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1. Introduction. Let (M, g) be a connected n-dimensional, n ≥ 3,
smooth Riemannian manifold with a not necessarily definite metric g. The
manifold (M, g) is said to be pseudo-symmetric ([11]) if its curvature tensor
R satisfies at every point of M the following condition:

(∗) the tensors R ·R and Q(g,R) are linearly dependent.

It is easy to see that if (∗) holds at a point of M then the Weyl conformal
curvature tensor C satisfies at this point the condition

(∗∗) the tensors R · C and Q(g, C) are linearly dependent.

A manifold (M, g) fulfilling (∗∗) at each point of M is called Weyl-pseudo-
symmetric ([8]).

As was proved in ([12]), if n ≥ 5 then (∗) and (∗∗) are equivalent at
each point at which C is non-zero. In particular, from this result if follows
(see also [16]) that for n ≥ 5 the conditions R · C = 0 and R · R = 0 are
equivalent at each point of (M, g) at which C 6= 0. On 4-manifolds, this
is not always the case. A suitable example was given in [5] (Lemme 1.1).
That example, by a certain modification, also gives rise to an example of
a non-pseudo-symmetric manifold satisfying (∗∗) with R · C non-zero (see
[10]). Moreover, in [2] an example of a non-pseudo-symmetric conformally
flat manifold of dimension n ≥ 4 was described.

In the present paper we shall prove (Section 4) that (∗) and (∗∗) are
equivalent at every point of a 4-dimensional warped product manifold at
which C does not vanish. From this it follows immediately that the above-
mentioned Riemannian manifold obtained in [5] is a non-warped product
manifold satisfying R · C = 0. It is known that (∗) and (∗∗) are equivalent
on manifolds isometrically immersed as hypersurfaces of a Euclidean space
En+1, n ≥ 4 (see [3], Corollary).

If (∗) holds at a point of M then at this point the following condition is
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fulfilled:

(∗∗∗) the tensors R · S and Q(g, S) are linearly dependent,

where S denotes the Ricci tensor. A manifold (M, g) satisfying (∗∗∗) at every
point of M is said to be Ricci-pseudo-symmetric ([14]). So, any pseudo-
symmetric manifold is Ricci-pseudo-symmetric. However, the converse fails
in general (see [14], [7]). We shall prove (Section 5) that (∗) and (∗∗∗)
are equivalent at every point of a 4-dimensional warped product manifold
at which the tensor S − (K/n)g does not vanish, where K is the scalar
curvature.

Section 2 is concerned with some facts on pseudo-symmetric tensors. We
recapitulate the basic formulas about warped products in Section 3. Finally,
an analogue of Theorem 1 from [19] is mentioned at the end of that section.

2. Pseudo-symmetric tensors. Let (M, g) be an n-dimensional,
n ≥ 3, Riemannian manifold with a not necessarily definite metric g. We
denote by ∇, R, S, C and K the Levi-Cività connection, the curvature
tensor, the Ricci tensor, the Weyl conformal curvature tensor and the scalar
curvature of (M, g) respectively. For a (0, k)-tensor field T on M , k ≥ 1, we
define the tensor fields R · T and Q(g, T ) by

(R · T )(X1, . . . , Xk;X, Y ) = (R(X, Y ) · T )(X1, . . . , Xk)
= −T (R(X, Y )X1, X2, . . . , Xk)− . . .− T (X1, . . . , Xk−1, R(X, Y )Xk),

Q(g, T )(X1, . . . , Xk;X, Y ) = −((X ∧ Y ) · T )(X1, . . . , Xk)
= T ((X ∧ Y )X1, X2, . . . , Xk) + . . . + T (X1, . . . , Xk−1, (X ∧ Y )Xk)

respectively, where R(X, Y ) and X∧Y are derivations of the algebra of ten-
sor fields on M and X1, . . . , Xk, X, Y ∈ X(M), X(M) being the Lie algebra
of vector fields on M . These derivations are extensions of the endomor-
phisms R(X, Y ) and X ∧ Y of X(M) defined by

