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The aim of this paper is to extend the results of [BB-Ś2] concerning
geometric quotients of actions of SL(2) to the case of good quotients. Thus
the results of the present paper can be applied to any action of SL(2) on
a complete smooth algebraic variety, while the theorems proved in [BB-Ś2]
concerned only special situations.

Like in [BB-Ś2], the source of our study lies in Mumford’s Geometric
Invariant Theory [GIT]. His results concerning semi-stability lead to the
Conjecture (see below). In order to state it we need the following definition:

Definition. Let T be an algebraic torus and let U, V be two open T -
invariant subsets of X for which there exist good quotients πU : U → U//T
and πV : V → V//T . We shall write V ⊳ U if V ⊂ U and the induced
morphism V//T → U//T is an open embedding.

We shall say that a T -invariant open subset U of X having a good
quotient is maximal with respect to the property of having good quotient if
U is maximal with respect to ⊳.

Conjecture. Let X be a smooth algebraic variety with an action of
a reductive group G. Let T be a maximal torus of G and let N(T ) be its
normalizer in G. Let U be an N(T )-invariant open subset of X for which
there exists a good quotient π : U → U//T and which is maximal with
respect to this property. Then

⋂

g∈G gU is open, G-invariant and there exists
a good quotient

⋂

g∈G gU →
⋂

g∈G gU//G. Moreover, if U//T is complete,
then

⋂

g∈G gU//G is also complete.

In the present paper we only consider the case G = SL(2). Theorem 1
shows that if U//T is projective then the conjecture is valid. Moreover, then
X and

⋂

g∈SL(2) gU//G are projective and there exists an ample, invertible,
G-linearized sheaf L on X such that U is the set of semi-stable points with
respect to the action of T induced by the action of G.

We also prove the conjecture under the additional assumption that either
U//T is complete (Theorem 2) or U//T is quasi-projective (Theorem 9).
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Answering a question of D. Luna we also describe an example of an
action of SL(2) on an algebraic variety X such that there exists a geometric
quotient X → X/SL(2), where X/SL(2) is an algebraic space but not an
algebraic variety.

1. Notation and terminology. We use the terminology of [BB-Ś1]
and [BB-Ś2]. We now fix the notation and quote the definitions needed in
the sequel.

The ground field k is supposed to be algebraically closed of characteris-
tic 0.

If X → Y is a good quotient of X by an action of a reductive group G,
then we write X//G in place of Y . We write X/G for the geometric quotient
space of X by the action of G.

For a given action of a one-dimensional torus T = k∗ on a smooth
complete variety X we denote by XT the fixed point subvariety of the action.
Let XT = X1 ∪ . . . ∪Xr be the decomposition into irreducible components.
For i = 1, . . . , r, we define

X+
i = {x ∈ X; lim

t→0
tx ∈ Xi} , X−

i = {x ∈ X; lim
t→∞

tx ∈ Xi} .

We say that Xi is less than Xj , and write Xi ≺ Xj , if there exists a finite
sequence of points x1, . . . , xm ∈ X − XT such that

(a) limt→0 tx1 ∈ Xi,

(b) limt→∞ txm ∈ Xj ,

(c) for k = 1, . . . ,m−1, limt→∞ txk and limt→0 txk+1 belong to the same
irreducible component of XT .

By a semi-section of {X1, . . . ,Xr} we mean a partition, denoted by A,
of {X1, . . . ,Xr} into three pairwise disjoint subsets A−, A0, A+ such that
A− 6= ∅ 6= A+, and if Xi ∈ A− ∪ A0, Xj ≺ Xi and i 6= j, then Xj ∈ A−.
Any semi-section determines two open T -invariant subsets

Xss(A) = X −
(

⋃

j∈A−

X−
j ∪

⋃

j∈A+

X+
j

)

, Xs(A) = Xss −
⋃

j∈A0

(X−
j ∪ X+

j ) ,

where we write j ∈ A−, A0, A+ in place of Xj ∈ A−, A0, A+. We shall call
Xss(A) and Xs(A) the sets of semi-stable and stable points determined by
the semi-section A, respectively.

