y yΥ
yΨ̂

H0
Φ0←− P

Ψ−→ K1

We note that the pullback is necessarily unique up to isomorphism.
The pullback P = H0 ?K1 of functors Λ : H0 → H1 and Φ1 : K1 → H1

is constructed as follows. The class obj(H0 ?K1) of all objects of H0 ?K1

consists of all pairs (a0, b1) ∈ obj(H0 ×K1) satisfying Λ(a0) = Φ1(b1), and
the class mor(H0 ?K1) consists of all morphism pairs (h0, k1) ∈ mor(H0 ×
K1) for which Λ(h0) = Φ1(k1). We use Π0 and Π1 to denote the restrictions
of the two projections to H0 ?K1 ⊆ H0 ×K1, and then the diagram below
is the pullback of the functors Λ and Φ1:

(5)
H0 ?K1

Π1−→ K1

Π0

y yΦ1

H0
Λ−→ H1

Suppose that H0 and K1 are varieties of algebras regarded as categories
whose morphisms are precisely the algebra homomorphisms. Suppose the
functors Λ : H0 → Set and Φ1 : K1 → Set are the usual forgetful functors
assigning underlying sets and maps to algebras from H0 and K1. In this case
there is an alternative description of the pullback. By an abuse of notation
we let H0 ?K1 be the category of all homomorphisms between algebras
(X,F ∪G) with (X,G) ∈ obj(H0), (X,F ) ∈ obj(K1) and F ∩G = ∅. Both
H0 and K1 thus contain reducts of members of H0 ?K1. We let Φ0 and Ψ
be the obvious “reduction” functors. (For example, Φ0(X,F ∪G) = (X,F )
and Φ0(f) = f .) Then diagram (6) is the pullback of Λ and Φ1:

(6)
H0 ?K1

Ψ−→ K1

Φ0

y yΦ1

H0
Λ−→ H1
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Thus, for varieties U and V of algebras, we have two ways of viewing
V ?U . Since these are isomorphic, we will choose whichever view is most
convenient at the moment.

If the functors Φ0 and Φ1 of the commutative diagram (7) are full and
faithful, the pair (Φ0, Φ1) is called a simultaneous representation of Ψ in Λ:

(7)
K0

Ψ−→ K1

Φ0

y yΦ1

H0
Λ−→ H1

Suppose now that we have a monoid k1
∼= End(B), A is an expansion

of B and k0
∼= End(A). Suppose also that Λ is the “reduction functor”

between the varieties generated by A and B, respectively, and that Ψ is
the identity inclusion of k0 into k1. Then indeed we have a simultaneous
representation of Ψ in Λ; of course, Φ1 is an isomorphism of k1 with End(B)
and Φ0 is the restriction of Φ1 to k0. Also, we will be interested in more
general situations.

Suppose k0 and k1 are small categories and Ψ : k0 → k1 is a covariant
functor. In this case, we say that Ψ is a small functor. Suppose also that
V and U are varieties of algebras and Λ is the “reduction functor” from
V ?U to U determined by Λ(X,F ∪ G) = (X,F ). We will be interested
in simultaneous representations of such small Ψ in such Λ. The existence
of such a representation requires that there be full and faithful functors Φ0

and Φ1 which make the diagram (S) below commute:

(S)
k0

Ψ−→ k1

Φ0

y yΦ1

V ?U
Λ−→ U

According to [4], a functor Ψ is regularly faithful iff Ψ is a composite
Ψ = Ψ1 ◦ Ψ0 of a full embedding (that is, a full and faithful functor) Ψ1 and
an equalizer Ψ0 in the category of all small categories.

We say that a variety is universal if it contains an isomorphic copy of
any small category as a full subcategory.

1. Introduction (continued). Every monoid M is isomorphic to the
endomorphism monoid of a unary algebra with at least two unary operations;
more generally, the variety Alg(∆) of all algebras of any type ∆ whose sum
is ≥ 2 is universal (see Hedrĺın and Pultr [2] and Vopěnka, Hedrĺın and
Pultr [8], or [6]).

According to [4], any functor Ψ simultaneously representable in a reduc-
tion functor between two categories of algebras must be regularly faithful.
Conversely, it was shown in [4] that any small regularly faithful functor Ψ
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has a simultaneous representation in the reduction (or second projection)
functor Λ : V ?U → U for any universal category of the form U = Alg(∆)
and V = Alg(1).

