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FACTORISATION
WITHOUT BOUNDED APPROXIMATE IDENTITIES

BY

J. A. W AR D (PERTH, WESTERN AUSTRALIA)

0. Introduction. The purpose of this paper is to address some ques-
tions related to the factorisation problem in Harmonic Analysis. The prob-
lem can be stated very generally, but we prefer to state it within the context
in which we will work. Therefore, let L1 and L2 be spaces of functions (or
measures or pseudomeasures) defined on a locally compact group G, and let
∗ denote the usual operation of convolution. Suppose that for each f ∈ L1

and g ∈ L2, f ∗ g is well-defined (in some sense). The problem is: when is
L1 ∗L2 = L2? If L1 is closed under convolution then we obtain the interest-
ing case: when is L1 ∗L1 = L1? If L1 ∗L2 = L2, then we say that L2 factors
over L1, while if L1 ∗ L1 = L1 then we say that L1 factors. Almost all the
known results concerning this problem require the additional assumptions
that L1 is a Banach algebra and that L2 is a normed space.

Salem proved in [15] that for the circle group T, the group algebra L1(T)
factors, and the Banach algebra C(T) of continuous functions factors over
L1(T). In [12] and [13], Rudin proved that if G is R, or more generally any
locally compact abelian Euclidean group, then L1(G) factors. The most
significant step on the general factorisation problem was taken by Cohen
in 1959 ([1]) when he proved that a Banach algebra with bounded left ap-
proximate identity factors. Further he deduced various extra properties of
the factors. It follows from Cohen’s Theorem that L1(G) factors for every
locally compact group. However, Cohen’s Theorem fails to give any in-
formation about Lp(G) (the space of pth-power integrable functions) when
p > 1 because it is known that for these values of p, Lp(G) does not contain
a bounded left approximate identity (see (34.40b) of [8]). In fact, for p > 1,
Lp(G) fails to factor if G is infinite. This has been established for com-
pact groups in (34.40) of [8], and for non-compact groups as a consequence
of Theorem 1 of [14]. From Cohen’s Theorem, Hewitt [7] and Curtis and
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Figà-Talamanca [2] deduced the Module Factorisation Theorem, which can
be used to prove that Lp(G) and C0(G) (the space of continuous functions
vanishing at infinity) factor over L1(G) for any locally compact group.

The reader is referred to Section 32 of [8], to Chapter 8 of [16] and
to Section 7.5 of [5] for discussions of many of the factorisation and non-
factorisation results that have proliferated. It is worthwhile pointing out
the recent papers of Dixon [3], Feichtinger and Leinert [6] and Willis [18].
In [3] and [18], the authors study the relationships between the factorisa-
tion properties of various Banach algebras and the existence of approximate
identities. (See also the many references in [3] and [18].) On the other hand,
in [6] the authors consider the factorisation problem from a somewhat dif-
ferent perspective. They first show that the hypothesis of Cohen’s Theorem
cannot be relaxed to allow unbounded left approximate identities, no matter
how slowly they “grow”. Under even weaker hypotheses, they then estab-
lish several local factorisation formulae in the sense that they identify some
elements of an algebra which factor, even when the algebra itself does not.
(Their results are actually obtained in the more general module setting.)

In this paper we study function and measure spaces L which factor, with
respect to the usual convolution, over linear spaces like Lp(G) or Ap(G)
(the latter denoting the space of L1-functions with Fourier transform in
`p) for some p > 1. We do not, in fact, initially use the norm structure
on these spaces, nor do we assume any on L, but rather depend on the
summability properties of the Fourier transforms of their elements. We
restrict our attention to compact abelian groups G, which have discrete
dual groups X. Given the duality that exists between convolution over G
and pointwise multiplication over X, it is perhaps not surprising that we
begin by considering certain sequence spaces.

1. The space `+(X). For each r > 0, `r(X) denotes the set of all
complex-valued functions on X which are rth-power summable. Each func-
tion in `r(X) is supported by a countable subset of X and so we will speak
of sequences in `r(X), even when X is uncountable. The quasinorm of
a = (aχ) ∈ `r(X) is given by

‖a‖r = ‖(aχ)‖r =
{ ∑

χ∈X

|aχ|r
}1/r

.