It has been proved in [BB-Ś1] that for any semi-section A there exists
a good quotient π : Xss(A) → Xss(A)//T , where Xss(A)//T is a complete
algebraic variety, π | Xs(A) is a geometric quotient and π(Xs(A)) is an open
subset of Xss(A)//T .

Let X be a smooth complete algebraic variety with a non-trivial action
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of SL(2). Assume that

T =

{[

t 0
0 t−1

]

; t ∈ k∗

}

,

B+ =

{[

t λ
0 t−1

]

; t ∈ k∗ , λ ∈ k

}

, B− =

{[

t 0
λ t−1

]

; t ∈ k∗ , λ ∈ k

}

,

N(T ) = T ∪ τT, where τ =

[

0 1
−1 0

]

.

Then T is a maximal torus, N(T ) is the normalizer of T and B+, B− are
two Borel subgroups containing T .

The Weyl group W = N(T )/T acts on {X1, . . . ,Xr}. Denote by w the
involution on {X1, . . . ,Xr} determined by τ . A semi-section (A−, A0, A+)
for the action of T is called Weyl-invariant if w(A−) = A+ (hence w(A0) =
A0, w(A+) = A−).

2. Projective and complete quotients. The proof of Theorem 1 in
[BB-Ś1] can be easily adapted to give the proof of the following Theorem 1.

Theorem 1. Let U ⊂ X be an N(T )-invariant open subset such that a

good quotient U → U//T exists and U//T is projective. Then X is projective

and there exists an ample SL(2)-linearized linear sheaf L on X such that

Xss(L) =
⋂

g∈SL(2)

gU .

Hence
⋂

g∈SL(2) gU is open and SL(2)-invariant , a good quotient
⋂

g∈SL(2)

gU →
⋂

g∈SL(2)

gU//SL(2)

exists and
⋂

g∈SL(2) gU//SL(2) is a projective (normal) variety.

Theorem 2. Let U ⊂ X be an N(T )-invariant open subset of X such

that a good quotient U → U//T exists and U//T is a complete algebraic

variety. Then a good quotient
⋂

g∈SL(2)

gU →
⋂

g∈SL(2)

gU//SL(2)

exists and
⋂

g∈SL(2) gU//SL(2) is a complete normal algebraic space.

In the proof we may and will assume that U = Xss(A), where A is a
Weyl-invariant semi-section (see [BB-Ś1]).

First we prove the following:

Proposition 3. Let A = (A−, A0, A+) be a Weyl-invariant semi-section

and let Xss(A),Xs(A) be the sets of semi-stable and stable points determined
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by A. Then

SL(2)(Xss(A) − Xs(A)) ⊂ Xss(A) .

P r o o f. We shall write Xss,Xs instead of Xss(A) and Xs(A), respec-
tively. Let x ∈ Xss − Xs. Then x ∈ X+

i ∪ X−
i for some Xi ∈ A0. By

symmetry we may assume that x ∈ X+
i . Assume that gx 6∈ Xss for some

g ∈ SL(2). Then gx ∈
⋃

X−

l ∪
⋃

X+
l . We may suppose that gx ∈ X+

l for
some Xl ∈ A+ (otherwise we take τg instead of g). By the Bruhat decom-
position, g = b1τb2 for some b1, b2 ∈ B+. Now b2x ∈ X+

i and τb2x ∈ X+
l

(since B+x ⊂ X+
i and B+X+

l ⊂ X+
l , see [C-S]). Consider limt→∞ tτb2x.

We get

lim
t→∞

tτb2x = lim
t→∞

τ(τ−1tτ)b2x = τ lim
t→∞

t−1b2x = τ lim
t→0

tb2x ,

hence τb2x ∈ (τXi)
−, where τXi ∈ A0. At the same time τb2x ∈ X+

l , which
implies that Xl ≺ τXi ∈ A0. This contradicts the assumption Xl ∈ A+.
The proof of the proposition is complete.