The present paper extends the latter result to include any universal va-
riety U of unary algebras. Furthermore, we describe all small subcategories
selected by expansions of algebras from U by operations of an arbitrary
unary variety or a regular non-unary variety V . More precisely, we show
that any small regularly faithful functor Ψ has a simultaneous representation
in the reduction functor Λ : V ?U → U , as in the diagram (S), whenever U
is a universal unary variety and V is either an arbitrary non-unary regular
variety or a unary variety not polynomially equivalent to the variety of sets
or to a nullary variety. In addition, we characterize functors simultaneously
representable in Λ for an expansion V ?U of a universal unary variety U by
an essentially nullary variety V .

3. Subpullbacks. The following notion turns out to be of great use to
us for our simultaneous representations. A commutative square of functors

(7)
K0

Ψ−→ K1

Φ0

y yΦ1

H0
Λ−→ H1

(with Ω = Φ1 ◦ Ψ = Λ ◦ Φ0) is called a subpullback whenever for any two
objects a, b ∈ K0, the diagram (8) of hom-sets

(8)
K0(a, b)

Ψ−→ K1(Ψ(a), Ψ(b))
Φ0

y yΦ1

H0(Φ0(a), Φ0(b))
Λ−→ H1(Ω(a), Ω(b))

is a pullback in the category Set of all sets and mappings. This is equiv-
alent to the requirement that, for any H1-morphism h1 : Ω(a) → Ω(b)
such that h1 = Λ(h0) = Φ1(k1) for some h0 ∈ H0(Φ0(a), Φ0(b)) and k1 ∈
K1(Ψ(a), Ψ(b)) there be a unique morphism k0 ∈ K0(a, b) for which Φ0(k0) =
h0 and Ψ(k0) = k1.

Whenever diagram (7) is a subpullback, it is easy to see that Φ0 is faithful
or full, respectively, whenever Φ1 has one of these properties; similarly for
Ψ and Λ. Throughout the paper, all subpullbacks will consist of faithful
functors.

We see that whenever diagram (7) is a simultaneous representation, it is
also a subpullback whenever Λ is a faithful functor.

Another important instance of a subpullback is the pullback H0 ?K1 of
faithful functors Λ : H0 → H1 and Φ1 : K1 → H1 in diagram (5). It is clear
that the restrictions Π0 : H0 ?K1 → H0 and Π1 : H0 ?K1 → K1 of the
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two projections to H0 ?K1 ⊆ H0×K1 are faithful and that the diagram (5)
above is a subpullback.

Another instance of a subpullback occurs when Φ0 is a strong embedding
of the concrete category (K0, Ψ) into the concrete category (H0, Λ) carried
by the set functor Φ1 as in diagram (1).

All proofs of simultaneous representability will be based on the following
simple claim.

Lemma 3.1. Assume that (Hi, Ai) and (Ki, Bi) are concrete categories
for i ∈ {0, 1}. Let the left square of the diagram below be a subpullback and
the right square be a strong embedding :

K0
B0−→ Set B1←− K1

Γ
y yF

yΦ1

H0
A0−→ Set A1←− H1

Then the second natural projection functor K0 ?K1 → K1 has a simultan-
eous representation in H0 ?H1 → H1.

P r o o f. Define Φ0 : K0 ?K1 → H0 ?H1 by Φ0(k0, k1) = (Γ (k0), Φ1(k1)).
For any (k0, k1) ∈ mor(K0 ?K1) we have B0(k0) = B1(k1) and hence also
A0Γ (k0) = FB0(k0) = FB1(k1) = A1Φ1(k1). Therefore Φ0(k0, k1) ∈
mor(H0 ?H1), and the two second projections form a commutative square
with Φ0 and Φ1.

We note that the functors Ai, Bi are all faithful by the definition of
concrete category. F is faithful and Φ1 is both full and faithful by the
definition of strong embedding. Since F is faithful, it follows from the
definition of subpullback that Γ is also faithful. And thus Φ0 is faithful
because both Γ and Φ1 are.

It suffices now to show that Φ0 is full. Let (h0, h1) ∈ mor(H0 ?H1).
Since A0(h0) = A1(h1) and Φ1 is full, there exists some k1 ∈ K1 with
h1 = Φ1(k1). Consequently, FB1(k1) = A0(h0). Using the subpullback
half of the diagram, we obtain a k0 ∈ K0 such that Γ (k0) = h0. But then
Φ0(k0, k1) = (h0, h1) as required.

4. Unary expansions. Throughout the remainder of the paper, the
letter U will denote an arbitrarily chosen universal unary variety.

