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A CHARACTERIZATION OF MODULAR LATTICES
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J. D U D E K (WROC LAW)

1. Introduction. A binary algebra (L,+, ·) is said to be a lattice if it
satisfies the following identities:

1) x + x = x , x · x = x ,

2) x + y = y + x , x · y = y · x ,

3) (x + y) + z = x + (y + z) , (x · y) · z = x · (y · z) ,

4) (x + y) · y = y x · y + y = y .

(In the sequel we shall write xy instead of x·y.) A lattice (L,+, ·) is modular
if the identity x(xy + z) = xy + xz holds in (L,+, ·).

The main purpose of this paper is to prove the following:

Theorem 1.1. Let (L,+, ·) be a commutative binary algebra in which
the following identities hold : (x + y)y = y, x + x = x. Then (L,+, ·) is a
nondistributive modular lattice if and only if p3(L,+, ·) = 19.

Recall that pn(A) denotes the number of all essentially n-ary polynomials
over A, i.e., polynomials depending on all their variables. For this and all
other undefined concepts used here we refer to [10] (see also [9]).

In his survey of equational logic, Taylor ([13], p. 41) poses a general
problem of whether the numbers pn(A) characterize (to some extent and
perhaps in special circumstances) the algebra A. Our result can be treated
as a contribution to this problem.

An algebra (A,F ) is called idempotent (symmetric) if every f ∈ F is
idempotent (symmetric). A symmetric binary algebra is called commuta-
tive. At the Klagenfurt Conference on Universal Algebra (June, 1982) we
announced the following (see also [3]).

Theorem 1.2. Let (B,+, ·) be a bisemilattice. Then (B,+, ·) is a nondis-
tributive modular lattice if and only if p3(B,+, ·) = 19.

The proof of this theorem appeared in [5] (cf. [11]). At the same confer-
ence during the Problem Session we stated the following:
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Conjecture 1.3. Let (A,+, ·) be a commutative idempotent binary al-
gebra with different operations + and ·. Then (A,+, ·) is a nondistributive
modular lattice if and only if p3(A,+, ·) = 19.

So, Theorem 1.1 can also be treated as a step towards the proof of this
conjecture.

An algebra (A, {ft}i∈T ) is said to be proper if the mapping t → ft

is one-to-one and every nonnullary ft depends on all its variables. Let
f = f(x1, . . . , xn) be a function on a set A. Then we denote by G(f)
the symmetry group of f , i.e., the set of all permutations σ ∈ Sn (where
Sn denotes the symmetry group of n letters) such that f = fσ, where
fσ(x1, . . . , xn) = f(xσ1, . . . , xσn) for all x1, . . . , xn ∈ A (see [10]). A func-
tion f = f(x1, . . . , xn) is called symmetric if f = fσ for all σ ∈ Sn, and
idempotent if f(x, . . . , x) = x for all x ∈ A.

Recall that a bisemilattice (see Theorem 1.2) is a commutative idempo-
tent binary algebra (B,+, ·) such that both + and · are associative, i.e.,
both reducts (B,+) and (B, ·) are semilattices.

To prove Theorem 1.1 we need several lemmas.

2. Binary idempotent algebras. Let (A,+, ·) be a proper idempotent
binary algebra such that (A,+) is commutative. Let

s(x, y, z) = (x + y) + z , ŝ(x, y, z) = (xy)z ,

f(x, y, z) = (x + y)z , f̂(x, y, z) = xy + z ,

and if additionally (A, ◦) is a proper noncommutative idempotent groupoid,
then let also

q1(x, y, z) = (x + y) ◦ z , q2(x, y, z) = z ◦ (x + y) .

Similarly to [6] we get

Lemma 2.1. If (A,+, ·) is a proper idempotent binary algebra such that
(A,+) is commutative,then s, ŝ, f , f̂ are essentially ternary and pairwise
distinct. If , additionally , (A, ◦) is a proper noncommutative groupoid , then
q1, q2 are essentially ternary and the polynomials s, ŝ, f , f̂ , q1, q2 are
pairwise distinct.

Lemma 2.2 (cf. [7]). If (A,+, ·) is a proper commutative idempotent bi-
nary algebra satisfying (x + y)z = (x + z)y, then (A,+, ·) is polynomially
infinite, i.e., pn(A,+, ·) is infinite for all n ≥ 2. (The dual version of this
lemma is also true.)