Now we shall prove the first part of Theorem 2. Let V =
⋂

g∈SL(2) gXss.

Then V is obviously SL(2)-invariant. In order to see that V is open notice
that

X − V = SL(2)(X − Xss) = SL(2)
(

⋃

l∈A−

X−

l ∪
⋃

l∈A+

X+
l

)

= SL(2)
(

⋃

l∈A−

X−

l

)

∪ SL(2)
(

⋃

l∈A+

X+
l

)

.

Hence it suffices to show that SL(2)(
⋃

l∈A−
X−

l ) and SL(2)(
⋃

l∈A+ X+
l )

are closed. This is clear, since SL(2)/B−, SL(2)/B+ are complete and
⋃

l∈A−
X−

l and
⋃

l∈A+ X+
l are closed and invariant under the actions of

B− and B+, respectively.

Now in order to show that there exists a good quotient π : V → V//SL(2)
it suffices to prove that there exists a good quotient πT : V → V//T (by
Theorem 1 of [BB-Ś4] or Theorem 5 of [BB-Ś3]). This is obvious since V is
an open, T -invariant and T -saturated subset of Xss. In fact, every T -orbit
contained in V is either closed in Xss or belongs to Xss −Xs. In the second
case, by Proposition 3 the closure in Xss of the orbit is contained in V .

It remains to show that V//SL(2) is complete. We start with the follow-
ing remark:

Let U1, U2 be two different Weyl-invariant semi-sectional sets defined by
semi-sections (A−

1 , A0
1, A

+
1 ), (A−

2 , A0
2, A

+
2 ), respectively. We say that U2 is

an elementary transform of U1 if there exists a maximal (with respect to the
order ≺ given by the action of T ) element Xi0 in A−

2 such that

A0
1 = A0

2 ∪ {Xi0 , wXi0} and A−
1 = A−

2 − {Xi0} .
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Notice that in this case (Xi0)
B+

= ∅. If U2 is an elementary transform
of U1 then there is a morphism α of Y2 =

⋂

g∈SL(2) gU2//SL(2) into Y1 =
⋂

g∈SL(2) gU1//SL(2). It follows from [BB-Ś2] that SL(2)(X+
i0
−B+Xi0) is a

closed subset of
⋂

g∈SL(2) gU2. Similarly, by Proposition 3, SL(2)(X+
i0
∪X−

i0
)

is a closed subset of
⋂

g∈SL(2) gU1, since X+
i0

,X−
i0

are B+- and B−-invariant,

respectively, and SL(2)/B+,SL(2)/B− are complete. The morphism α
restricted to Y2 − (SL(2)(X+

i0
− B+Xi0)//SL(2)) is an isomorphism onto

Y1 − (SL(2)(X+
i0
∪ X−

i0
)//SL(2)).

Moreover, notice that

Z1 = SL(2)(X+
i0
∪ X−

i0
)/SL(2) and Z2 = SL(2)(X+

i0
− B+Xi0)/SL(2)

are complete. In fact, Z2 is complete by Lemma 1 and Corollary 1 in [BB-
Ś2]. Moreover, Xi0 is contained in SL(2)(X+

i0
∪X−

i0
), the quotient morphism

SL(2)(X+
i0
∪X−

i0
) → Z2 maps Xi0 onto Z2 and Xi0 is complete, hence Z1 is

complete.

Lemma 4. If U2 is an elementary transform of U1, then Y2 is complete

iff Y1 is complete.

P r o o f. If Y2 is complete, then its image α(Y2) in Y1 is complete. Since α
is an isomorphism of open sets, it follows that α is onto, and Y1 is complete.

Conversely, assume that Y1 is complete. We noticed earlier that α |
Y2 −Z2 is an isomorphism onto Y1 −Z1 and Z1, Z2 are complete. Moreover,
Z2 is connected. From Lemma 3 in [BB-Ś2] it follows that Y2 is complete.