Let V be any unary variety, and let K(V ) denote its monoid of (unary)
polynomials. We let Z(V ) ⊆ K(V ) be the set of all constants, that is, the
set of all polynomials for which the identity z(x) = z(y) holds in all algebras
of V . Z(V ) is void if and only if V is a regular variety. We let z denote both
a member of Z(V ) and its constant value. We set L(V ) = K(V ) \ Z(V ).

Let Ψ be a functor from the small category k0 to the small category k1.
We wish to consider simultaneous representations (S) of Ψ in the “reduction”
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functor Λ : V ?U → U . There are three cases to consider. They are (a) the
case K(V ) = {1}, (b) the case L(V ) 6= {1} which we call the nondegenerate
case, and (c) the case L(V ) = {1} and Z(V ) 6= ∅ which we call the essentially
nullary case.

(a) In this case K(V ) = {1}, and V is just the category of all sets and
mappings. Thus Ψ : k0 → k1 has a simultaneous representation (S) in
Λ : V ?U → U if and only if Ψ is a full embedding.

(b) In the nondegenerate case, by [4], any functor Ψ with a simultaneous
representation (S) in Λ : V ?U → U must be regularly faithful. Corollary 4.4
below will establish the converse implication.

(c) In the remaining, essentially nullary case, the morphisms of V are
the maps preserving the value of each constant z ∈ Z(V ). The existence of
a simultaneous representation (S) of Ψ in Λ imposes the following condition
on the functor Ψ :

(p) If α0 ∈ k0(a, b) and β1 ∈ k1(Ψ(b), Ψ(c)), then β1 = Ψ(β0) for some
β0 ∈ k0(b, c) exactly when β1 ◦ Ψ(α0) = Ψ(γ0) for some γ0 ∈ k0(a, c).

Indeed, suppose β1 ◦ Ψ(α0) = Ψ(γ0). From the commutativity of (S) it
follows that Φ1(β1) ◦ΛΦ0(α0) = ΛΦ0(γ0). Now using za to denote the value
of the constant z ∈ Z(V ) in the algebra Φ0(a), etc., we have Φ0(α0)(za) = zb

and Φ0(γ0)(za) = zc. So we conclude that Φ1(β1)(zb) = zc. Since z is
arbitrary, we conclude that Φ1(β1) is also a V -homomorphism, and thus
Φ1(β1) ∈ mor(V ?U). Therefore by the fullness of Φ0 we have some β0 ∈
mor(k0) with Φ0(β0) = Φ1(β1) which we noted is in mor(V ?U). Since Λ
is the “reduction” functor from V ?U to U , for any δ ∈ mor(V ?U) we
have Λ(δ) = δ. In particular, Λ(Φ1(β1)) = Φ1(β1). Now we have Φ1(β1) =
ΛΦ0(β0) = Φ1Ψ(β0), and, finally, β1 = Ψ(β0) because Φ1 is faithful.

Theorem 4.6 below shows that any Ψ satisfying (p) has a simultaneous
representation (S) in any Λ : V ?U → U for which V is an essentially nullary
variety.

A functor F : Set → Set is called linear if there exist sets A 6= ∅ and B
such that, for any set X, F (X) = (X ×A) tB is the sum (i.e. the disjoint
union) of X ×A with B and the image F (f) of any mapping f : X → X ′ is
the sum F (f) = (f × idA) t idB .

Lemma 4.1. For any universal unary variety U and any infinite cardinal
γ there is a strong embedding of Alg(1, 1) into U carried by a linear functor
F (X) = (X ×A) tB with card(A), card(B) ≥ γ.

P r o o f. For every universal unary variety U there exists a strong em-
bedding of Alg(1, 1) into U carried by a linear functor (see [7]). Since any
composite of linear functors is linear, it suffices then to find a strong em-
bedding Σ : Alg(1, 1) → Alg(1, 1) carried by a linear functor F satisfying
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the cardinality requirements. The functor Σ will be a composite of three
strong embeddings given below.

First, the linear functor F0(X) = (X × 3) t 2 carries a functor Σ0 :
Alg(1, 1) → Alg(1, 1) defined by Σ0(X,α, β) = (F0(X), ϕ, ψ), where ϕ(x, i)
= (x, i + 1) for (x, i) ∈ X × 3 with the addition modulo three, ϕ(0) = 1,
ϕ(1) = 0, and ψ(x, 1) = (α(x), 0), ψ(x, 2) = (β(x), 0), ψ(x, 0) = (x, 0),
ψ(0) = ψ(1) = 0.

