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Introduction. A submanifold M of the Euclidean m-space E™ is said to
be of finite type (see [C1] for details) if each component of its position vector
field X can be written as a finite sum of eigenfunctions of the Laplacian A
of M, i.e., if

X=Xo+X14+...+ Xi

where Xy is a constant vector and AX; = \MX; for t = 1,...,k. If in
particular all eigenvalues Ay, ..., \r are mutually different, then M is said
to be of k-type. If we define a polynomial P by
k

t=1
then P(A)(X — Xo) = 0. If M is compact, then the converse also holds,
i.e., if there exists a constant vector Xy and a nontrivial polynomial P such
that P(A)(X — Xo) =0, then M is of finite type [C1].

The class of finite type submanifolds is very large, including minimal
submanifolds of £, minimal submanifolds of a hypersphere, parallel sub-
manifolds, compact homogeneous submanifolds equivariantly immersed in
a Euclidean space, and also isoparametric hypersurfaces of a hypersphere.
On the other hand, very few hypersurfaces of finite type in a Kuclidean
space are known, other than minimal hypersurfaces (which are of 1-type).
Therefore the following problem seems to be quite interesting.

ProBLEM. Classify all finite type hypersurfaces in E™.

For m = 2, this problem was solved completely. In fact, it is known that
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circles and straight lines are the only curves of finite type in E? (see [C1]
and [CDVV] for details). For m = 3, the first result in this respect given
in [C2], states that circular cylinders are the only tubes in E3 which are of
finite type. In [CDVV] it is shown that a ruled surface in E? is of finite
type if and only if it is a plane, a circular cylinder or a helicoid. In [G], it is
shown that a cone in E™ is of finite type if and only if it is minimal. In [D],
some ruled submanifolds of finite type are classified.

If M’ is an algebraic hypersurface with singularities in E™, then M’ is
said to be of finite type if M’ — {singularities} is of finite type.

Combining the notion of algebraic hypersurfaces and the notion of sub-
manifolds of finite type, the first two authors proved in [CD] that the only
quadric surfaces of finite type in E® are the circular cylinders and the
spheres. In this article, we shall completely classify quadric hypersurfaces
of finite type.

2. Quadric hypersurfaces. A subset M of an n-dimensional Euclidean
space E™ is called a quadric hypersurface if it is the set of points (z1,...,2y)
satisfying the following equation of the second degree:

n n
(2.1) Z AQipTiTh + Z bix; +c=0,
i,k=1 i=1
where a;i, b;, ¢ are all real numbers. We can assume without loss of gen-
erality that the matrix A = (a;;) is symmetric and A is not a zero matrix.
By applying a coordinate transformation in E™ if necessary, we may assume
that (2.1) takes one of the following canonical forms:

.
1)  aai+1=0,
=1

(II) Z a;x; + 21,41 =0,

=1
(I11) D a}=0
=1

where (ai,...,a,,0,...,0) (with n — r zeros) is proportional to the eigen-
values of the matrix A. In general, we have 1 < r < n. In the cases where
r=n in (I) and (III) and r+1 = n in (II) the hypersurface is called a prop-
erly (n — 1)-dimensional quadric hypersurface, and in other cases, a quadric
cylindrical hypersurface. In cases (I) and (III), the quadric cylindrical hy-
persurface is the product of an (n — r)-dimensional linear subspace E™~"
and a properly (r — 1)-dimensional quadric hypersurface. In case (II), the
quadric cylindrical hypersurface is the product of an (n —r — 1)-dimensional
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linear subspace and a properly r-dimensional quadric hypersurface.
Let SP(r) denote the hypersphere in EPT™! with radius 7 and centered at
the origin. Denote by M), , the product of spheres

SP( p> % SQ< q) C Sp+q+1(1) c grtat2
p+4q pP+q
We denote by C),, the (p+ g + 1)-dimensional cone in EPT9%2 with vertex
at the origin shaped on M, ,. It is easy to see that C,o and Cy, are
hyperplanes in EP*? and E972] respectively, and C, , with p > 0, ¢ > 0 are
algebraic hypersurfaces of degree 2.
The purpose of this article is to prove the following classification theorem.

