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ON SEMIGROUPS GENERATED BY
SUBELLIPTIC OPERATORS ON HOMOGENEOUS GROUPS

BY

JACEK DZIUBANSKI (WROCLAW)

1. Introduction. Let L be a positive Rockland operator on a homo-
geneous group G (cf. e.g. [FS]). Assume that the homogeneous degree of L
is 2r, r > 0. B. Helffer and J. Nourrigat [HN] showed that L is hypoelliptic
and satisfies the following subelliptic estimates: for every left-invariant dif-
ferential operator 0 of homogeneous degree s and every positive integer N
satisfying 2Nr > s there is a constant C' such that

(1.1) 10f ]2 < CUILY fllzz + 1 fllz2)  for f € C&(G).

Applying these facts G. B. Folland and E. M. Stein [FS] proved that the
closure L of the essentially selfadjoint operator L is the infinitesimal gener-
ator of the semigroup {T}}¢~¢ of linear operators on L?(G) which has the
form

(12) Tjtf‘:f*pt7 t>0,
where p; belong to the Schwartz space S(G) .

On the other hand, it was proved by A. Hulanicki and the author [DH]
that if a positive Rockland operator L is a sum of even powers of left-
invariant vector fields, then the kernels p;, t > 0, of the semigroup generated
by L have the following exponential decay: for every constant C' > 0, every
t > 0, and every left-invariant differential operator 0 on G

H(apt)eCTHL‘” < C(C’t7a) < o0,

where 7 is a Riemannian distance from the unit element.

The purpose of the present paper is an extension of this result to semi-
groups generated by abstract positive Rockland operators. Actually, we
prove the following theorem:
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THEOREM (1.3). For every C > 0, the semigroup defined by (1.2) is
holomorphic on L2(eCT(x) dx) in the right half-plane and the kernels p,,
Re z > 0, satisfy

1(8p2)e“T|| L= < ¢(C,2,0) < 00
for every left-invariant differential operator 0 on G.

It seems likely that this result can be strengthened:
sup | (9p=(x))e*"| < C(0,2) < o0
zeG

for some o > 1, where | - | is a homogeneous norm on G. If the generator is
as in [DH] and z is real this has been proved by W. Hebisch in [He].

It is worth pointing out that the methods we present here allow one to
obtain the same theorem for the semigroup generated by the convolution
with the distribution @P”, where P is the generating functional of a -
stable semigroup of symmetric measures on a homogeneous group G with a
smooth Lévy measure, § € (0,2), PV = Px P x...* P (Ntimes), N > 0,
v € CX(G), p =1 in a neighborhood of the origin. It is easy to check that
the distribution P has the following form:

(1.4) (P.f)=lm [ fmw (z) dx,

where 2 € C°(G\ {0}), 2 >0, 2#£0, 2(x~1) = 2(x), 2(6x) = 2(z), Q
is the homogeneous dimension of G.

For brevity we concentrate only on semigroups generated by Rockland
operators. The same arguments work for semigroups associated with the
distribution @ P¥.

Our proof is similar in spirit to that presented in [DH]. Since distributions
considered here are not supported by the origin, as was the case in [DH],
we use the Taylor expansion instead of the Leibniz formula. Subelliptic
estimates which have been obtained by B. Helffer and J. Nourrigat [HN]
for Rockland operators, and by P. Glowacki [G] for generators of stable
semigroups of measures play here a decisive role.

Acknowledgements. The author is greatly indebted to Piotr Biler,
Jacques Faraut, Pawe/l G/lowacki and Andrzej Hulanicki for suggesting
the problem and stimulating conversations.

2. Preliminaries. A family of dilations on a nilpotent Lie algebra G is
a one-parameter group {d;}+~o of automorphisms of G determined by

5te]— = tdj €;,

where e1,...,e, is a linear basis for G, and di,...,d, are positive real
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numbers called the exponents of homogeneity. The smallest d; is assumed
to be 1.

If we regard G as a Lie group with multiplication given by the Campbell—-
Hausdorff formula, then the dilations §; are also automorphisms of the group
structure of G, and the nilpotent Lie group G equipped with these dilations
is said to be a homogeneous group.

The homogeneous dimension of G is the number ) defined by

d(6yx) =t9dx,
where dz is a right-invariant Haar measure on G.

