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The aim of this paper is to extend the results of [BB—S2] concerning
geometric quotients of actions of SL(2) to the case of good quotients. Thus
the results of the present paper can be applied to any action of SL(2) on
a complete smooth algebraic variety, while the theorems proved in [BB—S2]
concerned only special situations.

Like in [BB-S2], the source of our study lies in Mumford’s Geometric
Invariant Theory [GIT]. His results concerning semi-stability lead to the
Conjecture (see below). In order to state it we need the following definition:

DEFINITION. Let T be an algebraic torus and let U,V be two open T-
invariant subsets of X for which there exist good quotients 7y : U — U//T
and my @ V. — V//T. We shall write V< U if V. C U and the induced
morphism V//T — U//T is an open embedding,.

We shall say that a T-invariant open subset U of X having a good
quotient is mazimal with respect to the property of having good quotient if
U is maximal with respect to <.

CONJECTURE. Let X be a smooth algebraic variety with an action of
a reductive group G. Let T be a maximal torus of G and let N(T) be its
normalizer in G. Let U be an N(T')-invariant open subset of X for which
there exists a good quotient 7 : U — U//T and which is maximal with
respect to this property. Then [ gec 9U is open, G-invariant and there exists
a good quotient (), gU — (e 9U//G. Moreover, if U//T is complete,
then (1, gU//G is also complete.

In the present paper we only consider the case G = SL(2). Theorem 1
shows that if U//T is projective then the conjecture is valid. Moreover, then
X and N 4ESL(2) gU//G are projective and there exists an ample, invertible,
G-linearized sheaf £ on X such that U is the set of semi-stable points with
respect to the action of T' induced by the action of G.

We also prove the conjecture under the additional assumption that either
U//T is complete (Theorem 2) or U//T is quasi-projective (Theorem 9).
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Answering a question of D. Luna we also describe an example of an
action of SL(2) on an algebraic variety X such that there exists a geometric
quotient X — X/SL(2), where X/SL(2) is an algebraic space but not an
algebraic variety.

1. Notation and terminology. We use the terminology of [BB—Sl]
and [BB—S2]. We now fix the notation and quote the definitions needed in
the sequel.

The ground field k is supposed to be algebraically closed of characteris-
tic 0.

If X — Y is a good quotient of X by an action of a reductive group G,
then we write X //G in place of Y. We write X /G for the geometric quotient
space of X by the action of G.

For a given action of a one-dimensional torus 7' = k* on a smooth
complete variety X we denote by X7 the fixed point subvariety of the action.
Let X7 = X; U...UX, be the decomposition into irreducible components.
Fori=1,...,r, we define

X{i_:{xGX;%iH(l)thXi}, Xi_:{weX;tlim tr € X;}.

We say that X; is less than X, and write X; < X}, if there exists a finite
sequence of points z1,..., 2, € X — X7 such that

(a) lim; otz € X;,

(b) limy_, o0 tx,, € Xj,

(c)fork=1,...,m—1,lim;_ o txg and lim; otz belong to the same
irreducible component of X7

By a semi-section of {X1,...,X,} we mean a partition, denoted by A,
of {X1,...,X,} into three pairwise disjoint subsets A=, A%, A such that
A= #0#£ AT and if X; € A~ UAY, X; < X; and ¢ # j, then X; € A™.
Any semi-section determines two open T-invariant subsets

xsa)=x-(J x;u | Xj), Xo4)=x> - | (X; ux;),
jEA- jeAt JEAC

where we write j € A7, AY, AT in place of X; € A=, A%, AT. We shall call
X% (A) and X*(A) the sets of semi-stable and stable points determined by
the semi-section A, respectively.

It has been proved in [BB-S1] that for any semi-section A there exists
a good quotient 7 : X*5(A) — X®%(A)//T, where X*°(A)//T is a complete
algebraic variety, m | X5(A) is a geometric quotient and 7(X*(A)) is an open
subset of X%%(A)//T.