For each r > 0, `r(X) is closed under the pointwise addition, pointwise
multiplication and scalar multiplication of sequences. For r ≥ 1, ‖ ‖r is a
norm on `r(X), and (`r(X), ‖ ‖r) is a Banach algebra, while for r ∈ (0, 1),
‖ ‖r fails to satisfy the triangle inequality. However, if we put dr(a,b) =
‖(aχ − bχ)‖r

r then (`r(X), dr) is a complete linear metric or Fréchet space.
Finally, we denote by `∞(X) the linear space of all bounded sequences on X,
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by c0(X) those which decay to 0 at infinity (each of `∞(X) and c0(X) can
be normed by ‖a‖∞ = ‖(aχ)‖∞ = sup{|aχ| : χ ∈ X}), and by c00(X) the
space of sequences which are finitely supported. Then for 0 < r ≤ s,

c00(X) ⊂ `r(X) ⊆ `s(X) ⊂ c0(X) ⊂ `∞(X)

and ‖ ‖r ≥ ‖‖s > ‖ ‖∞. Two well-known facts that we will use are:

(i) `r(X)`∞(X) = `r(X) for all r > 0, and
(ii) `r(X)`s(X) ⊆ `rs/(r+s)(X) for all r, s > 0.

If the function space L satisfies the inclusion L ⊆ L ∗ Ap(G) then, as
a consequence of the Convolution Theorem, we have L̂ ⊆ L̂.`p(X), where
termwise multiplication of sequences is used in the second inclusion. The
first theorem will be used to determine when L satisfies such an inclusion.

1.1. Theorem. If A is a subset of `∞(X) and if there exists a positive
number s such that A ⊆ A`s(X) then A ⊆

⋂
r>0 `r(X).

P r o o f. By repeatedly using property (ii) we see that

A ⊆ A`s(X) ⊆ A(`s(X))2 ⊆ A`s/2(X) ⊆ A`s(X)`s/2(X)

⊆ . . . ⊆ A`s/n(X) ⊆ `∞(X)`s/n(X) = `s/n(X)

for each positive integer n. Then since the `r-spaces are nested the conclu-
sion follows.

The intersection of the `r-spaces has been discussed by several authors;
see for example [10] where it is denoted by `0

+
(X). We modify this notation

to `+(X). We will deduce from the next proposition that `+(X) factors over
each `s(X) for s > 0, when termwise multiplication of sequences is used.

1.2. Proposition. `+(X).`+(X) = `+(X).

P r o o f. Let x = (xχ) denote a sequence in `+(X). For each χ ∈ X, put
yχ = |xχ|1/2 and zχ = xχ|xχ|−1/2 when xχ 6= 0 and zχ = 0 otherwise. Now
write y = (yχ) and z = (zχ). Then y.z = (yχzχ) = (xχ) = x and for each
r > 0,

‖y‖r =
{ ∑

χ∈X

|yχ|r
}1/r

=
{ ∑

χ∈X

|xχ|r/2
}1/r

= ‖x‖1/2
r/2 < ∞ , and

‖z‖r =
{ ∑

χ∈X

|zχ|r
}1/r

=
{ ∑

χ∈X

|xχ|r/2
}1/r

= ‖x‖1/2
r/2 < ∞ .

1.3. Corollary. For all s ∈ (0,∞), `+(X).`s(X) = `+(X).

P r o o f. Since `+(X) ⊂ `s(X), it follows from Proposition 1.2 that
`+(X).`s(X) ⊇ `+(X). The reverse inclusion is a trivial consequence of the
fact that `s(X) ⊂ `∞(X) and property (i) above.
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So far, we have not defined a topology on `+(X). We know that for each
n ∈ N, c00(X) is dense in (`1/n(X), d1/n) and so `+(X) cannot be complete
with respect to any of the metrics obtained by restricting d1/n to `+(X). We
can, however, take the Fréchet combination of these restrictions to obtain a
new metric d on `+(X) given by

d(x,y) =
∑
n∈N

21−n d1/n(x,y)
1 + d1/n(x,y)

for all x and y in `+(X). (It will be convenient to write the nth term of
the sum as 21−n%n(x,y).) It follows from Theorem 3 in Section 11.3 of [17]
that (`+(X), d) is complete, and from Lemma 2.2-9 of [11] that it is not
normable. In fact, it is not even locally convex.