THEOREM. A quadric hypersurface M in E™*! is of finite type (even
locally) if and only if it is one of the following hypersurfaces:

(a) hypersphere,

(b) one of the algebraic cones Cpp—p—1, 0 <p<n—1,

(c) the product of a linear subspace E' and a hypersphere of E"~'*1
(0<l<n),

(d) the product of a linear subspace E' and one of the algebraic cones
Cpn—i—p-1 (0<p<n—1-1).

3. Properly n-dimensional quadric hypersurfaces. Let M be a
hypersurface in E"*!. Consider a parametrization

(31) X(ula"wun):(ula'--vunav)
where
(3.2) v=0(Ur, ..., Up).

Denote 0;v(= 0v/0u;) by v;. Then we have
(3.3) 9ij = 0i5 + V05, gij = 045 — Uit
where
(3.4) g =det(gi;) =1+ 07,

i=1

and g;; = (0;X,0;X). The Laplacian A of M is given by
0i9 i ij ij
(3.5) A_—Z(29gﬂ+aigﬂ>aj—zgﬂaiaj.
i,j 1,5

If M is a properly n-dimensional quadric hypersurface, then either M is
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an algebraic cone of degree 2 or M is of one of the following two kinds:

(1) UQIZbiu?—I-C, bi...bpc#0,
i=1

(IT) vzlzn:b»u2 by...b, #0
22-:1 iU, .. by .

In the following two sections, we study properly n-dimensional quadric
hypersurfaces of kinds (I) and (II), separately.

4. Proper quadric hypersurfaces of kind (I). In this section we
assume M is a properly n-dimensional quadric hypersurface of kind (I). We
may consider the following parametrization:

(41) X = (ugy.. . Un,v), V> =ayui+...+au’+c, ap...anc#0.

In this case, we have

(42) v; = 81‘1) = aiui/v .
Thus, (3.3) and (3.4) imply
a;0;U;U; ii a;a;U;U;
(4.3) 9ij = 0ij + {/V L, gY =00 — g]ij
1 1 1
4.4 =1 ey Z‘iQ —=1= - ii2a
where
(4.5) W =202 =au?+...4+apu +c.
From (4.4) we find
2
(4.6) 0ig = W (aiui(1+ai —g)),
(4.7) g:=gW=c+ Z(l + a;)au? .
We put
1
(4.8) A, = ﬁ{(gW - a%ui)@kg — AUk Z atutﬁtg}
t#k
1
=59 Z 9% 0rg .

t

Then from (4.3) and a straightforward computation, we have
apu 2A

(4.9) _Zatgtk:ﬂzaﬁ%'

t gw t#k g
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From (3.5), (4.8) we obtain

(4.10) A= 912 ZAiai + giv (Zat>ajujaj - 40,0,

i t#k 1,J
We put
(4.11) cij = 99" .
From (4.3), (4.4) and (4.11) we have

1

(412) Cij = 51‘]‘ + W (5ij Z CL?U% — aiajuiuj) .

t
For later use, we note that from (4.8), (4.12) we have
(4.13) > cii(0:9)(99) =2 A;059.

2] J

Also note from (4.7) that
(4.14) g = gW is a polynomial in uq,...,uy, .
LEMMA 1. We have

t—1
Alyy, = glf3tAkat(Z Aiaig> + g273th7t(u1, ey Up, 1JTV)

where Py 4 is a polynomial in n + 1 variables and oy is given by
(4.15) ap = (4—-3t)(6t —5)ag—1, a;=1.

Proof. The proof goes by induction. For ¢ = 1, the formula follows
from (4.10). Suppose the lemma is true for ¢ — 1. Then it follows from
(4.10), (4.11) and (4.13) that

AtUk _ g1—3t Z AjAkat*l(Z Azalg> t72(4 — 3t)8jg
J %

t—2
— gt Z CijApog_1 ( Z Aﬁzg) (4 —3t)(3 —3t)0;90;g
ij l

N Py s 1/W)

. 1-3t Yy =1 2-3t
=g Akat ZAzazg +g Pk,t(ula"'>un>1/W)7

which proves the lemma.

Now, suppose that M is of k-type. Then there exist real numbers
C1, ..., such that

(4.16) ARFLX o ARX 4+ 4 AX =0,
(4.17) ARy e A+ e Au; =0, i=1,....n.
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From Lemma 1 and (4.17) we get
k+1
(4.18) <2Ai8ig) = gP(u,. .., un,1/W),

where P is a polynomial in n + 1 variables. We put

(4.19) Gluy, ... un) =W A;dig.