Let X be a smooth complete algebraic variety with a non-trivial action
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T:{[é tol};tek‘*},
B+:{[é ti‘l];tek*,Aek}, B:{[i t&];tek*,Aek},

N(T)=TUr7T, where T:|:0 1].

of SL(2). Assume that

-1 0

Then 7T is a maximal torus, N(7T') is the normalizer of T and B*, B~ are
two Borel subgroups containing 7.

The Weyl group W = N(T')/T acts on {Xy,...,X,}. Denote by w the
involution on {Xj,...,X,} determined by 7. A semi-section (A=, A%, AT)
for the action of T is called Weyl-invariant if w(A~) = A" (hence w(A%) =
A w(AT) = A7).

2. Projective and complete quotients. The proof of Theorem 1 in
[BB-S1] can be easily adapted to give the proof of the following Theorem 1.

THEOREM 1. Let U C X be an N(T)-invariant open subset such that a
good quotient U — U//T exists and U//T is projective. Then X is projective
and there exists an ample SL(2)-linearized linear sheaf L on X such that

xX=(Ly= () gU.
g€eSL(2)
Hence ﬂgeSL@) gU is open and SL(2)-invariant, a good quotient
N sU— () 9U//SLE)
g€eSL(2) g€eSL(2)
exists and () csr,(2) 9U//SL(2) is a projective (normal) variety.
THEOREM 2. Let U C X be an N(T)-invariant open subset of X such

that a good quotient U — U//T ezists and U//T is a complete algebraic
variety. Then a good quotient

N sU— () 9U/SLE)
g€eSL(2) g€eSL(2)
exists and () csr,2) 9U//SL(2) is a complete normal algebraic space.

In the proof we may and will assume that U = X*°(A4), where A is a
Weyl-invariant semi-section (see [BB-S1]).
First we prove the following:

PROPOSITION 3. Let A = (A~, A, A™) be a Weyl-invariant semi-section
and let X3°(A), X3(A) be the sets of semi-stable and stable points determined
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by A. Then
SL(2)(X*(A4) — X®(A)) € X*®(A).

Proof. We shall write X, X® instead of X**(A4) and X*(A), respec-
tively. Let # € X% — X®. Then z € X;" U X, for some X; € A°. By
symmetry we may assume that x € X;". Assume that gz ¢ X for some
g € SL(2). Then gz € UX; UUJX,". We may suppose that gz € X" for
some X; € A" (otherwise we take Tg instead of g). By the Bruhat decom-
position, g = by 7by for some by,by € B*. Now box € X;r and Thyx € XlJr
(since Btz C X;" and BTX;" C X;", see [C-S]). Consider lim;_,o t7hox.
We get

lim trbyx = lim T(TﬁltT)wa =7 lim t 'byx = 7 lim thox ,
t—oo t—o00 t—o0 t—0

hence Tbyx € (7X;)~, where 7X; € A°. At the same time Thox € Xl+, which
implies that X; < 7X; € A°. This contradicts the assumption X; € A*.
The proof of the proposition is complete.

Now we shall prove the first part of Theorem 2. Let V =) 4ESL(2) gX*s.

Then V' is obviously SL(2)-invariant. In order to see that V' is open notice
that

X -V =SL2)(X - X¥) = SL(2)( UxuvU Xf)
leA- leA+

- SL(2)( U X;) USL(2)< U Xf“).
leA— leA+

Hence it suffices to show that SL(2)(U;c4- X; ) and SL(2)(U;ca+ X;0)
are closed. This is clear, since SL(2)/B~, SL(2)/B* are complete and
Uiea- X, and Ujcaxr X, are closed and invariant under the actions of
B~ and BT, respectively.

Now in order to show that there exists a good quotient 7 : V' — V//SL(2)
it suffices to prove that there exists a good quotient 7 : V. — V//T (by
Theorem 1 of [BB-S4] or Theorem 5 of [BB-S3]). This is obvious since V is
an open, T-invariant and T-saturated subset of X®. In fact, every T-orbit
contained in V is either closed in X*®° or belongs to X®° — X®. In the second
case, by Proposition 3 the closure in X of the orbit is contained in V.