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

(X ∧ Y )Z = g(Z, Y )X − g(Z,X)Y

respectively. A (0, k)-tensor field T is said to be pseudo-symmetric if the
tensors R ·T and Q(g, T ) are linearly dependent at every point of M . In the
special case when R·T vanishes on M , the tensor T is called semi-symmetric.
A (0, 4)-tensor field T on M is said to be a generalized curvature tensor [18]
if

T (X1, X2, X3, X4) + T (X1, X3, X4, X2) + T (X1, X4, X2, X3) = 0,

T (X1, X2, X3, X4) = −T (X2, X1, X3, X4),

T (X1, X2, X3, X4) = T (X3, X4, X1, X2),
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for all Xi ∈ X(M). For a generalized curvature tensor field T we define the
concircular curvature tensor Z(T ) by

Z(T ) = T − K(T )
n(n− 1)

G ,

where K(T ) is the scalar curvature of T and G is the generalized curvature
tensor defined by

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4).

A generalized curvature tensor T is called trivial at x ∈ M ([8]) if Z(T )
vanishes at x. Similarly, for a symmetric (0, 2)-tensor field A we define the
tensor Z(A) by

Z(A) = A− tr(A)
n

g.

A symmetric (0, 2)-tensor field A is said to be trivial at x ∈ M if Z(A)
vanishes at x.

R e m a r k 1 ([2], Lemma 1.1(iii)). Let T be a generalized curvature
tensor (resp. a (0, 2)-symmetric tensor) at a point x of a manifold (M, g).
Then the equalities Z(T ) = 0 and Q(g, T ) = 0 are equivalent at this point.

If a generalized curvature tensor T (resp. a (0, 2)-symmetric tensor A)
is pseudo-symmetric then R · T = LT Q(g, T ) (resp. R ·A = LAQ(g,A)) on
UT = {x ∈ M : Z(T )(x) 6= 0} (resp. on UA = {x ∈ M : Z(A)(x) 6= 0}),
where LT is a function defined on UT (resp. LA is a function defined on UA).
The functions LT and LA are uniquely determined and called the associated
functions of the pseudo-symmetric tensors T and A respectively ([8]).

A Riemannian manifold (M, g) is said to be pseudo-symmetric if its cur-
vature tensor R is pseudo-symmetric [11]; then

(1) R ·R = LRQ(g,R)

on UR. Any semi-symmetric manifold (R ·R = 0, [20]) is pseudo-symmetric.
Examples of non-semi-symmetric pseudo-symmetric manifolds are given in
[2], [3], [6] and [11].

(M, g) is said to be Weyl-pseudo-symmetric if its Weyl conformal curva-
ture tensor C is pseudo-symmetric [8]; then

(2) R · C = LCQ(g, C)

on UC . Any pseudo-symmetric manifold is Weyl-pseudo-symmetric. The
converse fails in general (see Section 1). Note that UC ={x ∈ M : C(x) 6= 0}.

(M, g) is said to be Ricci-pseudo-symmetric if its Ricci tensor S is pseudo-
symmetric ([14], [7]); then

(3) R · S = LSQ(g, S)
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on US . Of course, any pseudo-symmetric manifold is Ricci-pseudo-sym-
metric. The converse fails in general (see [14], [7]). The conditions (1) and
(3) are equivalent on manifolds with vanishing Weyl conformal curvature
tensor C. Namely, we have

Lemma 1 ([2], Lemma 1.2, [13], Lemma 2). If C vanishes at x ∈ M and
n ≥ 3, then at x the following three identities are equivalent to each other :(

(n− 2)α +
K

n− 1

)(
S − k

n
g

)
= S2 − tr(S2)

n
g ,

R · S = αQ(g, S) , R ·R = αQ(g,R) ,

where α ∈ R, S2(X, Y ) = S(S̃(X), Y ), S(X, Y ) = g(S̃(X), Y ) and x, y ∈
X(M).