We choose and fix a homogeneous norm on G, that is, a continuous
nonnegative symmetric function x +— |z| which is, moreover, smooth on

G\ {0} and satisfies
|0ix| = t|z|, |z|=0if and only if z =0.
Let
d d
Xjfl@)=—|  flate;), Yif(x)=—| flte;z)
t=0 t=0
be left- and right-invariant basic vector fields. If I = (iy,...,1,) is a multi-
index, i; € NU {0}, we set
Xf=X01 . Xinf, YIf=Y" . Yinf |I|=irdi+...+ind,,
1| =14 ... +in, I'=idyl..0n!, 2l =2 g

where x = x1e; + ... + zp€e,. The number |I| is called the homogeneous
length of I.

For a real number » > 0 let 7 be the smallest number such that 7 > r
and 7 = |I| for some multi-index I.

For a function f € C*(G), r >0, z € G, define

(21) ) = fay) — 3 X' yeG.

[I]<r

THEOREM (2.2) (cf. [FS, Theorem 1.37]). For r,a > 0, there are con-
stants C, K such that for every f € C*(G)
FOW < @)™ for lyl <a,
where £ (x) = Zjewsup‘zng X1 f(zz)], W ={I:r < ||, |I| <
[r] +1}.
We say that a function f on G belongs to the Schwartz space S(G) if for
every M > 0 the norm

sup (14 [a)M]XT f(2)]
[I|l<M, z€G

is finite.
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A distribution U on G is said to be a kernel of order r € R if U coincides
with a C* function away from the origin, and satisfies

(U, fodyy=t"(U, fy for feCrG),t>0.

If U is a kernel of order r then there exists a function {2y, homogeneous
of degree 0 and smooth away from the origin, and a differential operator 9
such that

n 1
(28) (U.J)=0fO) +lm [ ‘xféff <f<x> -y I!X’f(O)m’> dr,
|z|>e [I|<r
for f € C*(Q) (cf. [G, p. 560]).

A distribution 7" smooth away from 0, supported in a compact set and
coinciding with a kernel of order r in a neighborhood of 0 will be called a
truncated kernel of order r. Note that if T is a truncated kernel of order r,
then

T; = (—x)'T
is a truncated kernel of order r — |I].

We say that a kernel U of order r» > 0 satisfies the Rockland condition
if for every nontrivial irreducible unitary representation 7w of G the linear
operator 7y is injective on the space of C* vectors of 7.

If a kernel U of order r > 0 has compact support, i.e. 2y =0 (cf. (2.3)],
then U is supported at the origin. Hence

(2.4) U= > arX'.
[ I|=r

If an operator of the form (2.4) satisfies the Rockland condition, then U is
called the Rockland operator.
A function w on G is submultiplicative if

(i) w is symmetric, Borel and bounded on compact sets,
(i) w(z) > 1, x € G,
(iii) w(xy) < w(z)w(y) for all x,y € G.

Let d(x,y) be a fixed left-invariant Riemannian metric on G and let
(2.5) 7(x) = d(z,0).

For a fixed nonnegative function fy € C*({z : 7(x) < 1}) such that
Jo fo(x) dz =1 define

(2.6) p(x) = e fo@)

LEMMA (2.7). For every submultiplicative function w on G there exist
positive numbers m and C such that

w(z) < Co™(x).
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In particular, e™® < C¢™(x) for some C and m.
Proof. See e.g. [H, Proposition 1.2 and Lemma 4.2].

LEMMA (2.8). For every positive m there exists a constant C such that

¢" (27 < CP™(x), @M (xy) < CPM(2)¢™ (y) -
Moreover, for every left-invariant differential operator O there is a constant
C = C(0,m) such that
0™ ()] < C™ ().
Proof. Cf. [H].
A subset I' of G is said to be uniformly discrete if for every function

¢ € CF(G) the function ) A.¢ is bounded, where A\ p(z) = ¢(2x).
The following lemma is due to B. Helffer and J. Nourrigat (cf. [HN]).

