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A CHARACTERIZATION OF MODULAR LATTICES

BY

J. DUDEK (WROCLAW)

1. Introduction. A binary algebra (L,+,-) is said to be a lattice if it
satisfies the following identities:

1) z4+z==x, x-r=ux,

2) zt+y=y+tuz, Ty=y-x,

3) @+yt+z=z+y+z), (z-y-z2=2(y2),
4) (z+y)y=y Ty+y=uy.

(In the sequel we shall write zy instead of z-y.) A lattice (L, +, -) is modular
if the identity x(zy + z) = zy + xz holds in (L, +, ).
The main purpose of this paper is to prove the following:

THEOREM 1.1. Let (L,+,-) be a commutative binary algebra in which
the following identities hold: (x +y)y =y, v +x = x. Then (L,+,-) is a
nondistributive modular lattice if and only if ps(L,+,-) = 19.

Recall that p,,(A) denotes the number of all essentially n-ary polynomials
over A, i.e., polynomials depending on all their variables. For this and all
other undefined concepts used here we refer to [10] (see also [9]).

In his survey of equational logic, Taylor ([13], p. 41) poses a general
problem of whether the numbers p,(A) characterize (to some extent and
perhaps in special circumstances) the algebra A. Our result can be treated
as a contribution to this problem.

An algebra (A, F)) is called idempotent (symmetric) if every f € F' is
idempotent (symmetric). A symmetric binary algebra is called commuta-
tive. At the Klagenfurt Conference on Universal Algebra (June, 1982) we
announced the following (see also [3]).

THEOREM 1.2. Let (B, +,-) be a bisemilattice. Then (B,+,-) is a nondis-
tributive modular lattice if and only if p3(B,+,-) = 19.

The proof of this theorem appeared in [5] (cf. [11]). At the same confer-
ence during the Problem Session we stated the following:
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CONJECTURE 1.3. Let (A, +,-) be a commutative idempotent binary al-
gebra with different operations + and -. Then (A, +,-) is a nondistributive
modular lattice if and only if ps(A,+,-) = 19.

So, Theorem 1.1 can also be treated as a step towards the proof of this
conjecture.

An algebra (A, {fi}icr) is said to be proper if the mapping t — f;
is one-to-one and every nonnullary f; depends on all its variables. Let
f = f(x1,...,2,) be a function on a set A. Then we denote by G(f)
the symmetry group of f, i.e., the set of all permutations o € S,, (where
Sy denotes the symmetry group of n letters) such that f = f?, where
fo(x1, .. xn) = f(xo1,...,Top) for all zy,... 2z, € A (see [10]). A func-
tion f = f(x1,...,2,) is called symmetric if f = f7 for all o € §,,, and
idempotent if f(xz,...,x) = x for all x € A.

Recall that a bisemilattice (see Theorem 1.2) is a commutative idempo-
tent binary algebra (B,+,-) such that both + and - are associative, i.e.,
both reducts (B, +) and (B, ) are semilattices.

To prove Theorem 1.1 we need several lemmas.

2. Binary idempotent algebras. Let (A, +, ) be a proper idempotent
binary algebra such that (A, +) is commutative. Let

s(v,y,2) = (x+y)+z, 3xy,2)=(zy)z,

~

flz,y,2) = (z +y)z, flz,y,2) =2y + 2,

and if additionally (A, o) is a proper noncommutative idempotent groupoid,
then let also

@z y,z)=(x+y)oz, qvy2)=z0(x+y).
Similarly to [6] we get

LEMMA 2.1. If (A, +,-) is a proper idempotent binary algebra such that
(A, +) is commutative,then s, s, f, f are essentially ternary and pairwise
distinct. If , additionally, (A, o) is a proper noncommutative groupoid, then
q1, g2 are essentially ternary and the polynomials s, s, f, ]?, q1, q2 are
pairwise distinct.

LEMMA 2.2 (cf. [7]). If (A, +,-) is a proper commutative idempotent bi-
nary algebra satisfying (x + y)z = (x + 2)y, then (A,+,-) is polynomially
infinite, i.e., pn(A,+,-) is infinite for all n > 2. (The dual version of this
lemma is also true.)