Lemma 2. (i) If (M, g) is 3-dimensional then C vanishes identically.
(ii) (cf. [15], p. 48) Any generalized curvature tensor T at a point x of

a 3-dimensional Riemannian manifold (M, g) satisfies

T (X1, X2, X3, X4) = g(X1, X4)A(X2, X3) + g(X2, X3)A(X1, X4)
− g(X1, X3)A(X2, X4)− g(X2, X4)A(X1, X3),

for all Xi ∈ X(M), where A is the (0, 2)-tensor defined by

A(X1, X2) = Ricc(T )(X1, X2)−
K(T )

4
g(X1, X2),

Ricc(T ) and K(T ) being the Ricci tensor and the scalar curvature of T
respectively.

(iii) Let A be a symmetric (0, 2)-tensor on a 2-dimensional Riemannian
manifold (M, g). Then

g(X1, X4)A(X2, X3) + g(X2, X3)A(X1, X4)− g(X2, X4)A(X1, X3)
− g(X1, X3)A(X2, X4) = tr(A)G(X1, X2, X3, X4)

on M .

Lemma 3. Let A and B be non-zero symmetric (0, 2)-tensors at a point
x of a manifold (M, g). If Q(A,B) = 0 at x then A = λB, λ ∈ R − {0},
at x.

The proof of this lemma was given in [9] (see the proof of Lemma 3.4).

3. Warped products. Let (M, g) and (N, g̃), dim M = p, dim N =
n − p, 1 ≤ p < n, be Riemannian manifolds covered by systems of charts
{V ;xa} and {Ṽ ; yα} respectively. Let F be a positive smooth function on
M . The warped product M ×F N of (M, g) and (N, g̃) (see [17], [1]) is the
Cartesian product M × N with the metric g = g ⊕ F g̃ (more precisely,
g ⊕ F g̃ = Π∗

1 g + (F ◦Π1)Π∗
2 g̃, Π1 : M ×N → M and Π2 : M ×N → N
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being the natural projections). Let {V × Ṽ ; u1 = x1, . . . , up = xp, up+1 =
y1, . . . , un = yn−p} be a product chart for M ×N . The local components
of the metric g ⊕ F g̃ with respect to this chart are

(4) grs =

{
gab if r = a, s = b,
F g̃αβ if r = α, s = β,
0 otherwise.

Here and below, a, b, c, d, e, f ∈ {1, . . . , p}, α, β, γ, δ, λ, µ ∈ {p+1, . . . , n}
and r, s, t, u, v, w ∈ {1, . . . , n}. The local components of the tensors R and
S of the metric g ⊕ F g̃ which may not vanish identically are

Rabcd = Rabcd,(5)
Rαabβ = − 1

2Tabg̃αβ ,(6)

Rαβγδ = F R̃αβγδ −
∆F

4
G̃αβγδ,(7)

Sab = Sab −
n− p

2F
Tab,(8)

Sαβ = S̃αβ −
1
2

(
tr(T ) +

(n− p− 1)∆F

2F

)
g̃αβ ,(9)

Tab = ∇bFa −
1

2F
FaFb, tr(T ) = gabTab ,

∆F = gabFaFb , Fa =
∂

∂xa
(F ) .

(10)

The scalar curvature K of g ⊕ F g̃ satisfies

(11) K = K +
1
F

K̃ − n− p

F

(
tr(T ) +

(n− p− 1)∆F

4F

)
.

Using (5)–(9) and (11), we obtain the following relations for the local
components Crstu of the tensor C of g ⊕ F g̃:

Cabcd = Rabcd −
1

n− 2
(gadSbc − gacSbd + gbcSad − gbdSac)(12)

+
n− p

2(n− 2)F
(gadTbc − gacTbd + gbcTad − gbdTac)

+
K

(n− 1)(n− 2)
Gabcd,

Cαabβ = − 1
n− 2

(
p− 2

2
Tab + FSab

)
g̃αβ −

1
n− 2

gabS̃αβ(13)

+
1

(n− 1)(n− 2)