LEMMA (2.9). For every homogeneous group G there is a uniformly dis-
crete subset I' of G and a function ¢ € C°(Q) such that

S la(@)P =1, where t.(x) = A.4(x).
zel
LEMMA (2.10). For every uniformly discrete subset I' of G and € > 0
> (1+1]2)79F < 0.
zel’

Proof. It suffices to show that >- . .- |z|7@~¢ < oo for sufficiently
large s. Let ¢ € C°(G), ¢ >0, p(z) =1 for |z| < 1. Then

Z 2|79 < C Z 2|79~ fgoz(a;)da:

z€l, |z|>s z€l, |z|>s

<0 Y [el
z€l, |z|>s

<C f || 97 dr < 0.
|z[>1

COROLLARY (2.11). If m > 0, then [ ¢ ™(x)dx < oo, where ¢ is de-
fined by (2.6). Moreover, if I' is a uniformly discrete subset of G, then
ZZEF ¢—m(z) < 00.

A semigroup {7}}+~o of bounded linear operators on a Banach space X
is said to be holomorphic in the sector As = {z € C : |Argz| < 0} if there
exists a family {7, }.ca, of bounded linear operators on X' such that

(a) T, =T} for z =t and As > z — T, is holomorphic,

(b) Tsy 42, = T2, T, for 21,20 € As,

(¢) lim, 0, zen, . Tox = x for every € > 0, x € X.
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The infinitesimal generator A of the semigroup {7} } is defined by D(A) =
{x € X : limy_ot ! (z — Tyz) exists in X}, and for z € D(A4), Az =
lim; g til(l‘ — Ttl')

Similarly to [DH] the following theorem is the basic tool of the present
paper:

THEOREM (2.12). Let H and V be Hilbert spaces equipped with inner

products (-, +)x, (+,-)y respectively. Assume thatV is a dense subspace of H
such that for a constant C

|z||ln < Cllzlly  for all x € V.

Let a(u,v) be a bounded sesquilinear form on V. It defines an operator
A:D(A) — H as follows:

D(A) ={u eV :l|a(u,v)| < Cyl|lv||x for veV}, (Au,v)y = a(u,v).
Assume that for some a, 3 > 0
(2.13) allully, < Rea(u,u), [Ima(u,u)| < Bllulf3, .

Then A is the infinitesimal generator of a strongly continuous semigroup of
operators on H which is holomorphic in the sector As, § = arctan(a/f3),
and uniformly bounded in every proper subsector of As.

Proof. Cf. [DH] and [P, Theorem 5.2].

3. Subelliptic estimates. Let L be a positive Rockland operator on
G, homogeneous of degree 2r, and let E; be the spectral resolution for L.
Since L is homogeneous and symmetric, the kernels p; of the semigroup
{T;}+>0 generated by L (cf. (1.2)) are symmetric and satisfy

(3.1) pe(2) =t~ Cp (6,21 2m ) .

Let {S;}+>0 be the semigroup (subordinate to {T;}) generated by VI, that
is,

(3.2) Sif = Ofe”“z dE;(\)f = J\e/%f*pp/@s) ds .

Obviously

(3.3) Sif = fxq, where ¢ = f j;isptz/(4s) ds.
0

It follows from (3.1) and (3.3) that ¢; € C>°(G) N L'(G), and
(3.4) g (@) = 79" q (8,10 ) .
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The infinitesimal generator of {S;} on C°(G) is the convolution with the
distribution U defined by

[ee]

35 = [ [ f@ple)de— £0)) dt,

0 G

where ¢ = [ t73/2(e7! — 1) dt. (3.5) implies that U is a kernel of order 7.
Of course

(3.6) (U U, f)=Lf(0).
Note that

(3.7) (d+VI) 1 f = f«F,
where

(3.8) F= [e'qdteL(G).

0

PROPOSITION (3.9). For every kernel T of order s > 0 and every positive
integer N satisfying Nr > s there is a constant C' such that

(3.10) |If * T2y < CUf *UNL2ay + 1 fllz2(ey)  for f € CZ(G).
Proof. The proof proceeds by induction on the step of G. If G is
abelian, then (3.10) follows by using the Fourier transform. Assume that
(3.10) holds for groups of step < m, and let G be a homogeneous group of
step m. Let V denote the center of G. Let S be a linear complement to V'
which is invariant under the action of dilations. Then S can be considered
as a homogeneous group isomorphic to G/V. Denote by o the canonical
homomorphism from G into S. The operator L defined on C2°(S) by