It is easy to check that Σ0 is a faithful functor. So we only need to prove
its fullness. Let g be a homomorphism from Σ0(X,α, β) to Σ0(X ′, α, β).
Orbits of the permutation ϕ on X × 3 and 2 have different prime orders,
and hence these subsets are preserved by any homomorphism. Furthermore,
X × {0} is the set of all fixed points of ψ in X × 3; so there is a mapping
f such that g(x, 0) = (f(x), 0). Using ϕ, we obtain g(x, i) = (f(x), i) for all
i ∈ 3, and ψ on X ×{1, 2} guarantees that f is a homomorphism. Similarly
we find that g is the identity on {0, 1} and so g = Σ0(f).

Secondly, from [8] and [6, p. 180] we obtain the existence of a connected,
endomorphism-free algebra C ∈ Alg(1, 1) defined on the cardinal γ. (The
graph of a unary algebra has (a, b) as an edge iff b = f(a) for some opera-
tion f . Recall that a unary algebra is connected iff this graph is connected.)
For any A = (Y, ϕ, ψ) ∈ Alg(1, 1) define Σ1(A) ∈ Alg(1, 1, 1) on the set
Y × γ as follows.

We define ϕ′ and ψ′ on A by ϕ′(y, c) = (y, ϕ(c)) and ψ′(y, c) = (y, ψ(c)).
We define a third operation χ by χ(y, 0) = (ϕ(y), 0), χ(y, 1) = (ψ(y), 1) and
as the identity elsewhere. With Σ1(f) = f × idγ , it is easy to check that Σ1

is a faithful functor.
To prove that Σ1 is full, we first note that any homomorphism g between

Σ1-images of algebras from Alg(1, 1) maps any set of the form {y} × γ into
a set of the form {z} × γ. Since C has only the trivial endomorphism,
there exists a mapping f such that g = f × idγ . But then f must be
compatible with the operations ϕ and ψ of the original algebras via the
operation χ. Altogether, Σ1 is a strong embedding carried by the linear
functor F1(Y ) = Y × γ.

For the third strong embedding Σ2 of Alg(1, 1, 1) into Alg(1, 1) carried
by the linear functor F2(Z) = Z × 5, we refer the reader to [7].

The composite strong embedding Σ = Σ2 ◦Σ1 ◦Σ0 is, therefore, carried
by the set functor F = F2 ◦F1 ◦F0 with F (X) = X × (γ × 15)t (γ × 10) as
required.

Now we turn to the case (b) of a nondegenerate unary variety V .
Let FV (Y ) ∈ V denote the algebra freely generated by a nonvoid set Y ,

and let Θ be its least congruence collapsing the set {z(y) | y ∈ Y, z ∈ Z(V )}.
Since the latter set is a subalgebra of FV (Y ), all other classes of Θ are trivial.
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So we may assume that (L(V )×Y )∪{z} is the underlying set of the quotient
algebra QY = FV (Y )/Θ when V is not regular. For any regular variety V ,
clearly QY = FV (Y ) = K(V )× Y .

Let Inv denote the variety of all mono-unary algebras (X, δ) defined by
the identity δ2(x) = x.

Lemma 4.2. If V is a nondegenerate unary variety and if α, β ≥
card(L(V )) are infinite cardinals, then there exists a subpullback

Inv −→ Set
Γ
y yF

V −→ Set

in which F is a linear functor given by F (X) = (X×A)tB with card(A) ≥ α
and card(B) ≥ β.

P r o o f. To define the functor F , set A=α×L(V ) and B=β×L(V )t{0}.
For any (X, δ) ∈ Inv, first define an auxiliary algebra B(X) on F (X)

by k(x, a, l) = (x, a, kl) and k(b, l) = (b, kl) whenever kl ∈ L(V ), and by
k(z) = 0 in all other cases. The algebra B(X) is isomorphic to QY ∈ V
with Y = X ×αt β, and F (f) is a homomorphism of B(X) into B(X ′) for
any mapping f : X → X ′.

Next we define σ : F (X)→ F (X) as σ(x, a, 1) = (δ(x), a, 1) on X × α×
{1} and as an identity elsewhere; clearly σ2 is the identity on F (X).

Finally, for each k ∈ K(V ) set k∗ = σ ◦ k ◦ σ and define

Γ (X, δ) = (F (X), {k∗ | k ∈ K}) .

Since σ is an involution, we obtain

σ ◦ k∗ = k ◦ σ and σ ◦ k = k∗ ◦ σ .