Lemma 5. Let U1 and U2 be two semi-sectional N(T )-invariant sets in

X. Then there exists a chain of semi-sectional N(T )-invariant sets V1 = U1,
V2, . . . , Vk = U2 such that for each i = 1, . . . , k−1, either Vi is an elementary

transform of Vi+1, or vice versa.

P r o o f. We use the method of the proof of Lemma 2 in [BB-Ś2].

Lemma 6. Let β : X1 → X be an SL(2)-equivariant birational morphism

of smooth algebraic complete varieties and let U ⊂ X be an N(T )-invariant

semi-sectional set. Moreover , assume that X1 is projective. Then there

exists an N(T )-invariant semi-sectional set W ⊂ β−1(U).

P r o o f. Assume that U is a semi-sectional set corresponding to a Weyl-
invariant semi-section (A−, A0, A+). We shall define a semi-section
(A−

1 , A0
1, A

+
1 ) in the set of connected components of (X1)

T . We may de-
compose A0 into disjoint subsets S1 ∪ S2 ∪ wS2 in such a way that

Xi ∈ S1 iff wXi = Xi

(of course this decomposition is not uniquely defined). For any Xi ∈ S1

let (D−
i ,D0

i ,D+
i ) be any Weyl-invariant semi-section in the set of connected
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components of β−1(Xi). Such a semi-section exists because β−1(Xi) is pro-
jective. Let X1,j be a connected component of (X1)

T . Then define A+
1 in

the following way: X1,j ∈ A+
1 iff any of the following conditions is satisfied:

(a) β(X1,j) ⊂ Xi where Xi ∈ A+,
(b) β(X1,j) ⊂ Xj where Xj ∈ S2,
(c) X1,j ∈ D+

i .

The set A0
1 is defined by

X1,j ∈ A0
1 ⇔ X1,j ∈ D0

i .

It is easy to check that the partition (A−
1 , A0

1, A
+
1 ) (where A−

1 = wA+
1 ) of

the set of connected components of (X1)
T is a Weyl-invariant semi-section.

Obviously the semi-sectional set defined by this semi-section is contained in
β−1(U).

We are now ready to prove the second part of Theorem 2. Assume first
that X is projective. Then there exists an N(T )-invariant semi-sectional set
U1 = Xss

T (L) of semi-stable points with respect to some T -linearized am-
ple sheaf L, where the T -linearization is induced by an SL(2)-linearization.
Then

⋂

g∈SL(2) gU1//SL(2) is complete. By Lemmas 4 and 5, for any N(T )-

invariant semi-sectional set U in X, the quotient
⋂

g∈SL(2) gU//SL(2) is com-
plete.

If X is complete and not projective, then by the equivariant Chow
Lemma (see [S]) there exists a projective variety X1 and an SL(2)-equivar-
iant birational morphism β : X1 → X. Let U be an N(T )-invariant semi-
sectional set in X and let U1 ⊂ X1 be an N(T )-invariant semi-sectional
set contained in β−1(U). Such a set exists by Lemma 6. Since Y is pro-
jective,

⋂

g∈SL(2) gU1//SL(2) is complete. The morphism β |
⋂

g∈SL(2) gU1 :
⋂

g∈SL(2) gU1 →
⋂

g∈SL(2) gU is birational and SL(2)-equivariant, hence it in-

duces a birational morphism
⋂

g∈SL(2) gU1//SL(2) →
⋂

g∈SL(2) gU2//SL(2).

Since
⋂

g∈SL(2) gU1//SL(2) is complete, it follows that
⋂

g∈SL(2) gU2//SL(2)
is also complete. This completes the proof of Theorem 2.

Theorem 7. Let A1 = (A−
1 , A0

1, A
+
1 ), A2 = (A−

2 , A0
2, A

+
2 ) be two

different Weyl-invariant semi-sections. Then
⋂

g∈SL(2) gXss(A1) 6=
⋂

g∈SL(2) gXss(A2) unless both intersections are empty.