Lf=L(foo), feCX(S),
is a positive Rockland operator on S. Moreover, the distribution U subor-
dinate to the kernel L satisfies
(U, fy=(U,foo) for feCS).
Let T be a kernel of order s and let N be such that Nr > s. Then T defined

by (T, f) = (T, foo), f e C>®(S), is a kernel of order s on S (cf. [G,
(3.26)]) and by our inductive assumption there is a constant C' such that

(311)  |If % Tllz2gsy < CULF * TN 2oy + 1 fllzacs))  for £ € C(S).
Of course f x UN = 7r(0]Nf and f % T = W%f, where 70 is the unitary

representation induced from the trivial character on V, <T, fy = (T, f),
f(x) = f(z~1). Hence (3.11) can be written as

(3.12) 173 S L2csy < Cllmpn fllzacs) + 1fllzzcs)) -
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It was shown in [G, pp. 568-571] that if U satisfies (3.12) and the kernel of
(Id +U)~! belongs to LY(G) (cf. (3.7), (3.8)), then there is another constant
C such that

(313) |l fllzas) < Cllmp fllzacs) + 1fllzacs))
for f € C(9), €€V,

where 7¢ is the unitary representation of G induced from the character
V 5 v — & Decomposing the right regular representation of G into a
direct integral of ¢ and using (3.13), we get (3.10).

Let ¢ be a smooth symmetric function with compact support such that
wo = 1 in a neighborhood of the origin. Define the truncated kernel R by

Note that there is a real symmetric function w € C°(G) such that
(3.15) L=R?+w in the sense of distributions.

From (3.9) and (2.3), we deduce the following

COROLLARY (3.16). For every multi-index I with |I| > 0 and every e > 0
there is a constant C. such that

(3.17) |f * Rrllz2q) < ellf * Rllz2q) + Cellfll2qy  for f € CZ(G).

Moreover, if |I| > r, then there is a constant C such that

(3.18) If * Rillz2q) S Cllfllz2@y for f € CZ(G).

4. Weighted subelliptic estimates. For a fixed m > 0 put

(4.1) n(x) = ¢™(z),
where ¢ is defined by (2.6).

Denote by H the Hilbert space L?*(G), and by H,, the Hilbert space
L*(G,ndz), that is, f € H, if and only if

(4.2) 1f 13, = I£115 = [ |f(@)[*n(z) dz < oo
G

Our aim in this section is to prove the following theorem which is a weighted
version of Corollary (3.16).

THEOREM (4.3). Let R be a truncated kernel of order r > 0 which satis-
fies (3.17). Then for every multi-index I with |I| > 0 and every € > 0 there
is a constant C. such that

(4.4) If * Rilly < ellf * RIS + CellfIl; for f e CE(G).
Moreover, if |I| > r, then there is a constant C such that

(4.5) If = Rrlly < CUFIS - for f e CE(G).
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Proof. Our proof consists of four lemmas.
We say that a linear operator B bounded on L?(G) has compact support
if for every a > 0 there is a constant b such that
(Bf)XB(:U,a) = B(fXB(a:,b))XB(ac,a) )
where B(z,r) = {y : |z y| < r} and xp(s, is the indicator of the ball
B(z,r).

LEMMA (4.6). If B is a bounded compactly supported linear operator on
L?(G), then there is a constant C, which depends on n and the support of
B, such that

1Bll#¢, 7, < ClIBllr—mn -

Proof. Let ¢, I' be as in Lemma (2.9) and let f € H,. Using
Lemma (2.8), we get

IBSI

— [ S IBf@).@)Pn(e)dz < O Y n(z"Y) [ IBf (@), (a)? da.
G

G zel zel

Since B is bounded on L?((G) and compactly supported, there is a constant
a > 0 such that

IBSIF < Cad n="") [ IB(fxpe-1.0)@):(2) de.

zel’ G

By Lemma (2.8), we obtain

B < CallBl3—re y_n(z™") [ 1f(@)xB1,0 (@) dx

zell G
< Cull Blber Y [ 1f@)XBe1.0) (@) Pn(z)n(@ 27") da
zel' G

< ClBl3—adIf1I5 -

LEMMA (4.7). For every truncated kernel T of order O there is a constant
C > 0 such that

If % T2y < Clif 2@, [ €CT(G).
Proof. See Goodman [Go].