It remains to show that V//SL(2) is complete. We start with the follow-
ing remark:

Let Uy, Us be two different Weyl-invariant semi-sectional sets defined by
semi-sections (A7, A}, A7), (A5, AY, AT), respectively. We say that Us is
an elementary transform of Uy if there exists a maximal (with respect to the
order < given by the action of T') element X;, in A5 such that

A(l] = Ag U {Xio ,’lUXiO} and A; = A; - {Xio} .
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Notice that in this case (XZ-O)B+ = (. If Uy is an elementary transform

of Uy then there is a morphism « of Y5 = [ cqr,(o) 9U2//SL(2) into Y; =
Nyestz) 9U1//SL(2). 1t follows from [BB-S2] that SL(2)(X; —B*X, ) isa
closed subset of () cgr,(2) 9U2. Similarly, by Proposition 3, SL(2)(X;"uX;)
is a closed subset of ﬂQGSL(Q) gU1, since Xfo, X;, are B*- and B~ -invariant,
respectively, and SL(2)/B*,SL(2)/B~ are complete. The morphism «
restricted to Y, — (SL(2)(XZT§ — B"X;,)//SL(2)) is an isomorphism onto
Y1 — (SL(2)(X;5 U X;)//SL(2)).

0
Moreover, notice that

Zy = SL(2)(X;" UX;)/SL(2) and Z, = SL(2)(X;} — BT X;,)/SL(2)

are complete. In fact, Z, is complete by Lemma 1 and Corollary 1 in [BB-
$2]. Moreover, X, is contained in SL(2)(X;3 U X;, ), the quotient morphism
SL(2)(X1‘+O U X, ) — Z2 maps X;, onto Z3 and X;, is complete, hence Z; is
complete.

LEMMA 4. If Us is an elementary transform of Uy, then Yy is complete
iff Y1 is complete.

Proof. If Y5 is complete, then its image «(Y2) in Y7 is complete. Since «
is an isomorphism of open sets, it follows that « is onto, and Y7 is complete.

Conversely, assume that Y; is complete. We noticed earlier that « |
Y5 — Z5 is an isomorphism onto Y; — Z; and Z1, Zy are complete. Moreover,
Z3 is connected. From Lemma 3 in [BB—S2] it follows that Y3 is complete.

LEMMA 5. Let Uy and Us be two semi-sectional N(T')-invariant sets in
X. Then there exists a chain of semi-sectional N (T)-invariant sets Vy = Uy,
Vo, ..., Vi = Uy such that for eachi =1,...,k—1, either V; is an elementary
transform of Vi1, or vice versa.

Proof. We use the method of the proof of Lemma 2 in [BB-S2].

LEMMA 6. Let 5 : X1 — X be an SL(2)-equivariant birational morphism
of smooth algebraic complete varieties and let U C X be an N(T')-invariant
semi-sectional set. Moreover, assume that Xq is projective. Then there
exists an N(T)-invariant semi-sectional set W C 371(U).

Proof. Assume that U is a semi-sectional set corresponding to a Weyl-
invariant semi-section (A=, A% AT). We shall define a semi-section
(A7, A9, A7) in the set of connected components of (X1)T. We may de-
compose A into disjoint subsets S; U Sy UwSy in such a way that

(of course this decomposition is not uniquely defined). For any X; € S;
let (D;, DY, D;f) be any Weyl-invariant semi-section in the set of connected
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components of $71(X;). Such a semi-section exists because 371(X;) is pro-
jective. Let Xi ; be a connected component of (X1)7. Then define AT in
the following way: X; ; € Af iff any of the following conditions is satisfied:

(a) ﬂ(Xl,j) C X, where X; € A+,
(b) ﬂ(Xl,j) C Xj where Xj S SQ,
(C) Xl,j € D;r
The set A9 is defined by
Xl,j € A(l) = Xl,j S D?

