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ON THE STRUCTURE OF JORDAN *-DERIVATIONS

BY

MATEJ BRESAR (MARIBOR) anxo BORUT ZALAR (LJUBLJANA)

1. Introduction. Let R be a *-ring, i.e., a ring with involution *. An
additive mapping E from R to R is called a Jordan *-derivation if

E(2?) = E(x)r* +2E(z) forallx € R.

Note that the mapping x — ax* — za, where a is a fixed element in R, is a
Jordan *-derivation; such Jordan *-derivations are said to be inner.

The study of Jordan *-derivations has been motivated by the problem
of the representativity of quadratic forms by bilinear forms (for the results
concerning this problem we refer to [8, 12, 14-16]). It turns out that the
question whether each quadratic form can be represented by some bilinear
form is intimately connected with the question whether every Jordan *-
derivation is inner, as shown by Semrl [14].

In [4] Bresar and Vukman studied some algebraic properties of Jordan
*-derivations. As a special case of [4; Theorem 1] we have that every Jordan
*-derivation of a complex algebra A with unit element is inner. Clearly,
the requirement that A must contain the unit element cannot be omitted—
for example, if A is a self-adjoint ideal in an algebra B, then the mapping
x — bx* — xb, where b € B, is a Jordan *-derivation of A which is not nec-
essarily inner. In this paper we prove that Jordan *-derivations of a rather
wide class of complex *-algebras (in general without unit) can be represented
by double centralizers (Theorem 2.1). As an application we obtain a result
on automatic continuity of Jordan *-derivations (Corollary 2.3). As another
application we determine the structure of Jordan *-derivations on the alge-
bra of all compact linear operators on a complex Hilbert space (Corollary
2.4).

Roughly speaking, it is much more difficult to study Jordan *-derivations
on real algebras than on complex algebras. Nevertheless, in [13] Semrl
showed that every Jordan *-derivation of B(H), the algebra of all bounded
linear operators on a real Hilbert space H (dim H > 1), is inner. In the
present paper, using a completely different approach, we give a new proof of
this result. Our proof is based on two well-known results. The first is from
algebra (due to Martindale, concerning Jordan derivations of the symmetric
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elements of a *-ring), while the second is from analysis (due to Chernoff,
stating that all derivations on B(H) are inner). In fact, throughout this
paper we combine algebraic and analytic methods.

2. Jordan *-derivations of complex *-algebras. Let A be an
algebra (resp. a ring). A linear (resp. additive) mapping 7" from A to A is
called a left centralizer of A if T'(xy) = T(x)y for all z,y € A. Analogously,
a linear (resp. additive) mapping S from A to A satisfying S(xy) = zS(y)
for all z,y € A is called a right centralizer of A. For T a left centralizer of A
and S a right centralizer of A, the pair (S,T) is called a double centralizer
of Aif 2T (y) = S(x)y for all x,y € A.

Let A be a *-ring. Note that every double centralizer (S,T') of A induces
a Jordan *-derivation F, defined by E(x) = T'(z*) — S(x). In the following
theorem we show that in certain complex *-algebras all Jordan *-derivations
are induced in such a way.

THEOREM 2.1. Let A be a complex *-algebra such that Aa =0 or aA =0
(where a € A) implies a = 0. If E is a Jordan *-derivation of A then there
exists a unique double centralizer (T,S) such that E(x) = T (z*) — S(x) for
all x € A.

Obviously, as a special case of Theorem 2.1 we obtain the known result
stating that all Jordan *-derivations of a complex *-algebra with unit are
inner.