LEMMA 2.3. If an algebra A contains 3 distinct commutative idempotent
binary operations, then p3(A) > 21.
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Proof. Examining the symmetry groups of the polynomials (z+y) + z,
(xy)z, (xoy)oz, (x+y)z, zy+z, (x+y)oz, (xroy)+z, (zy)oz and (xoy)z
and using Lemmas 2.1 and 2.2 we get our assertion.

LEMMA 2.4. If (A, +,-) is a proper commutative idempotent binary alge-
bra such that either (A,+) or (A,o) is cancellative, then (A,+,-) contains
at least three essentially binary commutative idempotent polynomials.

Proof. Assume that (A, +) is cancellative. Then the polynomials x4y,
xy, (r +y) + (xy) are essentially binary and pairwise distinct, because e.g.
ifet+y=(r+y)+azy, thenz+y=(x+y)+(x+y) = (z+y)+zy gives
Tr+y=u2xy.

As a corollary from Theorem 1 of [1] and the last two lemmas we get

LEMMA 2.5. If (A, +,-) is a proper commutative idempotent binary al-
gebra such that ps(A,+,-) = 19, then both polynomials x + 2y and xy? are
essentially binary.

Here zy* denotes (...(zy)...y)y (y appearing k times), and we use
x + ky in the additive case, respectively.

Recall that a commutative idempotent groupoid (G, -) satisfying zy =
zy? is called a near-semilattice (cf. [4]).

A groupoid (G,-) is distributive if it satisfies (zy)z = (zz)(yz) and
2(zy) = (22)(29).

A groupoid (G,-) is medial if it satisfies the medial law: (zy)(uv) =
(zu)(yv).

LEMMA 2.6. (cf. [2]). Let (A,+) be a commutative idempotent groupoid.
Then the following are equivalent:

(i) (A,+) is a semilattice.
(ii) The polynomial d(x,y,z) = (x + 2z) + (y + 2) is symmetric.
(iii) (A, +) is a distributive (medial) groupoid satisfying x + 2y = y + 2x.

LEMMA 2.7. If (A, +,-) is a proper idempotent binary algebra such that
(A, +) is commutative and (x +y)z = (z + 2)y, then the polynomial x oy =
T+ 2y is essentially binary and noncommutative. Moreover, there exist such
algebras with (A, o) noncommutative.

Proof. First we give an example. Let (A, @) be an abelian group of
exponent 5. We put x +y = 3z @ 3y and zy = 4x @ 2y. Then (A, +,-) is
the required algebra (note that this algebra satisfies x o y = zy and is not
polynomially infinite, comp. with Lemma 2.2).

Assume now that (x +y)z = (x+2)y. Thenz+y = (x+y)(z +y) =
((x +y) +y)r = (xoy)x, thus z oy is essentially binary. Assume that zoy
is commutative. If in addition - is commutative, then = +y = (zx o y)x =
(yox)r = ((y+2)+2)r=2x(xr+y) = (z+y)r =y, a contradiction. If -
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is noncommutative, then zy = (r+z)y = (y+ )z = ((z+y) + (z+y))x =
(y+z)+2)(z+y) =(yox)(x+y) = (zoy)(y+ ) = yz, a contradiction.
The proof is complete.

LEmMMA 2.8. If (A,+) is a monassociative commutative idempotent
groupoid, x oy = x + 2y and (A,+,0) satisfies (x +y)oz = (x + 2) oy,
then the polynomial x o y + z is essentially ternary and its symmetry group
1s trivial.

Proof. Since (A, +) is proper we infer, using (x +y) oz = (z + 2) oy,
that (A, o) is also proper. Further, x +y # x oy and therefore (A, +,0) is a
proper algebra. By Lemma 2.1, x o y + 2 is essentially ternary. Lemma 2.7
proves that = oy is noncommutative (here we put z oy = zy) and hence
roy+zFyox+ 2.