It is easy to check that the partition (Aj, A}, A7) (where A7 = wA]) of
the set of connected components of (X;)? is a Weyl-invariant semi-section.
Obviously the semi-sectional set defined by this semi-section is contained in
5-1(U).

We are now ready to prove the second part of Theorem 2. Assume first
that X is projective. Then there exists an N (7T')-invariant semi-sectional set
Uy = X5 (L) of semi-stable points with respect to some T-linearized am-
ple sheaf £, where the T-linearization is induced by an SL(2)-linearization.
Then (N, cqr,(2) 9U1//SL(2) is complete. By Lemmas 4 and 5, for any N (T)-
invariant semi-sectional set U in X, the quotient () gy () 9U//SL(2) is com-
plete.

If X is complete and not projective, then by the equivariant Chow
Lemma (see [S]) there exists a projective variety X; and an SL(2)-equivar-
iant birational morphism 3 : X; — X. Let U be an N(T')-invariant semi-
sectional set in X and let U; C X; be an N(T')-invariant semi-sectional
set contained in 37}(U). Such a set exists by Lemma 6. Since Y is pro-
jective, (,esr,(2) 9U1//SL(2) is complete. The morphism | (,cqr,(2) 9U1
Nyest(2) 9U1 = Nyest(2) 9U is birational and SL(2)-equivariant, hence it in-
duces a birational morphism (,cqr o) 9U1//SL(2) — Nyes1,(2) 9U2//SL(2).
Since (), csp,(2) 9U1//SL(2) is complete, it follows that () cqr,2) 9U2//SL(2)
is also complete. This completes the proof of Theorem 2.

THEOREM 7. Let Ay = (A7, A A7), Ay = (A5, AS, AT) be two
different Weyl-invariant semi-sections. Then (Vyesr (o) 9X7 (A1) #
Nyest(2) 9X 7 (Az2) unless both intersections are empty.

Proof. If A} # AY, then the theorem follows from Proposition 3. As-
sume that A} = AJ and let X;, € A] — A; be maximal in A] with re-
spect to the order < induced by 7. Then X;, € AF. In this case we
use the same argument as in the proof of Lemma 5 in [BB—S2] to see that
SL(2)z C X®¥(A;) for any = € X;g — BT X;,. But obviously z ¢ X®%(As).
Similarly, if x € X;, — B~ X, then SL(2)x C X*(A4s), but = ¢ X(A,).
So it remains to consider the case where X;g = B"X,, and X; = B~ X;,.
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But then SL(2)X;, is dense in X. On the other hand, the considered inter-
sections are open and disjoint from SL(2).X;,. Hence they are empty. This
completes the proof of the theorem.

THEOREM 8. Let Pic(z) = Z and let X be projective. Then there exists
the greatest open SL(2)-invariant subset V of X such that there exists a good
quotient V. — V//SL(2), where V//SL(2) is an algebraic variety. Moreover,
V//SL(2) is projective.

Proof. Let V be the SL(2)-invariant open set of points satisfying the
following condition: = € V' if and only if there exists an affine open SL(2)-
invariant neighbourhood U of x. We shall show that V' = X®(L), for some
ample SL(2)-linearized sheaf £. Notice that since Pic(X) = Z, an invertible
sheaf F is ample iff it has a non-zero section with support different from X.

Fix any invertible ample sheaf £ on X. Let x € V and let U be any affine
SL(2)-invariant neighbourhood of x. Since there exists U — U//SL(2) and
U//SL(2) is affine, by [GIT] there exists an invertible SL(2)-linearized sheaf
Ly on U such that U = U%(L;). Let s € H(U, £1)%%® be a section such
that s(x) # 0 and its support is affine. The sheaf £; can be extended to an
invertible SL(2)-linearized sheaf £, on X such that s extends to a section
of L3 on X, equal to 0 on X — U (see the proof of Prop. 1.13 in [GIT]).
Then L, is ample on X and U C X*(Ly). Since Pic(X) = Z, LZ" = L5™
for some positive integers n,m. Thus X (L) = X*(Ly) and U C X*5(L).
The proof is complete.