Lemma 2.3. If an algebra A contains 3 distinct commutative idempotent
binary operations, then p3(A) ≥ 21.
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P r o o f. Examining the symmetry groups of the polynomials (x+y)+z,
(xy)z, (x◦y)◦z, (x+y)z, xy +z, (x+y)◦z, (x◦y)+z, (xy)◦z and (x◦y)z
and using Lemmas 2.1 and 2.2 we get our assertion.

Lemma 2.4. If (A,+, ·) is a proper commutative idempotent binary alge-
bra such that either (A,+) or (A, ◦) is cancellative, then (A,+, ·) contains
at least three essentially binary commutative idempotent polynomials.

P r o o f. Assume that (A,+) is cancellative. Then the polynomials x+y,
xy, (x + y) + (xy) are essentially binary and pairwise distinct, because e.g.
if x + y = (x + y) + xy, then x + y = (x + y) + (x + y) = (x + y) + xy gives
x + y = xy.

As a corollary from Theorem 1 of [1] and the last two lemmas we get

Lemma 2.5. If (A,+, ·) is a proper commutative idempotent binary al-
gebra such that p3(A,+, ·) = 19, then both polynomials x + 2y and xy2 are
essentially binary.

Here xyk denotes (. . . (xy) . . . y)y (y appearing k times), and we use
x + ky in the additive case, respectively.

Recall that a commutative idempotent groupoid (G, ·) satisfying xy =
xy2 is called a near-semilattice (cf. [4]).

A groupoid (G, ·) is distributive if it satisfies (xy)z = (xz)(yz) and
z(xy) = (zx)(zy).

A groupoid (G, ·) is medial if it satisfies the medial law: (xy)(uv) =
(xu)(yv).

Lemma 2.6. (cf. [2]). Let (A,+) be a commutative idempotent groupoid.
Then the following are equivalent :

(i) (A,+) is a semilattice.
(ii) The polynomial d(x, y, z) = (x + z) + (y + z) is symmetric.
(iii) (A,+) is a distributive (medial) groupoid satisfying x+2y = y +2x.

Lemma 2.7. If (A,+, ·) is a proper idempotent binary algebra such that
(A,+) is commutative and (x + y)z = (x + z)y, then the polynomial x ◦ y =
x+2y is essentially binary and noncommutative. Moreover , there exist such
algebras with (A, ◦) noncommutative.

P r o o f. First we give an example. Let (A,⊕) be an abelian group of
exponent 5. We put x + y = 3x ⊕ 3y and xy = 4x ⊕ 2y. Then (A,+, ·) is
the required algebra (note that this algebra satisfies x ◦ y = xy and is not
polynomially infinite, comp. with Lemma 2.2).

Assume now that (x + y)z = (x + z)y. Then x + y = (x + y)(x + y) =
((x + y) + y)x = (x ◦ y)x, thus x ◦ y is essentially binary. Assume that x ◦ y
is commutative. If in addition · is commutative, then x + y = (x ◦ y)x =
(y ◦ x)x = ((y + x) + x)x = x(x + y) = (x + y)x = xy, a contradiction. If ·
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is noncommutative, then xy = (x + x)y = (y + x)x = ((x + y) + (x + y))x =
((y + x) + x)(x + y) = (y ◦ x)(x + y) = (x ◦ y)(y + x) = yx, a contradiction.
The proof is complete.

Lemma 2.8. If (A,+) is a nonassociative commutative idempotent
groupoid , x ◦ y = x + 2y and (A,+, ◦) satisfies (x + y) ◦ z = (x + z) ◦ y,
then the polynomial x ◦ y + z is essentially ternary and its symmetry group
is trivial.

P r o o f. Since (A,+) is proper we infer, using (x + y) ◦ z = (x + z) ◦ y,
that (A, ◦) is also proper. Further, x + y 6= x ◦ y and therefore (A,+, ◦) is a
proper algebra. By Lemma 2.1, x ◦ y + z is essentially ternary. Lemma 2.7
proves that x ◦ y is noncommutative (here we put x ◦ y = xy) and hence
x ◦ y + z 6= y ◦ x + z.

Assume now that (x + y) ◦ z is symmetric. We show that the group
G(x ◦ y + z) is trivial. If x ◦ y + z = y ◦ z + x, then x + y = x ◦ y + y and
hence x ◦ y = x + 2y = (x + y) ◦ y + y = y ◦ x + y = x ◦ y + y = x + y. Thus
x ◦ y = x + y, which contradicts Lemma 2.7.