Assume now that (z + y) o z is symmetric. We show that the group
G(roy+z)is trivial. If roy+2=yoz+z, then z+y =z oy +y and
hence roy=x+2y=(r+y)oy+y=yor+y=z0y+y=x+y. Thus
x oy = x + vy, which contradicts Lemma 2.7.

Let now zroy+ 2z =z2z0y+z. Thenz+y=zo0x+y=yox+ .
Putting here z +y for y we get yoxr =y +2x = (x +y)or+x=zoy+=x
and hence x oy + x = y + 2x. This implies y +2(y + =) = (z +y) oy +
(x+y) =yox+(z+y) = (r+y)or+y=x0y+y=2ax+y. Thus
r4+y=y+2y+x)=(r+2y)+ (r+vy). Thisgivesyox = (x+y)oy =
(x+2y)+(z+y) oy = (r+2y)o(xr+2y) =2+ 2y = x oy and therefore
xr oy =yox, acontradiction.

frxoy+z=x0z+y, then x+y = xoy+ x and hence z oy =
(x+y)ox=(roy+x)ox=zo(xoy). Thuszoy+y==xo0(roy)+y=
roy+xoy =xoy. Putting x+y for x inxoy = xoy+y we get
yor=(x+y)oy=(r+y)oy+y=yoxr+y=yoy—+x=z+y, which is
again impossible.

Note that the dual version of the preceding lemma is also true, i.e., we
have

LEMMA 2.9. If (A,+) is a nonassociative commutative idempotent
groupoid such that (A,+,0), where x oy = x + 2y, satisfies z o (x +y) =
yo (z + z), then the polynomial x oy + z is essentially ternary and has a
trivial symmetry group.

LEMMA 2.10. If (A,+) is a monassociative commutative idempotent
groupoid, and we put x oy = x + 2y, then the polynomials (z + y) o z
and z o (xz +y) cannot be simultaneously symmetric.

Proof. If both (z + y) o z and z o (x + y) are symmetric, then z oy =
(z4z)oy = (y+x)ox = (y+z)o(r+z) = zo((y+z)+x) = zo(yox). Thus
xoy = zo(yox), and we obtain yox = zo(x+y) = zo((x+y)ox) = xo(xoy),
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sor+y=(x+y)o(z+y)=x0((z+y)+y)=x0(xroy)=yox and we
see that x o ¢ is commutative, thus contradicting Lemma 2.7.

LEMMA 2.11. If (A, 4+, ) is a proper commutative idempotent binary al-
gebra such that x oy = x + 2y is essentially binary, noncommutative and
p3(A,+,-) < 21, then the polynomials (x + y) o z, zo (x + y), (zy) o z and
z o (zy) are essentially ternary and pairwise distinct.

Proof. The first fact follows from Lemma 2.1. Lemma 2.3 implies that
(r+y)+ (zy) € {z +y,zy}. Assume e.g. that zo (z +y) = z 0 (xy). Then
z+y=(r+y)o(zy) = (@+y)+ (2y) + (vy) and 2y = zyo (z +y) =
(zy+ (x+vy))+ (z+y). Since (x+y) + (zy) is either x +y or xy we deduce
that  + y = zy, a contradiction.

LEMMA 2.12. If (A, +,) is a proper commutative idempotent binary al-
gebra such that x oy = x + 2y is essentially binary and noncommutative,
then ps(A,+,-) > 19.

Proof. Assume that ps(A,+,-) < 19 and consider the ternary polyno-

mials s=(x4+y)+2z,5=(zy)z, f=(x+y)z, f=zy+2, ¢ = (xr+y)oz,
g2 =zo(z+y), ¢} = (zy)oz, ¢ =zo0(xy) and ¢ = zoy+2z. By Lemma 2.1
they are all essentially ternary. By the assumption we deduce that + is
nonassociative.