So σ is an isomorphism between the algebras B(X) and Γ (X, δ). This shows
that Γ (X, δ) ∈ V .

For k ∈ Z(V ) ∪ {1} we have k = k∗. For l ∈ L(V ) \ {1} we find that
l and l∗ coincide on F (X) \ (X × α × {1}). For any such l and for all
(x, a, 1) ∈ X × α× {1},

l∗F (f)(x, a, 1) = σlσ(f(x), a, 1) = σl(δf(x), a, 1)
= σ(δf(x), a, l) = (δf(x), a, l),

F (f)l∗(x, a, 1) = F (f)σlσ(x, a, 1) = F (f)σl(δ(x), a, 1)
= F (f)σ(δ(x), a, l) = (fδ(x), a, l) .

Since V is nondegenerate, there is at least one such l ∈ L(V ) \ {1}. Thus
F (f) is a morphism of Γ (X, δ) exactly when f is a morphism of X. Conse-
quently, the square is a subpullback as claimed.
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Theorem 4.3. The reduction functor Inv ?Alg(1, 1) → Alg(1, 1) has a
simultaneous representation in V ?U → U for any nondegenerate unary
variety V and any universal unary variety U .

P r o o f. Apply 4.1, 4.2 and 3.1.

In [4] it is shown that any regularly faithful small functor has a simul-
taneous representation in Inv ?Alg(1, 1) → Alg(1, 1); in view of this, the
result below follows immediately from Theorem 4.3.

Corollary 4.4. Let U and V be unary varieties, U universal and V non-
degenerate. A small functor Ψ : k0 → k1 has a simultaneous representation
in V ?U → U if and only if Ψ is regularly faithful.

The remainder of the section deals with the case of an essentially nullary
variety V .

Lemma 4.5. If a small functor Ψ : k0 → k1 satisfies the condition (p),
then it has a simultaneous representation (Φ0, Φ1) in Alg(0) ?Alg(∆) →
Alg(∆) for some type ∆.

P r o o f. First we construct a full embedding Φ1 : k1 → Alg(∆). This
embedding will be a composite of two contravariant functors.

According to pp. 50–51 of [6], for a suitable unary type ∆′ there exists
a full embedding Γ0 : kopp

1 → Alg(∆′) carried by M t 2, where M is the
Cayley–MacLane representation of kopp

1 . Equivalently, the underlying set
functor of Γ0 is the sum D t 2 of the dual Cayley–MacLane representation
D of k1 and the contravariant constant functor 2 with a two-element value.

By Lemma 4.1 and from [7] it now follows that there are sets H and
E with obj(k0) ⊆ H and a full faithful functor Γ : k1 → Alg(1, 1) such
that the algebra Γ (k) = (F (k), ϕk, ψk) is carried by the linear contravariant
functor given by F (k) = (D(k) × H) t E. More precisely, since D(k) =∐
{k1(k, l) | l ∈ obj(k1)} and D(κ)(λ) = λ ◦ κ, for any κ ∈ k1(k, k′),

the mapping F (κ) : F (k′) → F (k) is given by F (κ)(λ, h) = (λ ◦ κ, h) for
(λ, h) ∈ D(k′)×H and F (κ)(e) = e for all e ∈ E.

Let P− = hom(−, 2) denote the contravariant power set functor. Set
G = P− ◦ F . The composite G : k1 → Set is then a covariant faithful
functor. To define Φ1(k) for k ∈ obj(k1), we assemble the following set Qk

of operations on the set G(k):

the two unary operations P−(ϕk) and P−(ψk),
a unary constant ζ with the value ∅,
a unary operation γ of complementation,
a λ-ary union ν, where λ ≥ card(G(k)) for all k ∈ obj(k1).

We set Φ1(k) = (G(k), Qk) ∈ Alg(∆) for all k ∈ obj(k1), where ∆ is the
similarity type (1, 1, 1, 1, λ). We also set Φ1(κ) = G(κ) for all κ ∈ mor(k1).
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Since Φ1(κ) = G(κ) is a homomorphism for every morphism κ of k1, Φ1 is
a well-defined covariant faithful functor.

To see that Φ1 is full, we observe that the three set-theoretical operations
ensure that any homomorphism g : Φ1(k) → Φ1(k′) is a complete Boolean
algebra homomorphism of the respective power sets. Hence g = P−(f) for
some f : Γ (k′)→ Γ (k). The faithfulness of P− implies that P−(ϕk′) ◦ g =
g ◦ P−(ϕk) only when f ◦ ϕk′ = ϕk ◦ f . From this and from a similar
observation about ψ it follows that the mapping f is a homomorphism and
then, because the functor Γ is full, that g = G(κ) for some κ ∈ k1(k, k′).
This shows that Φ1 is full.