P r o o f. If A0
1 6= A0

2, then the theorem follows from Proposition 3. As-
sume that A0

1 = A0
2 and let Xi0 ∈ A−

1 − A−
2 be maximal in A−

1 with re-
spect to the order ≺ induced by T . Then Xi0 ∈ A+

2 . In this case we

use the same argument as in the proof of Lemma 5 in [BB-Ś2] to see that
SL(2)x ⊂ Xss(A1) for any x ∈ X+

i0
− B+Xi0 . But obviously x 6∈ Xss(A2).

Similarly, if x ∈ Xi0 − B−Xi0 , then SL(2)x ⊂ Xss(A2), but x 6∈ Xss(A1).
So it remains to consider the case where X+

i0
= B+Xi0 and X−

i = B−Xi0 .
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But then SL(2)Xi0 is dense in X. On the other hand, the considered inter-
sections are open and disjoint from SL(2)Xi0 . Hence they are empty. This
completes the proof of the theorem.

Theorem 8. Let Pic(x) = Z and let X be projective. Then there exists

the greatest open SL(2)-invariant subset V of X such that there exists a good

quotient V → V//SL(2), where V//SL(2) is an algebraic variety. Moreover ,
V//SL(2) is projective.

P r o o f. Let V be the SL(2)-invariant open set of points satisfying the
following condition: x ∈ V if and only if there exists an affine open SL(2)-
invariant neighbourhood U of x. We shall show that V = Xss(L), for some
ample SL(2)-linearized sheaf L. Notice that since Pic(X) = Z, an invertible
sheaf F is ample iff it has a non-zero section with support different from X.

Fix any invertible ample sheaf L on X. Let x ∈ V and let U be any affine
SL(2)-invariant neighbourhood of x. Since there exists U → U//SL(2) and
U//SL(2) is affine, by [GIT] there exists an invertible SL(2)-linearized sheaf
L1 on U such that U = U ss(L1). Let s ∈ H0(U,L1)

SL(2) be a section such
that s(x) 6= 0 and its support is affine. The sheaf L1 can be extended to an
invertible SL(2)-linearized sheaf L2 on X such that s extends to a section
of L2 on X, equal to 0 on X − U (see the proof of Prop. 1.13 in [GIT]).
Then L2 is ample on X and U ⊂ Xss(L2). Since Pic(X) = Z, L⊗n = L⊗m

2

for some positive integers n,m. Thus Xss(L) = Xss(L2) and U ⊂ Xss(L).
The proof is complete.

Example. Now we shall construct an example of a smooth projective
algebraic variety X with an action of SL(2) and an open SL(2)-invariant
subset U of X such that there exists a geometric quotient U → U/SL(2),
where U/SL(2) is a complete algebraic space which is not an algebraic vari-
ety. This gives a negative answer to a question of D. Luna.

It is enough to describe a projective smooth algebraic variety X with an
action of SL(2) such that Pic(X) = Z and which has two different N(T )-
invariant sectional sets V1, V2 such that

⋂

g∈SL(2) gV1 6= ∅ 6=
⋂

g∈SL(2) gV2.

In fact, by Theorem 7,
⋂

g∈SL(2) gV1 6=
⋂

g∈SL(2) gV2 and by Theorem 8,

at most one of the sets
⋂

g∈SL(2) gVi/SL(2), i = 1, 2, is an algebraic variety.
Let X be the Grassmannian of 3-dimensional linear subspaces in a 6-

dimensional linear space V with an action of SL(2) induced by an irreducible
representation of SL(2) in V . Then V can be identified with the space of
5-forms in two variables x, y, with the action of SL(2) induced by the natural
representation of SL(2) in the two-dimensional space of linear forms in x, y.
Set

e0 = x5, e1 = x4y, e2 = x3y2, e4 = xy4, e5 = y5 .

Then the action of t ∈ T is given by t(ei) = t5−2iei and τ(ei) = e5−i, for
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i = 0, 1, . . . , 5. The fixed points of the action of T on X are of the form
ei ∧ ej ∧ ek, i < j < k, i, j, k = 0, 1, . . . , 5, with the order described by the
diagram.