1.4. Theorem. The metric space (`+(X), d) is not locally convex.

P r o o f. We argue by contradiction. If (`+(X), d) is locally convex then
it has a local base {Uk : k ∈ N} of convex neighbourhoods at 0. On the
other hand, the metric topology has a subbase at 0 given by

{{x ∈ `+(X) : ‖x‖1/n
1/n < δ}, n ∈ N, δ > 0} .

From this we can deduce that there exists an increasing sequence (nk)
of integers greater than 1 and a decreasing sequence (δk) of positive real
numbers such that

{x ∈ `+(X) : ‖x‖1/nk

1/nk
< δk} ⊆ Uk .

To see this, first fix a positive integer k. There exist positive integers
p1, . . . , pm ∈ N and positive real numbers γ1, . . . , γm such that

m⋂
j=1

{x ∈ `+(X) : ‖x‖1/pj

1/pj
< γj} ⊆ Uk .

Put nk = max{p1, . . . , pm, nk−1} and δk = min{γ1, . . . , γm, δk−1}, where for
completeness we let n0 = 2 and δ0 = 1.

We obtain a contradiction by constructing a sequence (x(k)) of sequences
which converges to 0 in (`+(X), d), but for which limk→∞ ‖x(k)‖1/nk

1/nk
= ∞.

For each ξ ∈ X let eξ denote the sequence in which the “ξth term” is 1 whilst
all other terms are 0. Then 1

2δkeξ ∈ Uk for every ξ ∈ X. Let {ξi : i ∈ N}
be a set of distinct elements of X. Then for each pair, k and m, of positive
integers, let x(k,m) be the finitely supported sequence defined by

x(k,m) =
δk

2

m∑
i=1

1
m

eξi .
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Since Uk is convex and
∑m

i=1 1/m = 1, x(k,m) ∈ Uk ∩ c00(X). Moreover, for
each n ≥ 1,

‖x(k,m)‖1/n
1/n = (δk/2)1/n

m∑
i=1

(1/m)1/n = (δk/2)1/nm1−1/n .

Thus, for each k and n,

(1) lim
m→∞

‖x(k,m)‖1/n
1/n = ∞ .

Now choose m′ (depending on k) such that ‖x(k,m′)‖1/nk

1/nk
> k and write

x(k) = x(k,m′). Then, since {Uk} is a neighbourhood base at 0, the se-
quence (x(k)) converges to 0 in (`+(X), d); but it follows from (1) that
limk→∞ ‖x(k)‖1/nk

1/nk
= ∞.

The metric topology on (`+(X), d) is stronger than that induced on
`+(X) as a subspace of `1(X). Hence `∞(X) is (isomorphic to) a subspace
of the continuous dual, (`+(X))∗, of `+(X). In fact, the reverse inclusion
also holds.

1.5. Theorem. (`+(X))∗ ' `∞(X).

P r o o f. It is sufficient to prove that (`+(X))∗ is isomorphic to a subspace
of `∞(X). Take L ∈ (`+(X))∗ and define ϕ on X by ϕ(ξ) = L(eξ) (using
the same notation as in the previous proof). Then for each x ∈ `+(X),

L(x) =
∑
ξ∈X

xξL(eξ) =
∑
ξ∈X

xξϕ(ξ) ,

where the sums converge since x ∈ `1(X). Now using the same technique
employed in the proof of Theorem 1.4, we see that there must exist an integer
N > 1 and a real number δ > 0 such that ‖x‖1/N < δN ⇒ |L(x)| < 1. Thus,
for any x ∈ `+(X),

|L(x)| < δ−1(‖x‖1/N )1/N ,

and in particular, if x = eξ for some ξ ∈ X then

|L(eξ)| = |ϕ(ξ)| < δ−1(‖eξ‖1/N )1/N = δ−1

so that ϕ ∈ `∞(X).