To define the other component Φ0 : k0 → Alg(0) ?Alg(∆) of the simul-
taneous representation in question, we first recall that obj(k0) ⊆ H. Using
this fact, we expand each algebra Φ1(Ψ(a)) with a ∈ obj(k0) by a nullary
operation za ∈ G(Ψ(k)) defined by

za = {(Ψ(χ), b) | b ∈ obj(k0) and χ ∈ k0(a, b)} ,

and define Φ0(a) = (G(Ψ(a)), QΨ(a)∪{za}) for every a ∈ obj(k0). For every
α ∈ k0(a, b) we set Φ0(α) = G(Ψ(α)).

Let α ∈ k0(a, b) and (λ, h) ∈ D(b) × H. Then FΨ(α)(λ, h) = (λ ◦
Ψ(α), h) ∈ za exactly when λ ◦ Ψ(α) = Ψ(γ) for some γ ∈ k0(a, h), and also
(λ, h) ∈ zb iff λ = Ψ(β) for some β ∈ k0(b, h). Using (p), we conclude that
G(Ψ(α))(za) = zb, so that Φ0 is a well-defined faithful functor.

To prove that Φ0 is a full functor, choose α1 ∈ k1(Ψ(a), Ψ(b)) arbi-
trarily and note that (idΨ(b), b) ∈ zb. If G(α1)(za) = zb then (α1, b) =
F (α1)(Ψ(idb), b) ∈ za, and α1 = Ψ(α) for some α ∈ k0(a, b) follows from the
definition of za.

Theorem 4.6. If a variety V is essentially nullary and if U is a uni-
versal unary variety , then a small functor Ψ : k0 → k1 has a simultaneous
representation in V ?U → U if and only if it satisfies (p).

P r o o f. The necessity of (p) has been established earlier. So we suppose
now that (p) holds.

Let ∆ be an arbitrary similarity type. According to [7], there is a strong
embedding Φ1 : Alg(∆)→ U carried by a set functor F (X) = (Xκ×A)tB
with a nonzero cardinal κ and with some A 6= ∅ and B.

Now we wish to define a faithful functor Γ : Alg(0)→ V which together
with F and the forgetful functors will form a subpullback. Suppose (X, c) ∈
Alg(0). Then we set Γ (X, c) = (F (X), Z) ∈ V where each z ∈ Z is to have
the value constc × {a} ∈ Xκ ×A.

Now by Lemma 3.1 we have a simultaneous representation of the reduc-
tion functor Alg(0) ?Alg(∆)→ Alg(∆) in the reduction functor V ?U → U .
The theorem follows from Lemma 4.5.
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5. Regular non-unary expansions. In this section we prove the
following result.

Theorem 5.1. For any regular non-unary variety V and a unary uni-
versal variety U , a small functor Ψ : k0 → k1 has a simultaneous represen-
tation in V ?U → U if and only if Ψ is regularly faithful.

Simultaneous representability of a functor Ψ in any functor between
categories of algebras requires that Ψ be regularly faithful; on the other
hand, any small regularly faithful Ψ is simultaneously representable in
Alg(1) ?Alg(2) → Alg(2) (see [4]). Hence it suffices to show that, for any
pair of varieties U and V specified by Theorem 5.1, Alg(1) ?Alg(2)→ Alg(2)
has a simultaneous representation in V ?U → U .

Since any regular non-unary variety V contains the variety Sl of join-
semilattices or the variety Sl0 of join-semilattices with zero ([1], [3], [5]),
we only need to show that, for any universal unary variety U , the functor
Alg(1) ?Alg(2) → Alg(2) has a simultaneous representation in Sl ?U → U
and a simultaneous representation in Sl0 ?U → U . Since the composite of
simultaneous representations is a simultaneous representation, Theorem 5.1
follows directly from the two lemmata below.

Lemma 5.2. The reduction functor Alg(1) ?Alg(2) → Alg(2) has a si-
multaneous representation in Sl ?Alg(2)→ Alg(2).

Lemma 5.3. The reduction functor Sl ?Alg(2) → Alg(2) has a simul-
taneous representation in Sl ?U → U and in Sl0 ?U → U for any unary
universal variety U .

P r o o f o f L e m m a 5.2. Once again, an application of Lemma 3.1 will
assemble the simultaneous representation.