Remark. Note that (4.5) is now a consequence of (4.7), (4.6), (3.17),
and (2.3).

LEMMA (4.8). Let R be a truncated kernel of order r which satisfies
(3.17). Then there is a constant C such that for every multi-index Iy with
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|Io] > 0 and every € > 0 there is a constant C. such that for f € C(G)

If* R, |7 <e If*RAZ+CfIZHC > If *Rigrsll?.
0<|I|<r 0<|J|<r—|Io]

Proof. We need only consider the case when 0 < |Iy| < 7 (cf. the
remark following Lemma (4.7)). Let I" and v be as in Lemma (2.9). Then

1 Riyl2 < Co S (=Y [ 1F * Ra, (0)s () de
G

zel'

<Gy m(z) frfwz * Ry, ()] da
zel
2
7XJ¢Z( Vf * Rpyvg(z) + H, f(z)| dz,
o<\J|<r J!

+Cy Y (= [

ZEF G

where H, f(z) = ((-)°R, f(x -) ?)()) (cf. (2.1) for the definition of 1{™).
By (3.17), we have

(49) |If* Ry, |I2<Co Y n(z""e [(fv:) * R(z)|* d

zel G
+Cy Yz hCe f|f¢z )|? da
zel’
+Cs > nz) D [ IX7¢u(2)f * Ryyys(2) do
zel o<|JI<r G
+Cy Y n(z"") [ |H.f(2)] de.
zel G

Since I' is uniformly discrete, the first term on the right-hand side of (4.9)
can be estimated by

2
Co S e [|oa@feR)t S 1 X0 feRy () HLA ()| da
zer G o<|J|<r 7
< Coellf RIZ+Coe 30 N Ryl3+Cae S n(Y) [ IHL )P do,
0<|J|<r zel G

where H f(z) = (R, f(z ) i””)( - )). By (2.9) the second term on the right-
hand side of (4.9) is estimated by

CellfII5 -



SUBELLIPTIC OPERATORS 225

Similarly, the third term on the right-hand side of (4.9) is estimated by

Ci S I * Riesl2.

o<|J|<r
By virtue of (4.5), we get
I1f * R, I3
<Csellf«Rlp+ Y Ceellf * Ryl +C5 Yy [ nz""HLf(2)Pdx
o<|J|<r zel' G

+CsCelflz+Cs > I * Rigrally
0<|J|<r—1Io|

+C5 Y nz"") [ |H.f(2)P du.
zell G

The proof of Lemma (4.8) will be completed if we show
Y0 [ (HLf (@) + [Hef(@)) da < C|I 15

zel' G
Note that by Theorem (2.2), (=) (y) is a smooth function of z,y. Moreover,
for every constant K > 0 there is a constant a > 0 such that
[0 (y)] < Crlyl”  for |yl <K, z€ I
Wi (y) =0 forz ¢ B(z"'a), [y <K, z€T.

Hence by (2.3) there is a constant C' such that

[H:fllr2 < CllfXBe—10llz forzel, feCX(G).
Consequently, by (2.8) and (2.9), we get
ST [ @) d

G

zel
<O 0 [ 1 @)X @) dz < CFIE.
zel G
We proceed with H. analogously.

LEMMA (4.10). Let R be a truncated kernel of order r > 0 which satisfies
(3.17). Then for every multi-index I with 0 < |I| < r and every € > 0 there
exists a constant C. such that

(4.11) |If = Rell5

<elf*RIZ+e D f*RIZ+CfIE,  feCE(G).
o<|JI<| |
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Proof. Let {ki,...,kn} = {|I| : 0 < |I| < r}. We can assume that
r >k >...>k, =1 Let I be such that |I| = k;. By Lemma (4.8)
and (4.5) for every € > 0 there is C. such that

If * Rrll

<ellf«Rlp+e Y If=RyllZ+e D> If Rz +C I3
0<|J|<k1 |J|=FK1

Summing the above inequalities over all I with |I| = k1, we conclude that
for every € > 0 there exists a constant C such that