Then G is a polynomial in uq, ..., u,. Since W is a polynomial in w1, ..., Uy,
there is a natural number N and a polynomial R in n variables such that

(4.20) WNP(uy, ... un, 1/W) = R(ui, ..., u,).
From (4.7), (4.18)—(4.20), we have
(4.21) WNHLGET — G5 R
For any fixed j, 1 < j < n, we put u; = 0 for ¢ # j in (4.21) to obtain
(4.22)  (c+ ajul)NTFT2oR (g2 ey )2 +2
= (c+aj(a; + 1u )(c—l—a] J)5k+5R( ..,0,u;,0,...,0).

Since aj ...anc # 0, this implies a; = —1. Because this is true for any j,
M is a hypersphere.

5. Proper quadric hypersurfaces of kind (II). For such hypersur-
faces we consider a parametrization

1
(5.1) X = (u1,...,un,v), v:§Zbiu?, by...b, #0.

From (3.3)—(3.5) we may find

g bibiu;u,
(5.2) gij = 5z‘j + bibjuiuj y g” = (5,'3‘ S ]gl J s

(53) g= det(glj =1 + sz z )
J %
— Zg”@iaj + ; Z (Z bl')bjujaj
4,

J i#£]
LEMMA 2. We have
(5.5) gQAg:Q(ul,...,un)—I—gT(ul,...,un),

2
(5.6) IVgll* = Qs ),
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where Q and T are some polynomials in uy,...,u, and Vg is the gradient
of g.
Proof. From (5.3) and (5.4) we find
Zb%]{b +Z 2ud)bjus+g( D bi )by b 2> b2
i#] J
Thus, if we put

(5.7) Q:2Zb {b +Z b)b2u 2}’
(5.8) T:2Zb3 2(21))—2929“()?,

i#]

then we obtain (5.5). It is obvious that @ and T are polynomials in
UL,y ..., Up. (5.6) follows from the definition of the norm of Vg, (5.2), (5.3)
and (5.7).

LEMMA 3. We have
Ay, = g'=3tQ11p,; uj{b +Z )b }at +92_3tﬁj,t

where ﬁj,t is a polynomial in uy, ..., u, and oy is given by (4.15).

Proof. The proof goes by induction. For ¢ = 1 the formula follows
easily from (5.4). Assume it is true for ¢t — 1. Then we have

Atuj = A{g4_3tQt_ijUj <bj + Z(b] — bi)b?u?)atfl + 95_3tﬁj’t*1}

1 3tQt 2p. Uj (b +Z b U3 )at_l

x {(4—3t)g° Ag — (4 — 3t)(3 — 3t)g||Vgl[*} + ¢* ' P},

where ﬁj,t is a polynomial in uq,...,u,. Thus, Lemma 2 implies the asser-
tion.

If M is of k-type, then again there exist real numbers cq,...,c, such
that

Akﬂuj—l—clAkuj—i—...—i—ckAuj:O, ji=1....n.
From Lemma 3 and (5.7) we obtain

QM = gP(uy, ..., uy,)
where P is a polynomial in wuy,...,u,. Since by...b, #0, g =1+ b?u?
is irreducible. Moreover, because Q/g = 3||Vg||* is not a polynomial in
U1, ..., U,, we obtain a contradiction. Thus, there exist no proper quadric
hypersurfaces of kind (II) which are of finite type.
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6. Proof of Theorem. If M is a properly n-dimensional quadric hy-
persurface of finite type in E™t!, then either M is an algebraic conic hyper-
surface of degree 2 or, according to §§3-5, M is a hypersphere. If M is an
algebraic conic hypersurface of degree 2, then because M is of finite type,
M is a minimal cone [G]. Thus, by a result of [H], M is one of the algebraic
cones Cp p—p—1, 0 <p<n—1.

If M is a quadric cylindrical hypersurface of finite type in E**!, then M
is the product of a linear subspace E' and a proper quadric hypersurface,
say N. Since M is of finite type, N is also of finite type. Thus, N is either
a hypersphere or an algebraic cone Cp ,,—;—,—1 for some suitable p.

The converse is easy to verify.
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