2. Factorisation problems. Let G denote an infinite compact abelian
group, with dual group X. We let L1(G) denote the Banach space of (equi-
valence classes of) functions which are absolutely integrable with respect to
the normalised Haar measure on G; its norm is given by

‖f‖L1 =
∫
G

|f(x)| dx .
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The Fourier transform and convolution product are defined for L1-func-
tions f and g by

f̂(χ) =
∫
G

f(x)χ(x) dx and f ∗ g(x) =
∫
G

f(u)g(x− u) du .

Then f̂ ∈ c0(X), f ∗ g ∈ L1(G) and the Convolution Theorem holds (that
is (f ∗ g)∧ = f̂ ĝ).

We denote by Lp(G) the Banach space of functions which are pth-power
integrable, with ‖f‖Lp = ‖ |f |p‖1/p

L1 and by Ap(G) the Banach space of
integrable functions with Fourier transforms in `p(X), normed by ‖f‖Ap =
‖f‖L1 + ‖f̂‖p. In each case p is any number greater than or equal to 1.
Each of Lp(G) and Ap(G) is a Banach algebra when convolution is used as
multiplication. The continuous dual of A1(G) is denoted by PM(G) and its
elements are called pseudomeasures. The definitions of Fourier transform
and convolution can be extended to pseudomeasures in such a way that
Ŝ ∈ `∞(X) and S ∗T ∈ PM(G) for each S, T ∈ PM(G). (See, for example,
[9].)

Let L denote a subset of PM(G) and L̂ = {Ŝ : S ∈ L} the corresponding
subset of `∞(X); and let E denote a linear space of pseudomeasures for
which there exists an s ∈ (0,∞) satisfying Ê ⊆ `s(X). (Examples of such
linear spaces include Ap(G) for all p ∈ [1,∞) — in which case s = p — and
Lp(G) for p ∈ (1,∞] — here s = p′, where p−1 + (p′)−1 = 1, when p ∈ (1, 2]
and s = 2 otherwise.) It is an immediate consequence of the Convolution
Theorem and Theorem 1.1 that if L ⊆ E ∗ L then L̂ ⊆ `+(X). Thus the
elements of L must be continuous functions on G.

2.1. Theorem. Let E be a set of pseudomeasures on G for which there
exists s ∈ (0,∞) satisfying Ê ⊆ `s(X), and L another set of pseudomeasures
with L ⊆ E ∗ L. Then L̂ ⊆ `+(X).

Let H be the subspace of C(G) which is isomorphic, under the Fourier
transformation, to `+(X). It follows from Proposition 1.2 that H ∗H = H.
Hence we have the following corollary to Theorem 2.1.

2.2. Corollary. With the notation of Theorem 2.1, if E contains the
linear space H then H ∗ E = H. In particular , H ∗ Ap(G) = H and H ∗
Lp(G) = H for all p ≥ 1.

P r o o f. Since H ⊆ E, it is obvious that H = H ∗H ⊆ H ∗ E. On the
other hand,

(H ∗ E)∧ ⊆ ĤÊ ⊆ `+(X)`∞(X) ⊆ `+(X) = Ĥ

so that the reverse inclusion also holds.
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It is easy to see that we cannot relax the requirement that Ê ⊆ `s(X)
for some s ∈ (0,∞) in Theorem 2.1 to say Ê ⊆ c0(X) since, for example,
E = L1(G) satisfies this weaker condition but Ê is not in `s(X) for any s.
However, A1(G) is a linear space which is strictly larger than `+(X) and
yet factors over L1(G). (See (34.39) of [8].)

Obviously, H contains the set of trigonometric polynomials T (G) (which
is isomorphic to c00(X)). It is both character- and translation-invariant, in
the sense that the functions χf and τaf (defined by (χf)(x) = χ(x)f(x)
and τaf(x) = f(x − a) for each x ∈ G) are in H whenever f ∈ H, χ ∈ X
and a ∈ G. H naturally inherits a metric topology from (`+(X), d). We
denote the corresponding metric on H by d′, so that for f, g ∈ H,

d′(f, g) = d(f̂ , ĝ) =
∑
n∈N

21−n
‖f̂ − ĝ‖1/n

1/n

1 + ‖f̂ − ĝ‖1/n
1/n

=
∑
n∈N

21−n%n(f̂ , ĝ) .

