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PARTIALLY ADDITIVE STATES ON ORTHOMODULAR POSETS

BY

JOSEF TKADLEC (PRAGUE)

We fix a Boolean subalgebra B of an orthomodular poset P and study
the mappings s : P — [0, 1] which respect the ordering and the orthocom-
plementation in P and which are additive on B. We call such functions
B-states on P. We first show that every P possesses “enough” two-valued
B-states. This improves the main result in [13], where B is the centre of P.
Moreover, it allows us to construct a closure-space representation of ortho-
modular lattices. We do this in the third section. This result may also be
viewed as a generalization of [6]. Then we prove an extension theorem for
B-states giving, as a by-product, a topological proof of a classical Boolean
result.

1. Basic definitions and preliminaries

1.1. DEFINITION. An orthomodular poset (abbr. an OMP) is a triple
(P, <,’) such that

1) (P, <) is a partially ordered set with a least element 0 and a greatest
element 1,

2) the operation ' : P — P is an orthocomplementation, i.e. for every
a,b € P we have a/ = a and b’ < a/ whenever a < b,

3) the least upper bound exists for every pair of orthogonal elements in
P (a,b € P are orthogonal, a L b, if a <),

4) the orthomodular law is valid in P : b = a V (b A a') whenever a < b
(a,b e P).

A typical example of an OMP is the lattice of all projections in a Hilbert
space or, of course, a Boolean algebra. (We do not assume that P is a
lattice. If it is, we call it an orthomodular lattice.)

Throughout the paper, P will be an arbitrary OMP and B an arbitrary
Boolean subalgebra of P. (By a Boolean subalgebra of P we mean a subset
of P which forms a Boolean algebra with respect to V and ’ inherited from
P, see also [4], [7].) Let us state our basic definition.

/

1.2. DEFINITION. Let B be a Boolean subalgebra of P. A partially
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additive state with respect to B (abbr. a B-state) is a mapping s : P — [0, 1]
such that

(1) if a < b then s(a) < s(b) (a,b € P),

(2) s(a’) =1 —s(a) (a € P),

(3) s(aVvb)=s(a)+ s(b) provided a L b and a,b € B.

Let us denote the set of all B-states on P by Sg(P). Thus Sg(P) C
[0,1]F. In what follows we will make use of the following observations: The
set Sp(P) viewed as a subset of [0,1]7 is a convex compact. Indeed, the
convexity is obvious and the compactness is a standard consequence of the
Tikhonov theorem ([0,1]7 is considered with the pointwise topology). It
should be noted that the “ordinary” state on P is exactly an element of the
intersection () Sp(P), where B runs over all Boolean subalgebras of P.

2. Two-valued B-states. B-ideals. Let us denote by S%(P) the set
of all two-valued B-states on P. We will show in this section that S%(P)
is rich enough to determine the ordering in P. This extends [13] which
contains the same result in the much easier situation of B being the centre
of P.

Let us first introduce an auxiliary notion.

2.1. DEFINITION. Let B be a Boolean subalgebra of P. A partial ideal
I on P with respect to B (abbr. a B-ideal) is a nonempty subset of P such
that

(A)ifael andb<athenbel (a,be P),
(B) aVvbe I provided a,b € I N B.

Further, we call a B-ideal I proper if
(Cl) a € I implies o' & 1.

Finally, we call a proper B-ideal I B-prime if
(C2) a € P\ I implies a’ € I.

In what follows we will sometimes replace without noticing the condition
(B) by the apparently weaker condition (B’) equivalent to (B):

(B") aVvbel provided a,b € IN B and a L b.

The link between two-valued B-states and B-ideals is presented in the
following simple proposition.

2.2. PROPOSITION. There is a one-to-one correspondence between two-
valued B-states and B-prime ideals given by the mapping s — s~1(0).

Proof. Obvious.
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In the course of the following propositions we will show that any pair of
noncomparable elements in P is separated by a B-prime ideal.

2.3. PROPOSITION. Let {I,;a € A} be a collection of B-ideals in P.
Then the least B-ideal containing all I, (o € A) is J = J{la;a € A}U{a €
P;a <byV...Vby,, where by € I,, N B for any k € {1,...,n}}.

Proof. The proof requires only a verification of the properties from the
definition of a B-ideal.

Let us agree to call the B-ideal J from Proposition 2.3 the B-ideal gen-
erated by {I,;a € A}.

Prior to the next propositions, observe that the elements by (k €
{1,...,n}) in Proposition 2.3 can be chosen pairwise orthogonal.

2.4. PROPOSITION. Let I C P be a proper B-ideal. Suppose that {a,a’}N
I =10 for an a € P. Then the B-ideal generated by {I,[0,a]} is proper.

Proof. Suppose that the B-ideal J generated by {I, [0, a]} is not proper
and seek a contradiction. If J is not proper, then there is an e € P such
that {e,e’} C J. Observe that {e,e’} ¢ I U[0,a]. Indeed, both e, e’ cannot
be in I and if e € [0,a] then o’ < ¢’; hence €’ & I.