If (x + y) o z is symmetric, then card G(¢q) = 1 by Lemma 2.8. Using
Lemma 2.10 we see that card G(¢qz) = 2. If f or f is symmetric, then
Lemma 2.2 shows that ps(A,+,-) is infinite. Thus we may assume that
card G(f) = card G(f) = 2. Considering the polynomials s, f, f, g2, ¢, q1,
s and their symmetry groups we get

6 6

—~

+ -
cardG(s)  cardG(f) = card G(f)
I S . N

card G(q2) cardG(q) cardG(q;) card G(5)
>3+3+3+3+6+14+1=20,
a contradiction.

Assume now that neither ¢; nor ¢s is symmetric and consider s, f, f,
q1, G2, ¢ and ¢ . If - is nonassociative, then using Lemma 2.11 we obtain

6 6 6
card G(s) * card G(3) * card G(f)
6 6
+ — + + +
cardG(f) cardG(q) =~ cardG(q;)  card G(gy)
>3+3+34+3+3+3+14+1=20,

a contradiction.

p3(A7 =+, ) >

p3(A7 +7 ) Z
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If - is associative, then ¢} and ¢} are not symmetric. In fact, if e.g. ¢} is
symmetric then zy = xyoxy = ((zy)y) ox = xyox = x oy, a contradiction.
As above, we get p3s(A,+,:) >3+1+3+3+3+3+3+3 =22 which is
impossible. The proof is complete.

Recall that a binary algebra (A, +,:) is called a bi-near-semilattice if
both groupoids (A, +) and (A, -) are near-semilattices. Further, two algebras
with the same underlying sets and the same sets of polynomials are called
polynomially equivalent.

LEMMA 2.13. If (A, 4+, ) is a proper commutative idempotent binary alge-
bra satisfying ps(A,+,-) = 19, then (A, +,) is either a bi-near-semilattice,
or it is polynomially equivalent to a commutative idempotent groupoid (A, e)
with pa(A, e) = 2. Moreover, in the second case (A,+,-) satisfies only reg-
ular identities.

Proof. Let (A,+,-) be as in the assumptions. Lemma 2.5 shows that
x oy = x + 2y is essentially binary, and so is zy?>.

Assume that roy = yoz. If zoy # x4y, then Lemma 2.3 yields xoy = zy.
Using now Theorem 4 of [1] and again Lemma 2.3 we deduce that (4, +, )
is polynomially equivalent to the commutative idempotent groupoid (A, +)
with po(A, +) = 2.

Applying Lemma 2.12 (and its dual version) we deduce that x + 2y and
ry? are commutative (and clearly essentially binary). Assume now that
(A, +,-) is not polynomially equivalent to a groupoid. Then z +2y =z +y
and xy = xy and therefore (A, +, ) is a bi-near-semilattice.

Note that if (A, +, -) is polynomially equivalent to a commutative group-
oid with po = 2, then the results of [4] show that (A, +,-) contains a sub-
groupoid isomorphic to Ny = ({1,2,3,4},0), where

x ifr=y,
rxoy =4 1+ max(z,y) ifz,y<3andz#y,
4 otherwise.

It is easy to see that Ny satisfies only regular identities (cf. [4, 12]). The
proof is complete.

Since the identity (z 4+ y)y = y in Theorem 1.1 is nonregular we see that
according to the last lemma we consider in the sequel bi-near-semilattices
with one absorption law.

3. Bi-near-semilattices with one absorption law. In this section
we deal with bi-near-semilattices satisfying the identity (z + y)y = y. First
we recall the following.
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THEOREM 3.1 (Theorem 6 of [6]). Let (L,+,-) be a commutative idem-
potent binary algebra satisfying (x +vy)y = y. Then the following conditions
are equivalent:

(i) (L,+,-) is a distributive lattice.

(i) (L,+,-) satisfies (x +y)z = xz + yz.

(iii) (L, 4+, ) satisfies xy + 2z = (z + 2)(y + 2).

Note that the idempotency of - follows from the idempotency of + and
the absorption law (z + y)y = v.