ExaMPLE. Now we shall construct an example of a smooth projective
algebraic variety X with an action of SL(2) and an open SL(2)-invariant
subset U of X such that there exists a geometric quotient U — U/SL(2),
where U/SL(2) is a complete algebraic space which is not an algebraic vari-
ety. This gives a negative answer to a question of D. Luna.

It is enough to describe a projective smooth algebraic variety X with an
action of SL(2) such that Pic(X) = Z and which has two different N(7T')-
invariant sectional sets Vi, V5 such that ﬂg€SL(2) gVh £ 0 # ﬂg€SL(2) gVs.

In fact, by Theorem 7, ﬂgGSL(Q) gV1 # ﬂgGSL(Q) gV and by Theorem 8,
at most one of the sets ﬂQGSL@) gVi/SL(2), i = 1,2, is an algebraic variety.

Let X be the Grassmannian of 3-dimensional linear subspaces in a 6-
dimensional linear space V with an action of SL(2) induced by an irreducible
representation of SL(2) in V. Then V can be identified with the space of
5-forms in two variables z, y, with the action of SL(2) induced by the natural
representation of SL(2) in the two-dimensional space of linear forms in x, y.
Set

5 4 3,2 4 5
ECo=2, €=2Y, €E2=TY, €&4=IYy, €=Y.

Then the action of t € T is given by t(e;) = t°~2?%¢; and 7(e;) = e5_;, for



16 A. BIALYNICKI-BIRULA AND J. SWIECICKA

i =0,1,...,5. The fixed points of the action of T on X are of the form
e;NejNeg, i <j<k, i,j,k=0,1,...,5, with the order described by the
diagram.

(VAN 2WANZ
e Ne /N\es
/ \
€ ANey/\ 6 C/\ e e,
e N e;/\ e e /\ e,/ e e /\ei1/N\es
\
e\ e Ney e N eNe AN VAN
=
eeneNe, e\ e, /\es &N\ e/Nes
VA WA e N & /N\es ey/\es/\es
e e /Nes et esNes
e N\ e\ e
WA 7N G

It is clear that we have two N(7T')-invariant sectional sets given by the
following sections:

a) AT:{eg/\el/\eg, egNepNes, eg Nea ANes, eg Nep N ey,
61/\62/\63, 60/\62/\64, 60/\61/\65, 61/\62/\64,
60/\62/\65, 60/\63/\64},
AT ={X1,..., X} - A, Vi=X%(A],4]),
b) A;r:(Af—{60/\63/\64})U{€1/\€2/\€5},
Ay ={Xy,.... X} — A, Vo= X(A5,A7).
Since dim{eg Aeg Aes}t =4 > 2, the set {egAezNes}™ — BT {eg AezNes}
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is non-empty, and it follows from Proposition 3 that ﬂgGSL(z) gVi # 0.
Similarly N gESL(2) gVa # 0. Hence by Theorem 7, the two intersections are
different.

One may easily check that in case a) one obtains the geometric quo-
tient (,csr,(2) 9V1 — Nyesr(2) 9V1/SL(2) with projective orbit space. Since
Pic(X) = Z, in case b) one obtains the geometric quotient (1 cgp,(2) 9V2 —
Nyest(2) 9V2/SL(2) with orbit space which is not an algebraic variety.

THEOREM 9. Let X be a smooth complete algebraic variety with an ac-
tion of SL(2). Let U be an N(T)-invariant open subset of X for which
there exists a good quotient U — U//T and let U be mazimal with re-
spect to this property. Moreover, assume that U//T is quasi-projective.
Then ﬂgGSL(Z) gU is open, SL(2)-invariant, and there ezists a good quo-

tient ngeSL(Q) gU — ngesuz) gU//SL(2).
The proof of the theorem will follow from a sequence of lemmas.