×
(

FK + K̃ − (n− 2p + 1) tr(T )
2

+
(p− 1)(n− p− 1)∆F

4F

)
gabg̃αβ ,



108 R. DESZCZ

Cαβγδ = FR̃αβγδ −
F

n− 2
(g̃αδS̃βγ − g̃αγ S̃βδ + g̃βγ S̃αδ − g̃βδS̃αγ)(14)

+ FPG̃αβγδ,

Cabcα = Cabαβ = Caαβγ = 0,(15)

P =
1

n− 2

(
FK

n− 1
+ tr(T ) +

(n− 2p)∆F

4F

)
.(16)

Lemma 4 ([6], Theorem 1). The curvature tensor R of a warped product
M ×F N satisfies R ·R = LQ(g,R) if and only if

(17) (R ·R)abcdef = LQ(g,R)abcdef ,

(18) Hf
dRfabc =

1
2F

(TacHbd − TabHcd) ,

(19) Had

(
R̃δαβγ −

∆F

4F
G̃δαβγ

)
= −1

2
TfdH

f
aG̃δαβγ ,

(20) (R̃ · R̃)αβγδλµ =
(

LF +
∆F

4F

)
Q(g̃, R̃)αβγδλµ ,

where

(21) Had = 1
2Tad + FLgad.

Lemma 5 ([6], Corollary 1). Let (M, g), dim M ≥ 2 and (N, g̃), dim N ≥
2, be manifolds of constant curvature. The curvature tensor R of the warped
product M ×F N satisfies R ·R = LQ(g,R) if and only if

(22)
2K

p(p− 1)
(gabHcd − gacHbd) =

1
F

(TacHbd − TabHcd) ,

(23) Had

(
K̃

(n− p)(n− p− 1)
− ∆F

4F

)
= −1

2
TfdH

f
a ,

Using (4)–(16), (21) and Lemma 2(iii), we obtain

Lemma 6. The only local components of the Weyl conformal curvature
tensor C of a 4-dimensional warped product M ×F N which are not identi-
cally zero are

Cα11β = −1
2
g11

(
S̃αβ −

K̃

3
g̃αβ

)
,(24)

Cαβγδ =
F

2
(g̃αδS̃βγ − g̃αγ S̃βδ + g̃βγ S̃αδ − g̃βδS̃αγ)− FK̃

3
G̃αβγδ,(25)

provided that dim M = 1;

(26) Cabcd =
P

F
Gabcd , P =

1
6

(
FK + K̃ + tr(T )− ∆F

2F

)
,
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(27) Cαβγδ =
P

F
Gαβγδ,

(28) Cαabβ = − P

2F
Gαabβ ,

provided that dim M = 2;

C4ab4 = −1
2
g̃44Wab, Wab = Vab −

tr(V )
3

gab, Vab = FSab +
1
2
Tab,(29)

Cabcd =
1

2F
(gadWbc + gbcWad − gacWbd − gbdWac),(30)

provided that dim M = 3.

From the above lemma the following theorem follows immediately:

Theorem 1. Suppose dim M ×F N = 4.

(i) If dim M = 1, then M ×F N is conformally flat if and only if

S̃ =
K̃

3
g̃.

(ii) If dim M = 2, then M ×F N is conformally flat if and only if

tr(T ) = −FK

3
.

(iii) If dim M = 3, then M ×F N is conformally flat if and only if

FS +
T

2
=

1
3

(
FK +

tr(T )
2

)
g.

R e m a r k 2. (i) Necessary and sufficient conditions for M ×F N ,
dim M ×F N ≥ 4 and dim N ≥ 2, to be conformally flat are given in [19]
(Theorem 1).

(ii) An example of a 4-dimensional conformally flat warped product
M ×F N , dim N = 1, is described in [2] (Lemma 4.3). The manifold (M, g)
considered in that example is non-semi-symmetric, conformally flat and
pseudo-symmetric, but M ×F N is not pseudo-symmetric.