Let now x ◦ y + z = z ◦ y + x. Then x + y = x ◦ x + y = y ◦ x + x.
Putting here x + y for y we get y ◦ x = y + 2x = (x + y) ◦ x + x = x ◦ y + x
and hence x ◦ y + x = y + 2x. This implies y + 2(y + x) = (x + y) ◦ y +
(x + y) = y ◦ x + (x + y) = (x + y) ◦ x + y = x ◦ y + y = x + y. Thus
x + y = y + 2(y + x) = (x + 2y) + (x + y). This gives y ◦ x = (x + y) ◦ y =
((x + 2y) + (x + y)) ◦ y = (x + 2y) ◦ (x + 2y) = x + 2y = x ◦ y and therefore
x ◦ y = y ◦ x, a contradiction.

If x ◦ y + z = x ◦ z + y, then x + y = x ◦ y + x and hence x ◦ y =
(x + y) ◦ x = (x ◦ y + x) ◦ x = x ◦ (x ◦ y). Thus x ◦ y + y = x ◦ (x ◦ y) + y =
x ◦ y + x ◦ y = x ◦ y. Putting x + y for x in x ◦ y = x ◦ y + y we get
y ◦ x = (x + y) ◦ y = (x + y) ◦ y + y = y ◦ x + y = y ◦ y + x = x + y, which is
again impossible.

Note that the dual version of the preceding lemma is also true, i.e., we
have

Lemma 2.9. If (A,+) is a nonassociative commutative idempotent
groupoid such that (A,+, ◦), where x ◦ y = x + 2y, satisfies z ◦ (x + y) =
y ◦ (x + z), then the polynomial x ◦ y + z is essentially ternary and has a
trivial symmetry group.

Lemma 2.10. If (A,+) is a nonassociative commutative idempotent
groupoid , and we put x ◦ y = x + 2y, then the polynomials (x + y) ◦ z
and z ◦ (x + y) cannot be simultaneously symmetric.

P r o o f. If both (x + y) ◦ z and z ◦ (x + y) are symmetric, then x ◦ y =
(x+x)◦y = (y+x)◦x = (y+x)◦(x+x) = x◦((y+x)+x) = x◦(y◦x). Thus
x◦y = x◦(y◦x), and we obtain y◦x = x◦(x+y) = x◦((x+y)◦x) = x◦(x◦y),
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so x + y = (x + y) ◦ (x + y) = x ◦ ((x + y) + y) = x ◦ (x ◦ y) = y ◦ x and we
see that x ◦ y is commutative, thus contradicting Lemma 2.7.

Lemma 2.11. If (A,+, ·) is a proper commutative idempotent binary al-
gebra such that x ◦ y = x + 2y is essentially binary , noncommutative and
p3(A,+, ·) < 21, then the polynomials (x + y) ◦ z, z ◦ (x + y), (xy) ◦ z and
z ◦ (xy) are essentially ternary and pairwise distinct.

P r o o f. The first fact follows from Lemma 2.1. Lemma 2.3 implies that
(x + y) + (xy) ∈ {x + y, xy}. Assume e.g. that z ◦ (x + y) = z ◦ (xy). Then
x + y = (x + y) ◦ (xy) = (x + y) + (xy) + (xy) and xy = xy ◦ (x + y) =
(xy +(x+ y))+ (x+ y). Since (x+ y)+ (xy) is either x+ y or xy we deduce
that x + y = xy, a contradiction.

Lemma 2.12. If (A,+, ·) is a proper commutative idempotent binary al-
gebra such that x ◦ y = x + 2y is essentially binary and noncommutative,
then p3(A,+, ·) > 19.

P r o o f. Assume that p3(A,+, ·) ≤ 19 and consider the ternary polyno-
mials s = (x + y) + z, ŝ = (xy)z, f = (x + y)z, f̂ = xy + z, q1 = (x + y) ◦ z,
q2 = z ◦ (x+y), q′1 = (xy)◦z, q′2 = z ◦ (xy) and q = x◦y +z. By Lemma 2.1
they are all essentially ternary. By the assumption we deduce that + is
nonassociative.