Let P : Set → Set be the functor assigning the set P (X) of all finite
s ⊆ X to any set X and, to any f : X → X ′, the mapping P (f) : P (X)→
P (X ′) given by [P (f)](s) = {f(x) | x ∈ s} = f+(s) for every s ∈ P (X).

For the joint carrier F : Set→ Set, we select the factorfunctor of P × 4
modulo the equivalence Θ which collapses (s, 2) and (s, 3) for each s ∈ P (X)
with card(s) ≤ 1, and nothing else. It is easy to see that F is, indeed, a
well-defined set functor. To simplify the notation, we replace (∅, i) by i,
and (s, i) by si for all s 6= ∅ and all i ∈ 4; also, s2 shall denote the class
{(s, 2), (s, 3)} of Θ. With these conventions in mind, for each (X, ·) ∈ Alg(2)
we define a binary operation ∗ of Φ1(X, ·) = (F (X), ∗) as follows.

(1) 0 ∗ 0 = 1, 2 ∗ 2 = 0, and i ∗ j = 2 for all other i, j ∈ {0, 1, 2};
(2) s0 ∗ 0 = 0 ∗ s0 = 0 and si ∗ 0 = 0 ∗ si = 1 for i ∈ {1, 2, 3} and s 6= ∅;
(3) if s 6= ∅ then si ∗ 2 = 2 ∗ si = s2 for all i ∈ 4;

s0 ∗ 1 = 1 ∗ s0 = s1 and s1 ∗ 1 = 1 ∗ s1 = s2;
s2 ∗ 1 = 1 ∗ s2 = s3 and s3 ∗ 1 = 1 ∗ s3 = s2 when card(s) > 1;
s2 ∗ 1 = 1 ∗ s2 = s2 when card(s) = 1;
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(4) s0 ∗ t0 = (s ∪ t)1 when s 6= ∅ and t 6= ∅;
(5) s1 ∗ t1 = {x · y | x ∈ s, y ∈ t}2 when s 6= ∅ and t 6= ∅;
(6) u ∗ v = 2 for all other u, v ∈ F (X).

It is routine to verify that F (f) is a homomorphism whenever f is; thus
Φ1 is a well-defined faithful functor.

To show that Φ1 is full, assume that g : (F (X), ∗) → (F (X ′), ∗) is a
homomorphism in Alg(2).

Observe first that, for the unary term t(z) = z∗z, the equation t3(z) = z
is solvable just when z ∈ {0, 1, 2}; the remainder of (1) then implies that
g(i) = i for i ∈ {0, 1, 2}.

Secondly, from the fact that (2) fully describes solution sets of equations
z ∗ 0 = 0 and z ∗ 0 = 1 we conclude that g(s0) ∈ (P (X ′) \ {∅}) × {0}
and g(si) ∈ (P (X ′) \ {∅}) × {1, 2, 3} for any nonvoid s ∈ P (X) and for all
i ∈ {1, 2, 3}. In particular, g determines a unique mapping h : P (X)\{∅} →
P (X ′) \ {∅} such that g(s0) = h(s)0.

Next, from (3) it follows that g(si) = h(s)i for all i ∈ 4, and also that
card(h(s)) = 1 whenever card(s) = 1. This, in turn, yields the existence of
a unique mapping f : X → X ′ such that h({x}) = {f(x)} for all x ∈ X.
Using (4), we then find that h = P (f), and hence also that g = F (f).
Finally, (5) ensures that f : (X, ·)→ (X ′, ·) is a morphism in Alg(2), so that
Φ1 is a full embedding as claimed.

For any (X,α) ∈ Alg(1) we need to define a join semilattice Γ (X,α) =
(F (X),∨) in such a way that Γ , the two underlying set functors Alg(2) →
Set, and the set functor F constitute a subpullback.

First we define a binary relation ≤ on F (X) as follows:

(7) si ≤ tj whenever s ⊆ t, and 0 < i ≤ j ∈ 4 or i = j = 0;
(8) s0 ≤ tj whenever α+(s) ⊆ t and j ∈ {1, 2, 3}.