(iii) The assertion (iii) of Theorem 1 can be easily generalized (by making
use of (12)–(16)) as follows: The manifold M ×F N , dim M = n− 1, n ≥ 4,
is conformally flat if and only if

C = 0 and FS +
(n− 3)T

2
=

1
n− 1

(
FK +

(n− 3) tr(T )
2

)
g

on M .
Another consequence of Lemma 6 is

Theorem 2. Suppose dim M ×F N = 4 and dim M = 2. Then C · C =
− P

2F Q(g, C) on M ×F N .
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The tensor C ·C is defined analogously to the tensor R · T in Section 2.
Riemannian manifolds satisfying the condition C ·C = 0 were considered in
[4] (see also [13], Corollary 1).

Lemma 7 ([7], Theorem 1). The Ricci tensor S of M ×F N satisfies
R · S = LQ(g, S) if and only if

(31) (R · S)abcd − LQ(g, S)abcd =
n− p

F
((R ·H)abcd − LQ(g,H)abcd),

(32) Hab

(
S̃αβ −

1
2F

(
tr(T ) +

(n− p− 1)∆F

2F

)
gαβ

)
= Hcb

(
Sc

a −
n− p

2F
T c

a

)
gαβ ,

(33) (R̃ · S̃)αβγδ =
(

LF +
∆F

4F

)
Q(g̃, S̃)αβγδ.

Lemma 8 ([7], Corollary 1). Let (M, g), dim M ≥ 2 and (N, g̃), dim N ≥
2, be Einstein manifolds. Then the Ricci tensor S of M ×F N satisfies
R · S = LQ(g, S) if and only if

(34) (R ·H)abcd = LQ(g,H)abcd,

(35)
F

n− p

(
K

p
− K̃

(n− p)F
+ (n− p)L

+
1

2F

(
tr(T ) +

(n− p− 1)∆F

2F

))
Hab = HacH

c
b.

4. Not conformally flat 4-dimensional warped products satis-
fying R · C = LQ(g, C)

Proposition 1. Suppose R·C = LQ(g, C) on M×F N , where dim M = 1
and dim N = 3. If C is non-zero at x ∈ M ×F N then R · R = LQ(g,R)
at x.

P r o o f. From (2) we have

(R · C)αβγδλµ = LQ(g, C)αβγδλµ ,

whence, by (7), it follows that

(R̃ · C)αβγδλµ =
(

LF +
∆F

4F

)
Q(g̃, C)αβγδλµ .

This, by an application of (25) and contraction with g̃βγ , yields

(R̃ · S̃)αδλµ =
(

LF +
∆F

4F

)
Q(g̃, S̃)αδλµ,
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which, in view of Lemma 2(i) and Lemma 1, implies (20). Further, the
relation (R · C)1αβγ1δ = LQ(g, C)1αβγ1δ, in virtue of (6), (15), (24) and
(21), turns into

H11

(
1
F

Cδαβγ −
K̃

6
G̃δαβγ +

1
2
(g̃γδS̃αβ − g̃βδS̃αγ)

)
= 0.

Applying (25) and contracting the resulting equality with g̃γδ, we get
H11(S̃αβ − K̃

3 g̃αβ) = 0, which, by (24), (25) and the assumption C(x) 6= 0,
gives H11(x) = 0. Now Lemma 4 completes the proof.

Proposition 2. Suppose R ·C = LQ(g, C) on M×F N , where dim M =
dim N = 2. If C is non-zero at x ∈ M ×F N then R · R = LQ(g,R) and
H = 0 at x.

P r o o f. The relation (R ·C)aαβγdδ = LQ(g, C)aαβγdδ, by making use of
(15), (27), (28), (6) and (21), gives PH = 0. Since C(x) 6= 0, it follows that
H(x) = 0. But this, in view of Lemma 5, completes the proof.

Proposition 3. Suppose R·C = LQ(g, C) on M×F N , where dim M = 3
and dim N = 1. If C is non-zero at x ∈ M ×F N then R · R = LQ(g,R)
at x.

P r o o f. From the equality (R · C)4ab4cd = LQ(g, C)4ab4cd, by making
use of (15) and (29), it follows that

(36) (R ·W )abcd = LQ(g,W )abcd.