Proof of Theorem 2.1. Define an additive mapping 51 of A by
Si(z) = 2E(ix) + 2iE(z). We have

Sy (x?) — 251 (x)
= 2E(iz?) 4 2iE(2?) — 22 E(iz) — 2ixE(x)
= B((1 +i)*2?) + 20E(2)x* + 2ixE(x) — 22E(iz) — 2ixE(x)
= E(x +ix)(z* —ix™) + (z +ix)E(x + iz) + 2iE(x)z™ — 2z E(ix)
={E(z)z" + xE(z) —iE(iz)x" + iz E(ix)}
Expanding the identity E(z?) = —E((iz)?) we obtain
E(z)z* + zE(x) = iE(ix)x™ —ixE(iz),

and therefore Sy (z?) = 251 (). In a similar fashion we see that the mapping
Ty of R, defined by Ty(z) = 2iE(z*) — 2E(iz*), satisfies Ty (2?) = Ty ().
Now, define T' = —1iT} and S = }iS;. Clearly, E(z) = T(z*) — S(z) for
every z in A. We claim that (7', S) is a double centralizer of A. Let us first
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verify that T (z*) = S(z)z* for all z € A. We have
T (z*) — S(z)2z* = vE(x) + 2S(z) — T(2*?) + T(2*)x* — S(x)x*
= 2B(z) - (=8(2®) + T(2*?)) + (T'(a") - S(x))a"
= rF(z) — E(2*) + E(x)z* =0.
Linearizing «T'(z*) = S(z)z* (i.e., replacing = by = + y) we get
(1) aT(y") +yT (") = S(x)y” + S(y)z”.
From the definition of S and T we see that S(iz) = ¢S(z) and T (iz) = iT(x)
for all x € A. Therefore, replacing y by iy in (1) we obtain
—izT (y*) +iyT(z*) = —iS(x)y* +iS(y)z™ .
Comparing this identity with (1) we see that 27T'(y) = S(x)y for all x,y € A.
Consequently,
aT(yz) = S(x)yz = 2T (y)z
that is, A(T(yz) — T'(y)z) = 0. By hypothesis, this implies that T'(yz) =
T(y)z. Similarly we see that T is linear; namely, zT'(\y) = S(z)\y =
AT (y). Thus T is a left centralizer of A. Analogously one shows that S is
a right centralizer of A. Thus the pair (T, S5) is a double centralizer of A.

In order to prove that T and S are uniquely determined we assume that
L(z*) = R(x) where L is a left and R is a right centralizer of A. Then

L(y*)a* = L(y*z") = L((zy)") = R(zy)
for all x,y € R. Replacing y by iy yields —iL(y*)z* = iR(xy). But then,
comparing the last two relations we obtain L(y*)x* = 0 for all x,y € A, that
is, L(A)A = 0, which yields L = 0, and, therefore, R = 0. This completes
the proof of the theorem.

As an immediate consequence of Theorem 2.1 we obtain the following
result which can be compared with [4; Corollary 1].

COROLLARY 2.2. Let A be a complex *-algebra such that Aa = 0 or
aA = 0 implies a = 0. Then every Jordan *-derivation of A is real linear.

COROLLARY 2.3. Let A be a complex Banach *-algebra such that Aa =0
or aA = 0 implies a = 0. If the involution is continuous then every Jordan
*-derivation of A is continuous.

We remark that every semisimple Banach *-algebra satisfies the require-
ments of Corollary 2.3 (see [1; p. 191]).

Proof of Corollary 2.3. By Theorem 2.1, it suffices to show that
every one-sided centralizer of A is continuous. Let T be a left centralizer.
Suppose that z,,y € A with lim,, . 2, = 0, lim,,_,o T(z,) = y. By the
closed graph theorem, it is enough to prove that y = 0. Given any a € A,
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we have ay = lim,,_,o aT(z,) = lim, o S(a)z, = 0. Hence y = 0. In a
similar fashion one shows that every right centralizer of A is continuous.

Combining Theorem 2.1 with [6; Theorem 3.9] we obtain

COROLLARY 2.4. Let A be the algebra of all compact linear operators on
a complex Hilbert space H. Then every Jordan *-derivation of A is of the
form x — azx™ — xa for some bounded linear operator a on H.

It is an open question whether Corollary 2.4 remains true in the real
case.

In the proof of Theorem 2.1, there occur additive mappings S, T satisfy-
ing S(2?) = 25(x), T(2?) = T(x)x. The question arises whether S (resp. T')
is then necessarily a right (resp. left) centralizer. Using a similar approach
to [2, 3, 5], where some Jordan mappings are considered, we now prove

PROPOSITION 2.5. Let R be a prime ring of characteristic not 2. If an
additive mapping T : R — R satisfies T(z?) = T(z)z for all x € R, then
T is a left centralizer of R. Similarly, if an additive mapping S : R — R
satisfies S(x?) = xS(z) for all x € R, then S is a right centralizer of R.