It is clear that we have two N(T )-invariant sectional sets given by the
following sections:

a) A+
1 = {e0 ∧ e1 ∧ e2, e0 ∧ e1 ∧ e3, e0 ∧ e2 ∧ e3, e0 ∧ e1 ∧ e4,

e1 ∧ e2 ∧ e3, e0 ∧ e2 ∧ e4, e0 ∧ e1 ∧ e5, e1 ∧ e2 ∧ e4,

e0 ∧ e2 ∧ e5, e0 ∧ e3 ∧ e4} ,

A−
1 = {X1, . . . ,Xr} − A+

1 , V1 = Xss(A−
1 , A+

1 ) ,

b) A+
2 = (A+

1 − {e0 ∧ e3 ∧ e4}) ∪ {e1 ∧ e2 ∧ e5} ,

A−
2 = {X1, . . . ,Xr} − A+

2 , V2 = Xss(A−
2 , A+

2 ) .

Since dim{e0 ∧ e3 ∧ e4}
+ = 4 > 2, the set {e0 ∧ e3 ∧ e4}

+ −B+{e0 ∧ e3 ∧ e4}
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is non-empty, and it follows from Proposition 3 that
⋂

g∈SL(2) gV1 6= ∅.

Similarly
⋂

g∈SL(2) gV2 6= ∅. Hence by Theorem 7, the two intersections are
different.

One may easily check that in case a) one obtains the geometric quo-
tient

⋂

g∈SL(2) gV1 →
⋂

g∈SL(2) gV1/SL(2) with projective orbit space. Since

Pic(X) = Z, in case b) one obtains the geometric quotient
⋂

g∈SL(2) gV2 →
⋂

g∈SL(2) gV2/SL(2) with orbit space which is not an algebraic variety.

Theorem 9. Let X be a smooth complete algebraic variety with an ac-

tion of SL(2). Let U be an N(T )-invariant open subset of X for which

there exists a good quotient U → U//T and let U be maximal with re-

spect to this property. Moreover , assume that U//T is quasi-projective.

Then
⋂

g∈SL(2) gU is open, SL(2)-invariant , and there exists a good quo-

tient
⋂

g∈SL(2) gU →
⋂

g∈SL(2) gU//SL(2).

The proof of the theorem will follow from a sequence of lemmas.

Lemma 10. Under the assumptions of Theorem 9, the set X − U is the

union of two closed subsets F+, F− such that F+ is B+-invariant and F− is

B−-invariant.

P r o o f. It follows from [GIT] that there exists an N(T )-linearized in-
vertible ample sheaf L on U such that U consists of semi-stable points
with respect to L. We may extend the sheaf L to X so that Xss(L) ⊃
U , Xs(L) ⊃ U s(L). Moreover, we may assume that there exist sections
s1, . . . , sr ∈ Γ (X,L) which separate points and tangent vectors. Such an
extension can be found using the method of proof of Theorem 1 of [BB-Ś2].

Some tensor power L⊗n, n > 0, can be SL(2)-linearized (see [GIT]).
Since the character group of N(T ) is finite, the restriction of the SL(2)-
linearization to N(T ) coincides with the N(T )-linearization determined pre-
viously (see [GIT]). It follows from the above that the rational map ΦL :
X → P

m determined by the SL(2)-linearized sheaf L is SL(2)-equivariant
and gives an embedding of U into P

m. Hence for any g ∈ SL(2), ΦL|gU is
also an embedding. It follows that ΦL|

⋃

g∈SL(2) gU is an embedding. In fact,

if x1, x2 ∈
⋃

g∈SL(2) gU , then x1 ∈ g1U , x2 ∈ g2U for some g1, g2 ∈ SL(2).