Furthermore, the equality (R ·C)4abcd4 = LQ(g, C)4abcd4, by an application
of (6), (15), (29) and (21), yields

(37) He
dCeabc =

1
2F

(HbdWac −HcdWab),

whence, by (30), we get

(38) gabH
e
dWec − gacH

e
dWeb + 2(WabHcd −WacHbd) = 0.

Contracting this with gad and gcd respectively, we obtain

(39) He
aWeb = He

bWea,

(40) He
bWea = 2

3τWab + 1
3ρgab, ρ = HefWef , τ = tr(H),

respectively. Now (38) takes the form

(41) (WabHcd −WacHbd) + 1
3τ(gabWcd − gacWbd) + 1

6ρGdabc = 0.

Transvecting the above equality with Hab and using (39) and (40) we find

(42) Hcd = 2
3τ2Wcd + 1

3τρgcd.
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From this we have ρR ·H = 2
3τ2R ·W and, by (36),

R ·H = 2
3τ2LQ(g,W ).

Applying (42) in the last equality, we get

(43) ρ(R ·H − LQ(g,H)) = 0,

which, by (21), implies

(44) ρ(R · T − LQ(g, T )) = 0.

Thus (36), in virtue of (29) and (44), turns into

(45) ρ(R · S − LQ(g, S)) = 0.

We have now the two possibilities: (a) ρ(x) 6= 0 and (b) ρ(x) = 0.
(a) In this case R · S = LQ(g, S). Thus, in view of Lemma 1, (17) holds

at x. Now, we prove that (18) also holds at x. (42) shows that this is trivial
if τ(x) = 0. Suppose that τ(x) 6= 0. First of all, we note that from (41),
by transvection with Ha

f and an application of (40) and (42) the following
relation can be obtained at x:

(46) HbfHcd −HcfHbd = 0,

whence

(47) HbfHf
d = τHbd.

Next, transvecting the equality Ceabc = 0 with He
d we obtain

He
dReabc = HcdSab −HbdSac + gabSecH

e
d − gacSebH

e
d(48)

− K

2
(gabHcd − gacHbd).

The formula (42), by making use of (29), can be rewritten in the form

(49) FSab =
(

3
2

1
τ2

ρ− 1
)

Hab +
(

FL− 1
2τ

ρ

)
gab,

which, by transvection with Hb
d and the use of (47), yields

FSeaHe
d =

(
1
τ

ρ− τ + FL

)
Had.

Applying the last two equalities in (48) we get

He
dReabc =

1
F

(
3

2τ2
ρ− 1

)
(HcdHab −HbdHac)

+
1
F

(
1
2τ

ρ− τ + 2FL− KF

2

)
(gabHcd − gacHbd) ,
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which, by (46), reduces to

(50) He
dReabc =

1
F

(
1
2τ

ρ− τ + 2FL− KF

2

)
(gabHcd − gacHbd).

This, by the Ricci identity, yields

(51) R ·H =
1
F

(
1
2τ

ρ− τ + 2FL− KF

2

)
Q(g,H).

Comparing (51) with (43) we obtain(
1
F

(
1
2τ

ρ− τ + 2FL− KF

2

)
− L

)
Q(g,H) = 0 ,

whence

(52)
(

1
F

(
1
2τ

ρ− τ + 2FL− KF

2

)
− L

)(
H − τ

3
g

)
= 0.

If (H − (τ/3)g)(x) = 0, then (49) gives S = (K/3)g. But this, by (29),
gives W = 0 and, consequently, C(x) = 0, which is a contradiction. So
(H − (τ/3)g)(x) 6= 0. Applying now (52) in (50) we get

(53) He
dReabc = L(gabHcd − gacHbd).

Note that (46) can be expressed in the following form:

L(gabHcd − gacHbd) =
1

2F
(TacHbd − TabHcd).

Thus (53) turns into (18).
(b) Since ρ vanishes at x, the formula (42) takes the form τW = 0,

whence, by (29), (30) and the assumption C(x) 6= 0, we obtain the equality

(54) τ =
tr(T )

2
+ 3FL = 0

at this point. The tensor W now takes the form

(55) Wab = FSab −
FK

3
gab + Hab.