If (x + y) ◦ z is symmetric, then cardG(q) = 1 by Lemma 2.8. Using
Lemma 2.10 we see that cardG(q2) = 2. If f or f̂ is symmetric, then
Lemma 2.2 shows that p3(A,+, ·) is infinite. Thus we may assume that
cardG(f) = cardG(f̂) = 2. Considering the polynomials s, f , f̂ , q2, q, q1,
ŝ and their symmetry groups we get

p3(A,+, ·) ≥ 6
cardG(s)

+
6

cardG(f)
+

6

cardG(f̂)

+
6

cardG(q2)
+

6
cardG(q)

+
6

cardG(q1)
+

6
cardG(ŝ)

≥ 3 + 3 + 3 + 3 + 6 + 1 + 1 = 20 ,

a contradiction.
Assume now that neither q1 nor q2 is symmetric and consider s, f , f̂ ,

q1, q2, q′1 and q′2 . If · is nonassociative, then using Lemma 2.11 we obtain

p3(A,+, ·) ≥ 6
cardG(s)

+
6

cardG(ŝ )
+

6
cardG(f)

+
6

cardG(f̂ )
+

6
cardG(q1)

+
6

cardG(q′1)
+

6
cardG(q′2)

≥ 3 + 3 + 3 + 3 + 3 + 3 + 1 + 1 = 20 ,

a contradiction.



198 J. DUDEK

If · is associative, then q′1 and q′2 are not symmetric. In fact, if e.g. q′1 is
symmetric then xy = xy ◦xy = ((xy)y) ◦x = xy ◦x = x◦ y, a contradiction.
As above, we get p3(A,+, ·) ≥ 3 + 1 + 3 + 3 + 3 + 3 + 3 + 3 = 22, which is
impossible. The proof is complete.

Recall that a binary algebra (A,+, ·) is called a bi-near-semilattice if
both groupoids (A,+) and (A, ·) are near-semilattices. Further, two algebras
with the same underlying sets and the same sets of polynomials are called
polynomially equivalent .

Lemma 2.13. If (A,+, ·) is a proper commutative idempotent binary alge-
bra satisfying p3(A,+, ·) = 19, then (A,+, ·) is either a bi-near-semilattice,
or it is polynomially equivalent to a commutative idempotent groupoid (A, •)
with p2(A, •) = 2. Moreover , in the second case (A,+, ·) satisfies only reg-
ular identities.

P r o o f. Let (A,+, ·) be as in the assumptions. Lemma 2.5 shows that
x ◦ y = x + 2y is essentially binary, and so is xy2.

Assume that x◦y = y◦x. If x◦y 6= x+y, then Lemma 2.3 yields x◦y = xy.
Using now Theorem 4 of [1] and again Lemma 2.3 we deduce that (A,+, ·)
is polynomially equivalent to the commutative idempotent groupoid (A,+)
with p2(A,+) = 2.

Applying Lemma 2.12 (and its dual version) we deduce that x + 2y and
xy2 are commutative (and clearly essentially binary). Assume now that
(A,+, ·) is not polynomially equivalent to a groupoid. Then x + 2y = x + y
and xy = xy and therefore (A,+, ·) is a bi-near-semilattice.

Note that if (A,+, ·) is polynomially equivalent to a commutative group-
oid with p2 = 2, then the results of [4] show that (A,+, ·) contains a sub-
groupoid isomorphic to N2 = ({1, 2, 3, 4}, ), where

x y =


x if x = y ,

1 + max(x, y) if x, y ≤ 3 and x 6= y ,

4 otherwise.

It is easy to see that N2 satisfies only regular identities (cf. [4, 12]). The
proof is complete.

Since the identity (x+ y)y = y in Theorem 1.1 is nonregular we see that
according to the last lemma we consider in the sequel bi-near-semilattices
with one absorption law.

3. Bi-near-semilattices with one absorption law. In this section
we deal with bi-near-semilattices satisfying the identity (x + y)y = y. First
we recall the following.
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Theorem 3.1 (Theorem 6 of [6]). Let (L,+, ·) be a commutative idem-
potent binary algebra satisfying (x+ y)y = y. Then the following conditions
are equivalent :

(i) (L,+, ·) is a distributive lattice.
(ii) (L,+, ·) satisfies (x + y)z = xz + yz.
(iii) (L,+, ·) satisfies xy + z = (x + z)(y + z).

Note that the idempotency of · follows from the idempotency of + and
the absorption law (x + y)y = y.

Let now (A,+, ·) be a proper bi-near-semilattice satisfying (x+ y)y = y.
Consider the following ternary polynomials over (A,+, ·):

s = s(x, y, z) = (x + y) + z, ŝ = ŝ(x, y, z) = (xy)z ,

d = d(x, y, z) = (x + z) + (y + z), d̂ = d̂(x, y, z) = (xz)(yz) ,

f = f(x, y, z) = (x + y)z, f̂ = f̂(x, y, z) = xy + z ,

m = m(x, y, z) = xz + yz, m̂ = m̂(x, y, z) = (x + z)(y + z) .