According to Proposition 2.3 we may assume that e < by Vby, by € INB,
by € [0,a]NB and by L by. We may also assume without any loss of generality
that e = b; V by. Hence ¢ € J N B and therefore there are bs € I N B,
by € [0,a] N B such that b3 L by and ¢ = b3 V by. Then by, by, bs, by are
pairwise orthogonal and, moreover, 1 = eV e = by V by V b3 V by. Thus,
a’ < (ba Vby) =byVbs € I, acontradiction.

2.5. PROPOSITION. Fach proper B-ideal is contained in a B-prime ideal.

Proof. By Zorn’s lemma, each proper B-ideal is contained in a maxi-
mal proper B-ideal. By Proposition 2.4, each maximal proper B-ideal is a
B-prime ideal.

2.6. PROPOSITION. Suppose that a £ b (a,b € P). Then there ezists a
B-prime ideal I such that a & I and b € I.

Proof. By Proposition 2.4, the B-ideal generated by {[0,5],[0,a']} is
proper. The rest follows from Proposition 2.5.

2.7. THEOREM. Let B be a Boolean subalgebra of P. Suppose that a £ b
(a,b € P). Then there exists a two-valued B-state s € S%(P) such that
s(a) =1 and s(b) = 0.

Proof. This follows immediately from Proposition 2.6 and Proposi-
tion 2.2.

In the next sections we will need the following result.
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2.8. THEOREM. Let B, By be Boolean subalgebras of P. Let s1 be a two-
valued state on By. Then there exists a two-valued B-state s on P such that
s|By = s1.

Proof. Put I; = s;*(0). Put further J = {b € P; there exists a € I
with b < a}. Then J is a proper B-ideal and, according to Proposition
2.5, J is contained in a B-prime ideal I. I is a prime ideal on Bj, hence
I N B = 1. The rest follows from Proposition 2.2.

As the following example (due to Mirko Navara) shows, Theorem 2.7
cannot be improved in such a way that s € Sp,(P) N Sp,(P) for given
Boolean subalgebras By, By of P.

Fig. 1

2.9. EXaMPLE. Figure 1 shows the Greechie diagram (see [3]) of an
orthomodular lattice P. The elements a,b’ € P are not orthogonal, hence

a £ b, but there isno s € Sp, (P) NSk, (P) such that s(a) =1 and s(b) = 0.

3. A representation theorem for orthomodular lattices. The
main result in this section is a representation of P by means of clopen sets
in a compact Hausdorff closure space (a generalized Stone representation).
We will show as an improvement of [6] (where B is the centre of P) that
if P is a lattice and if we are given a Boolean subalgebra B in P, we can
ensure that the restriction of the representation to B becomes the Stone
representation.

First we reformulate results of the previous section in a way convenient
for our representation theorem.

3.1. PROPOSITION. Let P be the set of all B-prime ideals in P. Let the
mapping i : P — exp P be defined by i(a) = {I € P;a ¢ I'}. Finally, write
A= {i(b);be P and ACi(b)} for any A C P. Then

1) i(0)=0,i1) =P andi: (P,<,’) — (i(P),C, ') is an isomorphism,
2) if Ay € i(P) (a € A) and \/ cp Ao exists in (i(P),C,"), then

\/aGA Ao = Ugea Aa-
3) if A,B € i(B) then AVB=AUB and ANB=ANB.
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Proof. The first property follows from the definition of ¢ and from The-
orem 2.7. As for the second property, we know that \/ ., Aa € i(P) con-
tains all A, (o« € A) and therefore | J,c 4 Aa C V4ea Aa- Then the equality

Uaea Aa = Vaea Aq follows from the definition of the “bar” operation. Fi-
nally, suppose that I € i(aVb), a,b € B. Then aVb ¢ I and therefore either
a¢gIorb¢glI Hencel € i(a)Ui(b). Thus, i(aVb) = i(a) Ui(b) and we
have AV B=AUB. Dually, ANB=(A'VB') =(AUB)=ANB.

Prior to stating our main result in this section, let us shortly review
basic facts on closure spaces (see [2], [6]). By a closure space we mean a pair
(X, ), where X is a nonempty set and : exp X — exp X is an operation
which has the following four properties:

1)0=0,

2) AC Afor any A C X,
3)4CBimpliesZC§(A,BCX),
4) A= Afor any A C X.

A set A C X is called closed in (X, )if A= A and B C X is called
open if X \ B is closed. A closure space (X, ) is called Hausdor(f if any pair
of points in X can be separated by disjoint open sets, and (X, ) is called
compact if any open covering of X has a finite subcovering. It should be
noted that the intersection of any collection of closed sets is again a closed
set. However, the union of two closed sets need not be closed.

Let us agree to write CO(X) for the collection of all subsets of X which

are simultaneously closed and open.

3.2. THEOREM. Let P,i and have the same meaning as in Proposition
3.1. Then P is a compact Hausdorff closure space and i(P) C CO(P). If P
is a lattice, then i(P) = CO(P).