LEMMA 10. Under the assumptions of Theorem 9, the set X — U is the
union of two closed subsets Fy, F_ such that F, is BT -invariant and F_ is
B~ -invariant.

Proof. It follows from [GIT] that there exists an N(T')-linearized in-
vertible ample sheaf £ on U such that U consists of semi-stable points
with respect to £. We may extend the sheaf £ to X so that X*(L) D
U, X5(L) D U®(L). Moreover, we may assume that there exist sections
S1y...,8- € I'(X, L) which separate points and tangent vectors. Such an
extension can be found using the method of proof of Theorem 1 of [BB-S2].

Some tensor power L% n > 0, can be SL(2)-linearized (see [GIT]).
Since the character group of N(T') is finite, the restriction of the SL(2)-
linearization to N (7') coincides with the N (T)-linearization determined pre-
viously (see [GIT]). It follows from the above that the rational map &, :
X — P™ determined by the SL(2)-linearized sheaf £ is SL(2)-equivariant
and gives an embedding of U into P™. Hence for any g € SL(2), @.|gU is
also an embedding. It follows that @ | UQGSL@) gU is an embedding. In fact,
if 1,29 € UgGSL(Q) gU, then 1 € g1U, x5 € goU for some g1, g2 € SL(2).
The set of g € SL(2) such that 2y € gU is not empty and open, and similarly
for the set of g € SL(2) such that o € gU. Since SL(2) is irreducible as an
algebraic variety, these two sets intersect, i.e. there exists g € SL(2) such
that z1,29 € gU. Thus if x1 # x9, then @, (x1) # Pr(x2). Similarly &,
separates tangent vectors.

Let X1 = @£(X). Then @,(U) C X}®. Now we need the following:

LeEMMA 11. Let SL(2) act on P™. Let Uy C (P™)% be a locally closed
T-invariant subset such that a good quotient Uy — Uy //T exists. Then there
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exists a semi-sectional set W in Uqg such that Uy is saturated in W. If U
is N(T)-invariant, then W can also be chosen to be N(T)-invariant.

Proof. Let Y = Uy. The set Uy is contained in the set V =Y N (P™)
of semi-stable points of Y with respect to the action of T. The set V is
semi-sectional, corresponding to a semi-section A; = (A7, AY, Af) in the set
Yi,...,Y, of connected components of Y. We shall define a semi-section
A= (A", A% AT) such that Uy is saturated in W = X55(A).

Let Y; € A° and Y; N Uy = (. Then there are three possibilities:

() Yon (¥ UYF)=0, (i) UonY £0, (i) UpnYy 0.
We shall define (A=, A% AT) in the following way: Y; € A] implies that
Y; € A7, Y; € A implies that V; € AT. If V; € A} then: Y; € A° iff
Y; N Uy # 0, in case (i) we may choose Y; € A~ or Y; € AT, in case (ii)
Y; € A™, finally in case (iii) Y; € A™.

If Up is N(T')-invariant then the choice in case (i) must be made in the
following way: Y; € A~ implies that w(Y;) € AT. Tt is easy to check that Uy

is saturated in W and if Uy is N (T)-invariant then W is also N (T')-invariant.
This completes the proof of Lemma 11.

Now we come back to the proof of Lemma 10.

It follows from the above lemma that there exists a Weyl-invariant semi-
section A = (A7, A%, A") in X; such that @, (U) is saturated in X3°(A).
Thus @£(U) C X{*(A)NP.(U, et (o) 9U). Moreover, since U is maximal in
X with respect to the order <, the set @, (U) is maximal with respect to <
in @2 (Uyesr 2y 9U) C Xi-

Let Z = (X°(A) N (U esr(o) 9U)) — 2£(U). We want to show that
for any x € Z either BTz or B~z is in Z.