Let now (A, +,-) be a proper bi-near-semilattice satisfying (z +y)y = y.
Consider the following ternary polynomials over (A4, +,-):

d=d(@y,z) = (z+2)+(y+2), d

f=fz,y,2) = (x+y)z, f=

m=m(zx,y,z) =xz+ Yz, m

LEMMA 3.2. If (A, +, ") is a proper commutative idempotent binary alge-
bra then the polynomials s, 5, d, d, f, f, m and m are essentially ternary.

Proof. Standard, see e.g. [9].

We also have

_ LeEmMA 3.3. Under the same assumptions, the polynomials s, s, f and
f are pairwise distinct.

LEMMA 3.4. Under the same assumptions, m # m, m is different from
s and d, and m is different from 5 and d.

LEMMA 3.5. Under the same assumptions, either the symmetry groups
of f and f are two-element, or the algebra (A, +,-) is polynomially infinite.

This follows from Lemma 2.2.

LEMMA 3.6. If (A, +,-) is a proper commutative idempotent binary al-
gebra satisfying (x + y)y = y, then the symmetry groups of m and m are
two-element, i.e., the polynomials admit only trivial permutations of their
variables.

Proof. Assume that (z + 2)(y +2) = (z + 2)(y + ). Then z +y =
(r+y)(y+=x) = (r+y)y =y, a contradiction. If zz+ yz is symmetric, then
xz +yz = xz + yx and hence xy = xy + y. This gives (xy)y = y, which is
impossible.

LEmMMA 3.7. If (A, +,) is a bi-near-semilattice satisfying (v +y)y =y
such that both + and - are nonassociative, then ps(A,+,-) > 24.
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Proof. By Lemma 3.2 the polynomials s, s, d, c?, I ﬁ m, m are
essentially ternary. Since (A, +,-) is not a lattice, Theorem 3.1 shows that
m # f and m # f Using Lemma 2.6 we infer that s # d, s # d. Further,
it is routine to prove that all the above polynomials are pairwise distinct.

Since + and - are nonassociative, Lemma 2.6 shows that card G(s) =
card G(8) = cardG(d) = cardG(J) = 2. By Lemma 3.6, card G(m) =
card G(m) = 2. According to Lemma 3.5 we may assume that card G(f) =

card G(]?) = 2. This proves that p3(A,+,-) > 24, as required.

LEmMMA 3.8. If (A, +,) is a bi-near-semilattice satisfying (v + y)y =y
with + associative and - nonassociative (or vice versa), then ps(A,+,-) > 20.

Proof. Consider the ternary polynomials s = 2z +y + 2z, s = (2y)z,
d=(zz)(y2), f=(x+y)z, f=zy+2z, m=zz+yzand m = (x+2)(y+2).
In addition, consider the essentially ternary polynomial g = g(x,y,2) =
xy + yz + zx. It is clear that card G(s) = card G(g) = 6. If s = g, then
vy+y=x+yand hencex+y=(r+y)+y=(r+y)y+y=y+y=y. By
Lemma 3.2 all these ternary polynomials are essentially ternary. Applying
Lemmas 3.2-3.6 and Lemma 2.6 as in the preceding proof, and examining
the symmetry groups of s, 5, d, f, f, m, m and g, we obtain

p3(A,+,)>14+3+34+3+34+3+3+1=20

(here Theorem 3.1 has also been used). The proof is complete.

4. Proof of Theorem 1.1. Recall that our aim is to prove that a
(nontrivial) commutative idempotent binary algebra (L, +, -) satisfying (x +
y)y = y is a nondistributive modular lattice if and only if p3(L,+,) = 19.

First, if (L,+,-) is a modular nondistributive lattice, then ps(L,+,-) =
19 (see e.g. Theorem 1.2). Assume now that p3(L,+,-) = 19 and (L,+,) isa
commutative idempotent binary algebra satisfying (z+y)y = y. Lemma 2.13
shows that (L,+,-) is a bi-near-semilattice since it satisfies a nonregular
identity (x + y)y = y. If this bi-near-semilattice is a bisemilattice, then the
assertion follows from Theorem 1.2; otherwise, it follows from Lemmas 3.7
and 3.8. The proof is complete.
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