Then (H, d′) is a complete metric space which cannot be normed, and so is
a Fréchet space which is not a Banach space.

We end this section by proving a theorem which will be used in Sec-
tion 3 to identify all of the closed subspaces of H for which analogues of
Theorem 2.1 and Corollary 2.2 hold. Essentially it establishes that (H, d′)
behaves like a homogeneous Banach space. (We refer the reader to [9] for
the basic facts about homogeneous spaces.)

2.3. Theorem. For each f ∈ H, the shift map a → τaf is continuous
from G to (H, d′).

Before proving this theorem, we prove the following lemma which is
well-known for the case r ≥ 1.

2.4. Lemma. For each r ∈ (0, 1] and sequence (xχ) ∈ `r(X), the map
a → (χ(a)xχ) is continuous from G to (`r(X), dr).

P r o o f. It is sufficient to prove continuity at the identity e of G. Write
x = (xχ) and τax = (χ(a)xχ). Then

dr(x, τax) =
∑
χ∈X

|χ(a)− 1|r|xχ|r .

Let ε > 0 be given. Then there exists a finite subset K of X for which∑
χ∈X\K

|xχ|r < 2−(1+r)ε .

Moreover, for each χ ∈ K there exists a zero neighbourhood Uχ satisfying

a ∈ Uχ ⇒ |χ(a)− 1| < (ε/2)1/r‖x‖−1
r .
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Put U =
⋂
{Uχ : χ ∈ K}. Then for a ∈ U we have

dr(τax,x) =
( ∑

χ∈K

+
∑

χ∈X\K

)
|χ(a)− 1|r|xχ|r

≤ max
χ∈K

|χ(a)− 1|r
∑
χ∈K

|xχ|r + 2r2−(1+r)ε

≤ (ε/2)‖x‖−r
r ‖x‖r

r + ε/2 = ε .

Hence, the map a → (χ(a)xχ) is continuous.

P r o o f o f T h e o r e m 2.3. For each χ ∈ X, (τaf)∧(χ) = χ(a)f̂(χ).
Therefore, it follows immediately from Lemma 2.4 that for each r ∈ (0, 1),
the map a → (τaf)∧ is continuous from G to `r(X).

We know that f − τaf ∈ H, and so for any ε > 0 there exists a positive
integer N for which ∑

n>N

21−n%n((τaf)∧, f̂) < ε/2 .

Further, for n = 1, . . . , N there is a zero neighbourhood Un satisfying

a ∈ Un ⇒ ‖(τaf)∧ − f̂‖1/n
1/n < ε/(2N) .

Put U =
⋂
{Un : n = 1, . . . , N}. It follows that if a ∈ U then

d′(τaf, f) ≤ (ε/(2N))N + ε/2 = ε

as required.

3. More factorisation results. For each subset F of X, we denote
by HF the set of functions in H with Fourier transforms supported by F .
Clearly HF is closed in (H, d′); further HF ∗E = HF whenever H ∗E = H
since

HF ∗ E = (HF ∗H) ∗ E = HF ∗ (H ∗ E) = HF ∗H = HF .

In this section, we prove that if H ⊆ E then the subspaces HF are the only
closed subspaces of H which factor over E. To do this, we first note that
if a subspace K of H factors over E then K ∗H ⊆ K ∗ E = K and so K
is a closed ideal of H. In Theorem 3.2 we prove that the closed ideals of H
are precisely its closed translation-invariant subspaces, which we know to
be the sets HF since T (G) is dense in H. This leads to our conclusion.

Before stating and proving Theorem 3.2, however, we verify that H
shares another important property of homogeneous spaces; namely, that if
(kλ) is a bounded approximate identity in L1(G) then

lim
λ

d′(kλ ∗ f, f) = 0
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for any f ∈ H. (Recall that a bounded approximate identity in L1(G) is a
net (kλ) of absolutely integrable functions which satisfies

(i) supλ ‖kλ‖L1 < ∞ and (ii) limλ ‖kλ ∗ g − g‖L1 = 0

for all g ∈ L1(G).)