Lemma 3.2. If (A,+, ·) is a proper commutative idempotent binary alge-
bra then the polynomials s, ŝ, d, d̂, f , f̂ , m and m̂ are essentially ternary.

P r o o f. Standard, see e.g. [9].

We also have

Lemma 3.3. Under the same assumptions, the polynomials s, ŝ, f and
f̂ are pairwise distinct.

Lemma 3.4. Under the same assumptions, m 6= m̂, m is different from
s and d, and m is different from ŝ and d̂.

Lemma 3.5. Under the same assumptions, either the symmetry groups
of f and f̂ are two-element , or the algebra (A,+, ·) is polynomially infinite.

This follows from Lemma 2.2.

Lemma 3.6. If (A,+, ·) is a proper commutative idempotent binary al-
gebra satisfying (x + y)y = y, then the symmetry groups of m and m̂ are
two-element , i.e., the polynomials admit only trivial permutations of their
variables.

P r o o f. Assume that (x + z)(y + z) = (x + z)(y + x). Then x + y =
(x+y)(y +x) = (x+y)y = y, a contradiction. If xz +yz is symmetric, then
xz + yz = xz + yx and hence xy = xy + y. This gives (xy)y = y, which is
impossible.

Lemma 3.7. If (A,+, ·) is a bi-near-semilattice satisfying (x + y)y = y
such that both + and · are nonassociative, then p3(A,+, ·) ≥ 24.
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P r o o f. By Lemma 3.2 the polynomials s, ŝ, d, d̂, f , f̂ , m, m̂ are
essentially ternary. Since (A,+, ·) is not a lattice, Theorem 3.1 shows that
m 6= f and m̂ 6= f̂ . Using Lemma 2.6 we infer that s 6= d, ŝ 6= d̂. Further,
it is routine to prove that all the above polynomials are pairwise distinct.

Since + and · are nonassociative, Lemma 2.6 shows that cardG(s) =
cardG(ŝ) = card G(d) = card G(d̂) = 2. By Lemma 3.6, cardG(m) =
cardG(m̂) = 2. According to Lemma 3.5 we may assume that cardG(f) =
cardG(f̂) = 2. This proves that p3(A,+, ·) ≥ 24, as required.

Lemma 3.8. If (A,+, ·) is a bi-near-semilattice satisfying (x + y)y = y
with + associative and · nonassociative (or vice versa), then p3(A,+, ·) ≥ 20.

P r o o f. Consider the ternary polynomials s = x + y + z, ŝ = (xy)z,
d̂ = (xz)(yz), f = (x+y)z, f̂ = xy+z, m = xz+yz and m̂ = (x+z)(y+z).
In addition, consider the essentially ternary polynomial g = g(x, y, z) =
xy + yz + zx. It is clear that cardG(s) = cardG(g) = 6. If s = g, then
xy +y = x+y and hence x+y = (x+y)+y = (x+y)y +y = y +y = y. By
Lemma 3.2 all these ternary polynomials are essentially ternary. Applying
Lemmas 3.2–3.6 and Lemma 2.6 as in the preceding proof, and examining
the symmetry groups of s, ŝ, d̂, f , f̂ , m, m̂ and g, we obtain

p3(A,+, ·) ≥ 1 + 3 + 3 + 3 + 3 + 3 + 3 + 1 = 20

(here Theorem 3.1 has also been used). The proof is complete.

4. Proof of Theorem 1.1. Recall that our aim is to prove that a
(nontrivial) commutative idempotent binary algebra (L,+, ·) satisfying (x+
y)y = y is a nondistributive modular lattice if and only if p3(L,+, ·) = 19.

First, if (L,+, ·) is a modular nondistributive lattice, then p3(L,+, ·) =
19 (see e.g. Theorem 1.2). Assume now that p3(L,+, ·) = 19 and (L,+, ·) is a
commutative idempotent binary algebra satisfying (x+y)y = y. Lemma 2.13
shows that (L,+, ·) is a bi-near-semilattice since it satisfies a nonregular
identity (x + y)y = y. If this bi-near-semilattice is a bisemilattice, then the
assertion follows from Theorem 1.2; otherwise, it follows from Lemmas 3.7
and 3.8. The proof is complete.
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