Proof. One verifies easily that P is a closure space. Suppose that a € P.
Then i(a) = i(a) and therefore i(a) is closed. Also, i(a) = i(a”) =i(a’)’ and
therefore i(a) is open. Thus i(P) C CO(P). This allows us to prove that
(P, ) is Hausdorff and compact. Indeed, if I;,I5 € P and I; # I, then
there is an element a € P such that a € I; \ Iz (¢’ € Iy \ I). We therefore
have two disjoint open sets i(a), i(a’) which separate I, I.

To show that P is compact, consider an open covering {A,;a € A}
of P. Since every closed set in P is an intersection of elements of i(P),
every open set is a union of elements of i(P). We therefore may (and will)
suppose that A, =i(as) (aq € P, a € A). Hence there is no B-prime ideal
I such that I D {as;a € A}. This means that the B-ideal J generated
by {[0,a.];« € A} is not proper. It follows that for some d € P we have
one of the following possibilities (see Proposition 2.3): Either d € [0, aq, ],
d €10,a0,] (1,00 € A)or d < by V...Vb, for by € BN[0,a4,] (ar € A,
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ke {1,...,n}), d € J. In the former case a;,, < d < a,, and therefore
P =i(aa,) Ui(a,,) C i(aq,) Ui(aq,). In the latter case we may (and will)
assume the equality instead of the inequality. Thus, we have d € B. Hence
d' € JN B and therefore we can write d' = by V...V by, (b € [0,a4,] N B,
ar € A, ke {l,...,m}). Then we have

P=i(dVd)=ilbyV...Vb, Vb V...Vbp)

=i(b1)U...Ui(b,) Ui(by) U...Ui(by,)
Ci(ta,)U...Ui(aq,,) -

Thus, in both cases we have found a finite subcovering of {A,;a € A}.
Suppose now that P is a lattice and A € CO(P). According to the
definition of the closure operation we may write A = |J,c 4 i(aq) for some
ao € P. Making use of the compactness of P, we have A = |J;_, i(an,)
(ap € A, k€ {1,...,n}). Thus, A= \;_,i(aa,) =i(Viei o) € i(P).

Before we state our last result in this section, recall that a mapping
f: Ly — Ly between two orthomodular lattices is called an orthoisomor-
phism if f is one-to-one and respects ordering and orthocomplementation.

3.3. THEOREM. Let B be a Boolean subalgebra of an orthomodular
lattice P. Then there exists a compact Hausdorff closure space P such
that P is orthoisomorphic to CO(P). Moreover, the orthoisomorphism
f: P — CO(P) can be taken such that f(B) is the Stone representation
of B.

Proof. This follows from Theorems 3.2 and 2.8.

4. Extensions of B-states. It is obvious that a trace of a B-state on B
is a state. It is natural to ask whether any state on B is a trace of a B-state,
i.e. whether the restriction r : Sp(P) — S(B) is onto. In Theorem 2.8 we
have showed that this is true for two-valued states. Here we generalize this
result to arbitrary states on B.

4.1. THEOREM. Let B, By be Boolean subalgebras of P. If sy is a state
on By, then there exists a B-state s on P such that s|By = s1.

Proof. We use the compactness of S = Sg(P)NSp, (P). In some places
we partially utilize the technique of [11] and [10].

Let s; be a state on By and let D = {d;,...,d,} be a partition of
By. Thus, \/}_,dy = 1and d; L dj for i # j (i,j € {1,...,n}). Put
Fp = {s € S;s|D = s1|D}. Let D denote the set of all partitions of Bj.
We will show that F = {Fp; D € D} is a filter base consisting of nonempty
closed sets in S. First, every set Fp is closed by the definition of the topology
in S (“pointwise convergence”). Let now Dp, Dy be two partitions of Bj.
Then F’D1 OFD2 D) FDI/\D2, where D1 ADy = {dl /\dg; di € Dy and dy € DQ}
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is a partition of By. Finally, let D be a partition of By. For every d € D\ {0}
take a state sq € S3, (B1) such that sq(d) = 1 (Theorem 2.7). According to
Theorem 2.8, for every d € D \ {0} there exists a B-state 54 € S%(P) such
that s4|B; = sq. Hence 54 € S and s = ZdeD\{O} s1(d)sq € Fp. Thus,
F is a centred system. Since S is compact, we have a B-state s such that
s € (F. It follows immediately from the definition of F that s extends s;.
The proof is complete.

It may be of independent interest to note the following corollary of the
previous result which might be viewed as a topological proof of a classical
Boolean result (see [5], [11], compare also [8]).

4.2. COROLLARY. Let By be a Boolean subalgebra of a Boolean algebra
B. Then every state on By extends over B.

5. Open question. Another concept of partial additivity of states (also
stronger than in [13]) is studied in [12] and [1], where a theorem analogous
to Theorem 2.7 is proved. The definition of the so-called central state (abbr.
c-state) differs from the definition of B-state in the third condition:

(3°) s(aVb) =s(a)+ s(b) provided a L. b and a € C(P), b€ P,
where C'(P) is the centre of P.

It is an open problem whether results analogous to those in this paper
are valid for B-states that are simultaneously c-states.
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