3.1. Theorem. For any f ∈ H, and bounded approximate identity (kλ)
in L1(G), limλ d′(kλ ∗ f, f) = 0.

P r o o f. We begin by proving that for each r ∈ (0, 1] and x ∈ `r(X)

lim
λ
‖(k̂λ(χ)− 1)xχ‖r

r = 0 .

Once this has been established, an argument similar to that given in the
final paragraph of the proof to Theorem 2.3 shows that this theorem holds.

To prove the limit statement we note that for any ε > 0 there exists a
finite subset K of X and indices λχ for each χ ∈ K such that

(i)
∑

χ∈X\K

|xχ|r < ε/(2Br), where B = 1 + sup
λ
‖kλ‖L1 , and

(ii) λ > λχ ⇒ |k̂λ(χ)− 1| < (ε/2)1/r‖x‖−1
r .

Let λ0 be any index for which λ0 > λχ for all χ ∈ K. Then we can use the
estimates obtained in (i) and (ii) to prove that for λ > λ0

‖(k̂λ(χ)− 1)xχ‖r
r

≤
{

max
χ∈K

|k̂λ(χ)− 1|r
∑
χ∈K

|xχ|r
}

+
{

max
χ∈X\K

|k̂λ(χ)− 1|r
∑

χ∈X\K

|xχ|r
}

≤ ε/2 + Br(ε/(2Br)) = ε .

3.2. Theorem. A closed subspace I of H is an ideal in H if and only if
it is translation-invariant.

P r o o f. First, suppose that I is a closed ideal in H. Let (kλ) be a
bounded approximate identity in L1(G), consisting of trigonometric poly-
nomials. (See (28.53) of [8].) Then, for each a ∈ G and each index λ, the
a-translate τa(kλ) ∈ T (G) ⊆ H, so that τa(kλ) ∗ f ∈ I whenever f ∈ I. But
τa(kλ) ∗ f = τa(kλ ∗ f) and so, by Theorems 2.3 and 3.1,

lim
λ

d′(τa(kλ ∗ f), τaf) = 0 .

Since I is closed in H, this means that τaf ∈ I.
The converse holds since H ∗HF = HF for any subset F of X.

3.3. Corollary. If H ⊆ E and K is a closed subspace of H which
factors over E then K is translation-invariant.
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Using the corollary we justify our earlier claim that if H ⊆ E then the
only closed subspaces of (H, d′) that factor over E are those of the form
HF , F ⊆ X. There are, of course, other (non-closed) subspaces with this
property — the most obvious example is T (G) itself. In the next section we
will briefly discuss another family of examples.

4. The case G = T. In this section we obtain some results which apply
specifically to the circle group T, which we identify with the interval [0, 2π).

Since the Fourier transforms of elements of H are in `r(Z) for each
r > 0, we would expect the elements to satisfy strong smoothness conditions.
An obvious one to investigate is the Lipschitz condition. Recall that a
continuous function f on T satisfies a Lipschitz condition of order α ∈ (0, 1]
if and only if there exists a constant K for which

‖τaf − f‖∞ ≤ K|a|α

for any a ∈ (0, 2π). The linear space of all such functions is usually denoted
by Λα(T). Clearly, if β < α then Λα(T) ⊂ Λβ(T). It is known that Λα(T)
does not factor over Lp(T) for any p ≥ 1 (see [16]).