The set of g ∈ SL(2) such that x1 ∈ gU is not empty and open, and similarly
for the set of g ∈ SL(2) such that x2 ∈ gU . Since SL(2) is irreducible as an
algebraic variety, these two sets intersect, i.e. there exists g ∈ SL(2) such
that x1, x2 ∈ gU . Thus if x1 6= x2, then ΦL(x1) 6= ΦL(x2). Similarly ΦL

separates tangent vectors.

Let X1 = ΦL(X). Then ΦL(U) ⊂ Xss
1 . Now we need the following:

Lemma 11. Let SL(2) act on P
m. Let U0 ⊂ (Pm)ss be a locally closed

T -invariant subset such that a good quotient U0 → U0//T exists. Then there
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exists a semi-sectional set W in U0 such that U0 is saturated in W . If U0

is N(T )-invariant , then W can also be chosen to be N(T )-invariant.

P r o o f. Let Y = U0. The set U0 is contained in the set V = Y ∩ (Pm)ss

of semi-stable points of Y with respect to the action of T . The set V is
semi-sectional, corresponding to a semi-section A1 = (A−

1 , A0
1, A

+
1 ) in the set

Y1, . . . , Yr of connected components of Y T . We shall define a semi-section
A = (A−, A0, A+) such that U0 is saturated in W = Xss(A).

Let Yi ∈ A0 and Yi ∩ U0 = ∅. Then there are three possibilities:

(i) Y0 ∩ (Y −
i ∪ Y +

0 ) = ∅, (ii) U0 ∩ Y −
i 6= ∅, (iii) U0 ∩ Y +

i 6= ∅ .

We shall define (A−, A0, A+) in the following way: Yi ∈ A−
1 implies that

Yi ∈ A−, Yi ∈ A+
1 implies that Yi ∈ A+. If Yi ∈ A0

1 then: Yi ∈ A0 iff
Yi ∩ U0 6= ∅, in case (i) we may choose Yi ∈ A− or Yi ∈ A+, in case (ii)
Yi ∈ A−, finally in case (iii) Yi ∈ A+.

If U0 is N(T )-invariant then the choice in case (i) must be made in the
following way: Yi ∈ A− implies that w(Yi) ∈ A+. It is easy to check that U0

is saturated in W and if U0 is N(T )-invariant then W is also N(T )-invariant.
This completes the proof of Lemma 11.

Now we come back to the proof of Lemma 10.
It follows from the above lemma that there exists a Weyl-invariant semi-

section A = (A−, A0, A+) in X1 such that ΦL(U) is saturated in Xss
1 (A).

Thus ΦL(U) ⊂ Xss
1 (A)∩ΦL(

⋃

g∈SL(2) gU). Moreover, since U is maximal in

X with respect to the order ⊳, the set ΦL(U) is maximal with respect to ⊳
in ΦL(

⋃

g∈SL(2) gU) ⊂ X1.

Let Z = (Xss
1 (A) ∩ ΦL(

⋃

g∈SL(2) gU)) − ΦL(U). We want to show that

for any x ∈ Z either B+x or B−x is in Z.

Notice first that x ∈ Xss
1 (A) − Xs

1(A) (if x ∈ Xs
1(A) ∩ ΦL(

⋃

g∈SL(2) gU),

then by maximality of ΦL(U) in ΦL(
⋃

g∈SL(2) gU) we have x ∈ ΦL(U)).

Hence there exists Xi ∈ A0 such that either x ∈ X+
i or x ∈ X−

i . By
symmetry we may assume that x ∈ X+

i . Since ΦL(U) is open and saturated
in Xss

1 (A) we have X+
i ∩ ΦL(U) = Xi ∩ ΦL(U)+. But for any y ∈ Xi,

{y}+ is B+-invariant, hence {limt→0 tx}+ is B+-invariant. Therefore B+x∩
ΦL(U) = ∅ and B+x ⊂ Z.