If«Rell2 <ellf«RIZ+e Y lf*RsllZ+CellfI
0<|J|<k1

for f € CX(G), |I| =k1.
Assume now that (4.11) holds for |I| = ki,...,k;. We show that (4.11)
holds for |I| = kj41. Let I be such that |I| = k;11. By virtue of Lemma

(4.8) and (4.5) there is a constant C' such that for every € > 0 there is a
constant C. such that

I f * Ryll?
Sellf«RIZ+CAfIE+e Y MfF*RollZ+...+2 D> If=Rll}
| T|=k1 |T|=k;
te > f*RsZ+e D> If =Rl
[J|=kjt1 0<|J|<k 41
+C Y If Rl

o< |J|<r—|I|

<elf*RIZ+C > I *Rs2+...+C > |If*RyI73
| J|=k1 | T|=k;

+te Y If*Rilli+e Yo I *Rall;+CellfI -
[J|=Fk;j+1 0<|J|<kjt1
Applying the inductive assumption for multi-indices J with |J| = k1, we get
If * Ryll?

<elf«RIZ+C(alf«RIG+e 30 IF Rl +CaallF13)
0<|J|<k1

+C Z If*RyllZ+...+C Z If*Rsll7

|J| =k |J|=k;
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e Y IfxRslh+e Do If*Ryly+CeFI

[J]=k;j41 0<|J[<kjt1

If we fix € and next take €7 sufficiently small, we obtain

If * Rrll

<2l f*RIZ+Co > If#RyZ+ .. +C Y |f = RyI2
| T |=k> |J|=k;

e Y I *Rill+e Yo I xRalG+CafI -

‘J‘:kj+1 0<|J|<kj+1

Proceeding analogously for J with |J| = kg, ..., k;, we find that for every
¢ > 0 there is a constant C. such that

If*Ri|2 <ellfRIZ+e > If=Ryll2+e > If+REZ+CFIZ.
[J|=kj+1 0<|J|<kjt+1

Summing the above inequalities over all I with |I| = k;1, we conclude that
for every € > 0 there is a constant C. such that for every I with || = k1,

I+ Rally <ellf=RIG+e - > I+ RiIG+CAfIG  for f € CE(G).
0<|J|<k}j+1
Note that (4.4) is now a consequence of Lemma (4.10).
5. Semigroups on weighted Hilbert spaces. As in the previous

section, for a fixed positive m we write n = ¢™ (cf. (2.6)). Let R be a
truncated kernel of order r which satisfies (3.17). For [ > 0 define a Hilbert

space V,; as the completion of C°(G) in the norm | - ||y, ,, where
(5.1) IS, = UAlG+ D If*Ralls
o<|I|<r

The following proposition has a standard proof.

PROPOSITION (5.2). f € V,; if and only if f € H, and f* Ry € H,
for every I with 0 < |I| < r, where f * Ry is understood in the sense of
distributions.

LEMMA (5.3). If u € C°(G) then
(5.4)  (un) * R(z)
=n(z)(f* R)(2) + ) %Xln(:v)(f « Rp)(x) +n(x)H f (),
o<|I|<r

where H is a compactly supported bounded linear operator on L?(G).
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Proof. Using the Taylor expansion of n at z (cf. (2.1)) we get (5.4),
where H f(x) = (n(x)) YR, f(x -)n'®(-)). Of course by (2.3) and (2.8), H
is compactly supported and bounded on L?(G).

Let us define a sesquilinear form a on V,; by

(5.5)  a(u,v) = f w* R(x)((vn) * R(x)) dx + (u * w,v),
G

for u,v € C(G),
where w is the function defined in (3.15).
It is now clear from (5.3), (5.2) and (4.6) that for every [ there is a
constant C such that
la(u, v)] < Cillully,,[lv]lv,, -
Let A" be the operator defined by the form a (cf. Section 2 for the
definition) with V =V, ;, H = H,,. Note that A" does not depend on I.
In order to prove that A" is a generator of a holomorphic semigroup of
operators on ‘H, in the sector A /o, define for A > 0 a new form ay by
ax(u,v) = a(u,v) + Au, v), .
The operator A} corresponding to ay is A”+A1d. By Lemma (5.3), Theorem
(4.3) and Lemma (2.8), for every ¢ there are [, A > 0 such that

Theorem (2.12) and (5.7) lead to

THEOREM (5.8). For every n with n = ¢™, the operator A" is the gener-
ator of a holomorphic semigroup of operators on 'H,, in the sector Ay ;.