Recall that a ring R is said to be prime if aRb = 0 implies a = 0 or
b=0.

Proof of Proposition 2.5. Linearizing T'(x?) = T'(x)x we get
(2) T(xy+yx) =T(x)y+T(y)r forallz,yecR.
In particular,
T(x(zy + yx) + (zy + yz)z) = T(x)(zy + yz) + (T(2)y + T(y)z)z .
But on the other hand,
T(x(zy + yz) + (vy + yx)z) = T(2?y + ya?) + 2T (vyx)
= T(z*)y + T(y)z* + 2T (zyx) = T(x)zy + T(y)z? + 2T (zyz) .

Comparing the last two relations we arrive at 27 (zyx) = 27T (z)yz. Since
the characteristic of R is not 2, it follows that

(3) T(zxyxr) =T (x)yx forall z,y € R.
A linearization of (3) gives
(4) T(xyz + zyx) = T(z)yz + T(z)yz for all x,y,z € R.

Now, analogously to [2; Theorem 3], [3; Lemma 2.1] and [5; Proposition 3]
we consider W = T'(zyzyx + yrzzy). According to (3) we have

W =T (x(yzy)z) + T(y(zza)y) = T(x)yzyz + T(y)zzay .
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On the other hand, we see from (4) that

W =T((zy)z(yz) + (yz)z(zy)) = T'(zy)zyz + T(yz)zzy .
Comparing the two expressions for W and applying (2), we then get
(5) (T(zy) — T(x)y)z(xzy —yz) =0 forall z,y,z € R.

Since R is prime, for any z,y € R we have either T'(xy) = T'(z)y or zy = yx.
In other words, given € R, R is the union of its subsets G, = {y € R |
T(xy) = T(z)y} and H, = {y € R | zy = yx}. Clearly G, and H, are
additive subgroups of R. However, a group cannot be the union of two
proper subgroups, therefore either G, = R or H, = R. Thus we have
proved that R is the union of its subsets G = {z € R | T'(zy) = T(z)y for
ally € R} and H = {x € R | zy = yx for all y € R}. Of course, G and
H are also additive subgroups of R. Hence either G = R, i.e., T is a left
centralizer, or H = R, i.e., R is commutative.

Thus, we may assume that R is commutative. Then, of course, R is
a domain. Following the proofs of [9; Lemma 2.2] and [5; Theorem 2] we
consider V = 2T (2?y). By (3) we have V = 2T (xyx) = 2T (x)yx. However,
from (2) we see that V = T(2?y+yz?) = T(z)zy+T(y)z?. Comparing both
expressions we obtain (T'(x)y —T'(y)x)xz = 0. Since R is a domain it follows
that x = 0 or T(x)y = T'(y)z; in any case T(xz)y = T'(y)z. Therefore, (2)
yields 2T (zy) = 2T (x)y. Since the characteristic of R is not 2, this means
that 7' is a left centralizer.

Similarly one proves that S is a right centralizer.

3. Jordan *-derivations of B(H). Throughout this section, H will
be a Hilbert space such that dim H > 1. We denote by B(H) the algebra of
all bounded linear operators on H, and by S(H) the set of all self-adjoint
operators in B(H ). Our main purpose in this section is to give a new proof
of the following theorem of Serrl [13].

THEOREM 3.1. If H is a real Hilbert space then every Jordan *-derivation
of B(H) is inner.

Recall that an additive mapping D of a ring R into itself is called a
derivation if it satisfies D(zy) = D(z)y + xD(y) for all x,y € R. If R is an
algebra and D is a derivation of R which is not necessarily homogeneous,
then D will be called an additive derivation; otherwise we call D a linear
derivation.