The relation ≤ is, obviously, a partial order on F (X). To see that ≤
defines a join semilattice, we first note that, for i, j > 0, the least upper
bound si ∨ tj of {si, tj} is just (s ∪ t)k with k = max{i, j}. Clearly s0, t0 ≤
(s ∪ t)0; if s0, t0 ≤ uj for some j > 0, then α+(s ∪ t) = α+(s) ∪ α+(t) ≤ u,
that is, (s ∪ t)0 ≤ uj . Whence s0 ∨ t0 = (s ∪ t)0. Finally, (α+(s) ∪ t)j is
an upper bound of {s0, tj} whenever j > 0; if uk is any upper bound of
the latter pair then k ≥ j and α+(s) ∪ t ⊆ u, so that (α+(s) ∪ t)j ≤ uk.
Hence s0 ∨ tj = (α+(s)∪ t)j . The partial order ≤ thus defines a semilattice
(F (X),∨).

Since P (f) = f+ preserves unions, the mapping F (f) is a semilattice
homomorphism if and only if F (f)(s0∨tj) = F (f)(α+(s)∪t)j = (f+α+(s)∪
f+(t))j coincides with F (f)(s0)∨F (f)(tj) = (f+(s))0∨(f+(t))j = (α+f+(s)
∪f+(t))j for j > 0 and all appropriate s and t. Since P ×{0, 1} is a faithful
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subfunctor of F , this occurs exactly when f ◦ α = α ◦ f . Consequently, the
functor Γ completes the subpullback needed to apply Lemma 3.1.

P r o o f o f L e m m a 5.3. For any (X, ∗)∈Alg(2), let Ψ1=(X2, π0, π1, %)
∈ Alg(1, 1, 1), where πj : X2 → X2 is defined by πj(x0, x1) = (xj , xj) for
j ∈ 2, and %(x, y) = (x ∗ y, x ∗ y) for all (x, y) ∈ X2. Since a mapping
g : X2 → (X ′)2 is compatible with both πj if and only if g = Q2(f) = f × f
for some f : X → X ′, it follows that Ψ1 : Alg(2) → Alg(1, 1, 1) is a strong
embedding carried by the cartesian square functor Q2.

Let U be an arbitrary universal unary variety.
Since there is a strong embedding Alg(1, 1, 1) → Alg(1, 1) carried by a

linear functor [7], an application of Lemma 4.1 yields a strong embedding
Φ1 : Alg(2)→ U whose carrier is a set functor given by F (X) = X2×AtB
with card(B) ≥ 2.

We now define functors Γ : Sl → Sl and Γ0 : Sl → Sl0 which, together
with F and the underlying set functors, will form the subpullbacks needed
to apply Lemma 3.1.

For any semilattice (X,∨) ∈ Sl, let (X2,∨) denote its square. Select a
well-ordering ≤ of B; let b0 ∈ B denote the least element of B and b1 ∈ B its
successor. Extend ≤ to a partial order on F (X) = X2×AtB by requiring
that:

(a) b0 ≤ (x0, x1, a) ≤ b1 for all (x0, x1, a) ∈ X2 ×A, and
(b) (x0, x1, a) ≤ (x′0, x

′
1, a

′) if and only if a = a′ and (x0, x1) ≤ (x′0, x
′
1)

in (X2,∨).

Clearly, the partial order (F (X),≤) determines a semilattice Γ (X,∨) =
(F (X),+) with zero b0; for each a ∈ A, it contains a subsemilattice X2×{a}
isomorphic to (X2,∨), while (x0, x1, a) + (x′0, x

′
1, a

′) = b1 whenever a 6= a′.
Finally, we set Γ0(X,∨) = (F (X),+, b0).

It is easy to see that a mapping f : (X,∨) → (X ′,∨) is a semilattice
homomorphism if and only if F (f) : (F (X),+) → (F (X ′),+) is an Sl-
morphism if and only if F (f) : (F (X),+, b0) → (F (X ′),+, b0) is an Sl0-
morphism. Whence the respective subpullbacks required by Lemma 3.1
exist, and the proof is complete.

We are unaware of any general result about non-unary non-regular ex-
pansions of a universal variety U of any type. In particular, does every small
regularly faithful functor have a simultaneous representation in Grp ?U → U
for the variety Grp of groups and for any universal (unary) variety U?
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[8] P. Vop ěnka, A. Pultr and Z. Hedr l ı́n, A rigid relation exists on any set , Com-
ment. Math. Univ. Carolin. 6 (1965), 149–155.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

UNIVERSITY OF HAWAII UNIVERSITY OF MANITOBA

HONOLULU, HAWAII 96822 WINNIPEG, MANITOBA

U.S.A. CANADA R3T 2N2

E-mail: BILL@KAHUNA.MATH.HAWAII.EDU E-mail: SICHLER@CCM.UMANITOBA.CA

MÚUK
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