Now we want to show that for any x ∈ ΦL(
⋃

g∈SL(2) gU)−Xss
1 (A) either

B+x or B−x is contained in Z. Since
⋃

g∈SL(2) gU is SL(2)-invariant it

suffices to show that either B+x or B−x is contained in X1 − Xss
1 (A). But

this is clear since X1 − Xss
1 (A) =

⋃

j∈A+ X+
j ∪

⋃

j∈A−
X−

j and X+
j ,X−

j are

B+- and B−-invariant, respectively.
It follows from the above results that for any x ∈ ΦL(

⋃

g∈SL(2) gU) −

ΦL(U) either B+x or B−x is contained in Z. Since ΦL is an SL(2)-invariant



SPACES OF SL(2) ACTIONS, II 19

map, for any x ∈ X − U either B+x or B−x is contained in X − U . Let
F1, F2 be the sets of all x ∈ X −U such that B+x ⊂ X −U , B−x ⊂ X −U ,
respectively. Then F1, F2 are obviously closed and F1 ∪F2 = X. The proof
of Lemma 10 is complete.

Corollary 12. Under the assumptions of Theorem 9 the set
⋂

g∈SL(2) gU is open and SL(2)-invariant.

P r o o f. In fact, since the sets SL(2)F1 and SL(2)F2 are B+- and B−-
invariant, respectively, and SL(2)/B+, SL(2)/B− are complete we infer that
SL(2)F1 and SL(2)F2 are closed. Hence

⋂

g∈SL(2) gU = X−SL(2)(X−U) =

X − SL(2)(F1 ∪ F2) is open and obviously SL(2)-invariant.

Lemma 13. Let U be an N(T )-invariant open subset of X such that

X−U is a union of B+- and B−-orbits and let x ∈ U . If SL(2)x∩(X−U) 6=
∅, then there exists b1 ∈ B+ such that b1x ∈ X − U .

P r o o f. Let SL(2)x∩ (X −U) 6= ∅. Then there exist g1, g2 ∈ SL(2) such
that either B+g1x ⊂ X − U or B−g2x ⊂ X − U . Assume that B+g1X ⊂
X − U . There exist b1, b2 ∈ B+ such that g = b2τb1. Then also τb2x ∈
X − U . Since U is N(T )-invariant and τ ∈ N(T ), we have b2x ∈ X − U .
If B−g2x ⊂ X − U , then we obtain τB−τ−1g2x ⊂ X − U , and hence
B+(τ−1g2)x ⊂ X −U . Then, arguing as above for g1 = τ−1g2, we conclude
that for some b2 ∈ B+, b2x ∈ x − U .

Lemma 14. Let U satisfy the assumptions of Lemma 13. Then
⋂

g∈SL(2) gU is saturated in U with respect to the action of T .

P r o o f. Let x ∈
⋂

g∈SL(2) gU and suppose that y ∈ Tx ∩ U − Tx. Then
either y = limt→0 tx or y = limt→∞ tx. Let y = limt→0 tx. Assume that
y 6∈

⋂

g∈SL(2) gU . Then SL(2)y ∩ (X − U) 6= ∅ and it follows from Lemma

13 that there exists b1 ∈ B+ such that b1y ∈ X − U . But U is open and
y ∈ UT , hence {y}+ ⊂ U . On the other hand, B+{y}+ ⊂ {y}+. Thus
b1y ∈ U and we have obtained a contradiction. This contradiction shows
that y ∈

⋂

g∈SL(2) gU . Thus
⋂

g∈SL(2) gU is saturated in U with respect to
the action of T .

Corollary 14. Under the assumptions of Lemma 13, if there exists a

good quotient U → U//T , then there exists a good quotient
⋂

g∈SL(2) gU →
⋂

g∈SL(2) gU//T .

P r o o f o f T h e o r e m 9. Let U satisfy the assumptions of the theorem.
It follows from Corollary 12 that U satisfies the assumptions of Lemma
13. Hence by Corollary 14, there exists a good quotient

⋂

g∈SL(2) gU →
⋂

g∈SL(2) gU//T . By the Reduction Theorem (Theorem 5.1) of [BB-Ś4], we

infer that there exists a good quotient
⋂

g∈SL(2) gU →
⋂

g∈SL(2) gU//SL(2).
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