Outline of the proof of Theorem 3.1. Let E be a Jordan
*-derivation of B(H). Using the theorem of Martindale quoted below, we
show that there exists an additive derivation D of B(H) such that the
restrictions of D and E to S(H) coincide. It turns out that D is in fact
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linear, therefore, by the well-known theorem of Chernoff [7], D is inner, i.e.,
D(A) =TA— AT for some T € B(H). Finally, we show that there is a real
number p such that E(A) = (T 4 pl)A* — A(T + pl) for all A € B(H).

Let R be a *-ring, and let .S denote the set of all symmetric elements
of R. A Jordan derivation d of S into R is an additive mapping of S into
R such that d(s?) = d(s)s + sd(s) for all s € S (we will only deal with
2-torsion free rings, i.e., ones where 2a = 0 implies a = 0; in such rings our
definition of Jordan derivations coincides with the definition in [10]). Our
proof of Theorem 3.1 is based on the fact that the restriction of a Jordan
*-derivation to the set of symmetric elements is a Jordan derivation.

In [10; Corollary 3, Theorem 4] Martindale proved

THEOREM M. Let R be a 2-torsion free *-ring with unit element 1. Sup-
pose that either

(i) R contains nonzero orthogonal symmetric idempotents ey, es and es
such that e +e3+e3 =1 and Re;R=R fori=1,2,3, or

(ii) R is simple and it contains nonzero orthogonal idempotents e; and
eo such that e; + ey = 1.

Then every Jordan derivation of R into S can be uniquely extended to a
derivation of R.

Remark 3.2. Let us show that the algebra B(H) (H real or complex)
satisfies the requirements of Theorem M. First, if H is finite-dimensional,
then B(H) satisfies (ii). Now suppose H is infinite-dimensional. Then there
exists an orthonormal basis in H of the form {e, fo,ga; o € A}. Let H;
be the subspace generated by {e,; o € A}, and let E; be the orthogonal
projection with range H,. Analogously we define the subspaces H,, Hs,
and projections Fs, F3. Of course, 1 + Es + E3 = I, the identity on H.
We claim that B(H)E;B(H) = B(H), i = 1,2,3. Indeed, there exists a
one-to-one bounded linear operator B on H with range contained in H;.
Note that there is A € B(H) such that AE;B = AB = I. But then
B(H)E;B(H) = B(H).

In order to determine the structure of Jordan derivations of S(H) into
B(H) we also need the following simple lemma.

LEmMMA 3.3. If A,B € B(H) are such that ASB =0 for all S € S(H)
then either A=0 or B=0.

Proof. It suffices to prove that if a, b are nonzero vectors in H, then
there exists S € S(H ) such that Sb = Aa for some nonzero scalar A. If @ and
b are not orthogonal then this condition is satisfied by the operator a ® a
(we denote by u ® v the operator (u ® v)z = (x,v)u where (-, ) is the inner
product); otherwise take S =a® b+ b ® a.
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We are now in a position to prove

THEOREM 3.4. Let H be a (real or complex) Hilbert space. If a Jordan
deriwation d of S(H) into B(H) is real linear then there exists T € B(H)
such that d(S) =TS — ST for all S € S(H).

Proof. By Theorem M (and Remark 3.2) there is an additive derivation
D of B(H) such that D|S(H) = d. Since every linear derivation of B(H) is
inner [7], the theorem will be proved by showing that D is linear.

Let us first show that D is real linear. For A € B(H) we may write A =
W + K where W* = W and K* = —K. By assumption, D(AW) = AD(W)
for every real A, therefore it suffices to show that D(AK) = AD(K). Given
any S € S(H), we have KSK € S(H). Therefore,

DOKSK) = dAKSK) = M\d(KSK) = A\D(K SK)
= AD(K)SK + AKD(S)K + M\KSD(K);

on the other hand,

D(AKSK) = D((AK)SK) = DAK)SK + AKD(S)K + AKSD(K).

Comparing the above expressions for D(AKSK), we arrive at (D(AK) —
AD(K))SK = 0 for all S € S(H). By Lemma 3.3 we conclude that
D(A\K) = AD(K).