Notice first that z € X%(A) — X3(A) (if 2 € X3(A) N P£(U,esp(2) 90
then by maximality of @-(U) in @r(U,cgr,2)9U) we have z € P.(U)).
Hence there exists X; € A° such that either x € X;" or # € X; . By
symmetry we may assume that z € X;". Since @, (U) is open and saturated
in X5%(A) we have X;" N ®,(U) = X; N®.(U)". But for any y € X;,
{y}* is Bt-invariant, hence {lim;_¢ tx}* is B'-invariant. Therefore BTzN
@,(U)=0and Btz C Z.

Now we want to show that for any z € @g(UgeSL(z) gU) — X3°(A) either
Btz or B~z is contained in Z. Since [ cgp (o) 9U is SL(2)-invariant it
suffices to show that either BTz or B~z is contained in X; — X55(A). But
this is clear since X1 — X7°(4) = U;ca+ Xf UUjea- X; and X;F,Xj_ are
B*- and B~ -invariant, respectively.

It follows from the above results that for any « € @£ (Uyesr (o) 9U) —
@, (U) either Btz or B~z is contained in Z. Since @, is an SL(2)-invariant
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map, for any x € X — U either BTx or B~z is contained in X — U. Let
Fi,Fy bethesetsofallz € X —U suchthat BfTa ¢ X -U, Bz C X - U,
respectively. Then Fy, Fy are obviously closed and F} U Fy = X. The proof
of Lemma 10 is complete.

COROLLARY 12. Under the assumptions of Theorem 9 the set
ﬂgesL(g) gU is open and SL(2)-invariant.

Proof. In fact, since the sets SL(2)F; and SL(2)F, are B*- and B~ -
invariant, respectively, and SL(2)/B*, SL(2)/B~ are complete we infer that
SL(2)F1 and SL(2)F are closed. Hence (,cgp,2) 9U = X —=SL(2)(X —U) =
X — SL(2)(Fy U F») is open and obviously SL(2)-invariant.

LEMMA 13. Let U be an N(T')-invariant open subset of X such that
X —U is a union of BY- and B~ -orbits and let z € U. If SL(2)zN(X-U) #
(0, then there exists by € BT such that bijx € X — U.

Proof. Let SL(2)zN (X —U) # (). Then there exist g1, g2 € SL(2) such
that either BYgi2 € X — U or B~ gox C X — U. Assume that BT¢g; X C
X — U. There exist by,by € B* such that g = by7b;. Then also Thyx €
X —U. Since U is N(T)-invariant and 7 € N(T'), we have byz € X — U.
If B-gox C X — U, then we obtain 7B 7 'gox € X — U, and hence
Bt (77 tge)x € X —U. Then, arguing as above for g; = 771gs, we conclude
that for some by € BT, box € v — U.

LEMMA 14.  Let U satisfy the assumptions of Lemma 13. Then
ﬂQGSL@) gU is saturated in U with respect to the action of T.

Proof. Let x € ﬂgGSL(Q) gU and suppose that y € Te N U — Tx. Then
either y = lim;_.gtx or y = limy ., tx. Let y = lim;_,gtx. Assume that
Y & Nyesr(z) 9U- Then SL(2)y N (X —U) # () and it follows from Lemma
13 that there exists b; € BT such that by € X — U. But U is open and
y € UT, hence {y}* C U. On the other hand, BT {y}* c {y}*. Thus
b1y € U and we have obtained a contradiction. This contradiction shows
that y € ﬂgGSL(z) gU. Thus ﬂgGSL(z) gU is saturated in U with respect to
the action of T

COROLLARY 14. Under the assumptions of Lemma 13, if there exists a
good quotient U — U//T, then there exists a good quotient (,cgr,2) 9U —

ngesuz) gU//T.

Proof of Theorem 9. Let U satisfy the assumptions of the theorem.
It follows from Corollary 12 that U satisfies the assumptions of Lemma
13. Hence by Corollary 14, there exists a good quotient ﬂQGSL@) gU —
MNyesr(2) 9U//T. By the Reduction Theorem (Theorem 5.1) of [BB-S4], we
infer that there exists a good quotient (,cqr 2y 9U — yesr(2) 9U//SL(2).
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