PROPOSITION (5.9). f € D(A") if and only if f € Vy; and f * R* € H,,
where f x R? is understood in the sense of distributions.

COROLLARY (5.10). If my > mg > 0 and n1 = ¢™, n2 = ¢™2, then
D(A™) C D(A™), A f = A"f for f € D(A™), T)" f =T f for f € Hy,,
where T2 is the holomorphic semigroup generated by A", j =1,2.

1
(5.7) Reay(u,u) > §Hu||%nl, Imay(u,u)| < EHUH%UJ .

PROPOSITION (5.11). For every weight n = ¢™ and every positive integer
N the operator (A")N s the closure of LY considered in C*(G) in M,
topology.

Proof. Since LY is a Rockland operator we can associate with LV a
family of semigroups defined by appropriate forms (cf. (5.5)). So the proof
of Proposition (5.11) will be complete if we show that our assertion holds
for N = 1. For m1; >m put 1 =¢". Let A> 0 be such that AId+A" and
AId+A™ are invertible in H,, and H,, respectively. It suffices to prove that

(5.12) (AMId+L)(CF(G)) is dense in H,, .
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Define
S ={feMy : X'feH,}CS® ={feH,: X'feHy}.
First we show that
(5.13) (AId+L)(S,°) is dense in H,, .
Let f € C2°(G). By Corollary (5.10), g = (AId +AM)~1f = (A\Id+A")"1f
€ H, C H,. Moreover, Yig = (A\Id+A™m)"'Y!f € H,,. Since X! =
ZIIJIISIIIII wyY”’, where w; are polynomials (cf. [FS, p. 26]), we see that

X1g € H,, and consequently g € Sp°. Hence (5.13) is proved.

For f € 57° put fu(z) = f(2)ym(z) € C(G), where yn(z) = 7(0,-12),
v € CX(G), v =1 in a neighborhood of 0. Clearly, by the Leibniz formula
and the Lebesgue Convergence Theorem

im (1f = fully + I|LF — Lfally) = 0.
which ends the proof of (5.12).

COROLLARY (5.14). For every z with Rez > 0, and every left-invariant
differential operator O there is a constant C,, ., such that

(5.15) IOT Vil < Cpllflly  for f e Hy.

Proof. Let f € H,. Since T7 is holomorphic, we obtain T f €
N, D((A")") and [[(A")"T7fll < C|flly. Using (2.8), (5.11), (1.1), and
Sobolev estimates, we get (5.15).

Proof of Theorem (1.3). For the fact that the semigroup is holomor-
phic on weighted Hilbert spaces in the sector A, /; see Theorem (5.8) and
Lemma (2.7).

By the spectral theorem, Proposition (5.11) and estimates (1.1), for every
left-invariant differential operator 0 and every z with Rez > 0, there are
constants M, C such that

(5.16)  [|0T. f[lz> < C(IA+L)M Tof || 2

<c| Jasxeam o], < clslie,

where Ej; is the spectral resolution for L.
Using Sobolev estimates, we have

(5.17) T O) < Ol flle> -

Since T, commutes with left translations, we deduce from (5.17) that there
is a function p, € L?(G) such that

Tzf:f*pz-
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Note that for ¢ > 0, p; is real and symmetric. By virtue of Corollary (5.14)
the proof of our theorem will be completed if we show that p; € H,, for every
n=q¢".

Let I" and 9 be as in Lemma (2.9). Fix n = ¢™, n; = ¢*™*2. Note that
Pt = Dij2 ¥ Dij2 € L*>°(G). Hence there is a constant C such that for every

bel
(5.18)

1% Xy-1pelly, < Co-

By (5.15) we get

(5.19)

| [ WEp)@)pul) da n(b) = [T (6300) (0)] ()

= [T (4 Xp-1p2) (b) | m (D)
< Gy tCog™ ' (b).

Now by Lemma (2.8), Corollary (2.11), and (5.19) we obtain

[ @ Pn@)de < 3 [ () @pe(a)n(a) de

berl’

<GS ([ (e vB)@)pe(w) de ) n(h)

berl’

<CY ¢7Hb) <o,

ber

which completes the proof.

[DH]
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