4.1. Proposition. H \
⋃
{Λα : α ∈ (0, 1]} is non-empty.

P r o o f. We use Theorem 1 of [4] to prove this proposition. Define f on
T by f(x) =

∑
n∈N 2−n exp(i22n

x). Then for any r > 0 and any positive
integer N , a simple calculation shows that∑

n≥N

|f̂(n)|r =
∑

22n≥N

2−nr =
2−rc ln ln N

1− 2−r

for some c > 0. For each choice of r, this clearly tends to zero as N → ∞.
Now {22n

: n > 0} is a Sidon subset of Z and so Edwards’s characterisation
of elements in Λα(T) which have Fourier transforms supported by Sidon
sets may be used. Putting r = 1 in the previous calculation and writing
2c = e−K , where K is necessarily positive, gives∑

|n|≥N

|f̂(n)| =
∑
n≥N

|f̂(n)| = 2e−K ln ln N = 2(lnN)−K

which is not O(N−α) for any α > 0. Hence f 6∈ Λα(T) for any α ∈ (0, 1).

We can also rule out the possibility that every element of H is analytic.
Recall that a function f is analytic on T if, in a neighbourhood of each
t0 ∈ T, f(t) can be represented by a power series centred at t0. If f is
analytic then its Fourier transform f̂ decays exponentially; that is, there
exist positive real numbers λ and C such that |f̂(n)| ≤ Ce−λ|n|. The next
example shows that H contains many non-analytic functions.
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Example. Let (pn) be an increasing sequence of positive numbers for
which there exists α ∈ (0, 1) satisfying n−αpn → 0 as n → ∞. Define the
sequence x by

xn = {n}−pn if n ≥ 1 and xn = 0 otherwise .

Then x ∈ `r(Z) for any r ∈ (0, 1] since, given such an r, there exists
Nr > 1 for which n > Nr implies that pn > 2/r and so that n−pn < n−2/r.
However, x is not exponentially bounded. To see this, take λ > 0 and put
ωn = n−pneλn so that lnωn = −pn lnn + λn. Then

lim
n→∞

n−1pn lnn = lim
n→∞

(n−αpn)(nα−1 lnn) = 0 ,

and so for any ε > 0 there exists Nε for which n > Nε implies that 0 <
pn lnn < εn. Take ε = λ/2. Then for n > Nλ/2,

lnωn = λn− pn lnn > λn− λn/2 = λn/2 ,

ensuring that limn→∞ lnωn = ∞ = limn→∞ ωn.

For each λ ≥ 0, let Hλ be the set defined by

Hλ = {f ∈ H : (f̂(n)eλ|n|) ∈ `∞(Z)} .

Since H0 is the whole of H, we will assume that λ > 0. The set of analytic
functions in H is precisely

⋃
{Hλ : λ > 0}. It is easy to verify that Hλ is

a linear subspace of H which contains T (G) and so cannot be closed in H,
and that if λ > σ then Hλ is a proper subspace of Hσ. Each Hλ may be
identified with the set ∆λ, where

∆λ = {x = (xn) : (xneλ|n|) ∈ `∞(Z)} ,

via the Fourier transformation. Clearly ∆λ is a subset of `s(Z) for every
s > 0 and ∆λ`∞(Z) = ∆λ. More generally, for every subset A of `∞(Z),
∆λA ⊆ ∆λ; however, in general, this will not be an equality. In particular, if
A ⊆ c0(Z), it will never be an equality since the sequence x = (exp(−λ|n|))
is in ∆λ but does not factor over any subset of c0(Z).

Consider instead the set Ωλ =
⋃
{∆η : η > λ}, which is a proper subset

of ∆λ. It is a linear space since the ∆η’s are nested, and for any subset A of
`∞(Z), ΩλA ⊆ Ωλ. For many choices of A, the reverse inclusion also holds.
In particular, we can prove the following proposition.

4.2. Proposition. If `+(Z) ⊆ A then ΩλA = Ωλ for each λ > 0.

P r o o f. It remains only to prove that Ωλ ⊆ ΩλA. Let x ∈ Ωλ and
choose η > λ such that x ∈ ∆η. Now define the sequences a and y by

an = exp
(

λ− η

2
|n|

)
and yn = xn exp

(
η − λ

2
|n|

)
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for each n ∈ Z. Then it is easy to see that x = ya, a ∈ `+(Z), and
y ∈ ∆(λ+η)/2 ⊆ Ωλ.

4.3. Corollary. For each λ > 0 and p ≥ 1, {f ∈ C(G) : f̂ ∈ Ωλ}
factors over Lp(T) and Ap(T).
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