Now suppose H is a complex space. Since D is real linear it suffices to
show that D(iA) = iD(A) for every A € B(H). We have D(I) = 0. Hence

0= D((iI)*) = D(il)il +iID(il) = 2iD(il).
Thus D(il) = 0. But then for any A € B(H) we have
D(iA) = D((iI)A) = D(iI)A+iID(A) =iD(A),
which completes the proof.

For the proof of Theorem 3.1 we also need the following lemma which is
similar to [11; Theorem 1].

LEMMA 3.5. If A,B € B(H) are such that ABS = BSA for all S €
S(H), and if B # 0, then A = AB for some scalar \.

Proof. For all z,y € H we have A(y ® y)Bx = B(y ® y)Axz; that is,
(Bz,y)Ay = (Ax,y)By. Consequently,
(Bx,y)(By, z) Az = (Bx,y)(Ay, z) Bz = ((Bz,y) Ay, z) Bz
= ((Az,y) By, z) Bz = (Ax, y)(By, 2) Bz .
Thus (By, z){(Bz,y)Az — (Az,y)Bz} = 0 for all x,y,z € H. Hence for any
y,z € H we have either (By, z) = 0 or (Bz,y)Az = (Az,y)Bz for all z € H.

Using the fact that a group cannot be the union of two proper subgroups
(cf. the proof of Proposition 2.5) one can easily show that either (By, z) = 0
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for all y,z € H or (Bz,y)Az = (Ax,y)Bz for all z,y,z € H. Since we have
assumed that B # 0 it follows at once that A = AB for some .

Remark 3.6. It is easy to see [4; Lemma 2| that every Jordan *-de-
rivation E satisfies E(zyx) = E(x)y*z* + 2E(y)z* + 2y E(x).

Proof of Theorem 3.1. Let E be a Jordan *-derivation of B(H).
By [4; Corollary 1], F is linear. Since the restriction of E to S(H) is a
Jordan derivation of S(H) to B(H), it follows from Theorem 3.4 that there
exists T' € B(H) such that

(1) E(S)=TS— ST forall SeS(H).

Pick K € B(H) such that K* = —K. For every S € S(H) we have KSK €
S(H). Therefore,

E(KSK)=TKSK — KSKT .
On the other hand, using Remark 3.6 we obtain
E(KSK)=-FE(K)SK — KE(S)K + KSE(K)
=—-FE(K)SK — K(TS - ST)K + KSE(K)
Comparing both expressions we get
(E(K) + KT + TK)SK = KS(E(K) + KT + TK)

for all S € S(H). Now Lemma 3.5 yields
(2) E(K)+ KT +TK = MNK)K
for some real A\(K'). We claim that A\(K) is a constant. Pick K, Ky € B(H)
with Kf = —K;, K5 = —K,. We claim that A\(K;) = A(K32). First assume
that K7 and K> are linearly independent. In view of (2) we have

E(K1+ Ko) = MKy + Ko2)(K1 + Ko) —T(Ky + Ky) — (K1 + Ko)T'.
On the other hand,

E(Ky + K3) = E(Ky) + E(K3)

=MNEK1)K1 —TK, — KiT + AN(K2)Ko — TKy — KoT'.
Comparing we get
(MEK7 + K3) — A(K1))K1 + (AM(K1 4+ Ko) — AM(K32))K2=0.

Since K7 and K are linearly independent we obtain \(K7) = AM(K7 + K3) =
AN K3).

If K; and K, are linearly dependent, then for any K € B(H) with
K* = —K which is linearly independent from both K; and K5, we have

AMK7) = MK) and A(K3) = A(K). Thus A(K;) and A(K32) are also equal
in this case. This means that A(K) is a constant A, so that

(3) E(K)=AK — KT - TK
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for every K € B(H) with K* = —K.
Take A € B(H). We have A = S+ K, where S* =5, K* = —K. Using
(1) and (3) we then get
E(A) = E(S)+ E(K) =TS — ST + A\K — KT — TK
=(T—3M\)(S—K)—(S+K)(T—i\)
= (T — A)A* — A(T — $)I).
Thus E(A) = TyA* — AT for all A € B(H), where T} = T — $AI. This
proves the theorem.
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