The formula (40), by (54), gives

(56) He
aWeb = 0.

Thus (38) turns into

(57) WabHcd −WacHbd = 0,

which can be rewritten in the form

(58) F (SabHcd − SacHbd) = HacHbd −HabHcd +
FK

3
(gabHcd − gacHbd).
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From (57), by transvection with Hc
e and making use of (56), we find

(59) HcdH
c
e = 0.

Further, transvecting (55) with Ha
d and applying (56) and (59) we get

(60) Hc
aScd =

K

3
Had.

Next, transvecting (58) with Se
b and using (60) we obtain

F

(
Se

bSab −
K

3
Sea

)
Hcd

=
K

3
(HacHed −HeaHcd) +

FK

3

(
Sac −

K

3
gac

)
Hed,

which, by (58), turns into(
S2 − 2KS

3
+

K2

9
g

)
H = 0, or((

S2 − tr(S2)
3

g

)
−
(

K

6
+

K

2

)(
S − K

3
g

)
+

1
3

(
tr(S2)− K2

3

)
g

)
H = 0

and

(61)
((

S2 − tr(S2)
3

g

)
−
(

K

6
+

K

2

)(
S − K

3
g

))
H = 0 .

Suppose that H(x) = 0. Then, of course, (18) holds at x. The formula (36)
turns into R ·S = LQ(g, S). But this, in view of Lemma 2(i) and Lemma 1,
implies (17). Consider now the case H(x) 6= 0. Then (61) gives

S2 − tr(S2)
3

g =
(

K

6
+

K

2

)(
S − K

3
g

)
.

But this, in view of Lemma 2(i) and Lemma 1, yields R ·R = LQ(g,R) and

(62) L = K/6.

Thus the condition (17) is fulfilled. Finally, the identity (48), in virtue
of (60), gives

He
dReabc = HcdSab −HbdSac −

K

6
(gabHcd − gacHbd),

which, by (58), turns into

FHe
dReabc = HacHbd −HabHcd +

FK

6
(gabHac − gacHbd).

This, by making use of (61) and (21), leads to (18). Our proposition is thus
proved.

Combining Propositions 1–3 we obtain
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Theorem 3. Suppose dim M ×F N = 4. If at a point of M ×F N the
tensor C is non-zero, then the relations R · C = LQ(g, C) and R · R =
LQ(g,R) are equivalent at this point.

The following corollary is a consequence of Theorem 2.

Corollary 1. Let M ×F N be an analytic not conformally flat 4-
dimensional warped product. Then the relations R · C = LQ(g, C) and
R ·R = LQ(g,R) are equivalent on M ×F N .

5. Non-Einstein 4-dimensional warped product satisfying R·S =
LQ(g, S)

Proposition 4. Suppose R·S = LQ(g, S) on M×F N , where dim M = 1
and dim N = 3. If S − (K/4)g is non-zero at x ∈ M ×F N , then R · R =
LQ(g,R) at x.

P r o o f. The equality (33), in view of Lemma 2(i) and Lemma 1, turns
into (20). Further, (32) yields

H11

(
S̃αβ −

(
1

2F
∆F − tr(T )

)
g̃αβ

)
= 0,

whence H(S̃ − (K̃/3)g̃) = 0. If H = 0, then (18) and (19) are satisfied and
Lemma 4 completes the proof. If S̃ − (K̃/3)g̃ = 0, then C = 0, and our
assertion, by Lemma 1, is also true.

Proposition 5. Suppose R ·S = LQ(g, S) on M ×F N , where dim M =
dim N = 2. If S−(K/4)g is non-zero at x ∈ M×F N then R ·R = LQ(g,R)
at x.

P r o o f. The relations (34) and (35) take the forms

(63)
(

L− K

2

)(
H − tr(H)

2
g

)
= 0 ,

(64) HcaHc
b = ρHab

respectively, where

(65) ρ =
F

2

(
K

2
− K̃

2F
+ 2L +

tr(T )
2F

+
1

4F 2
∆F

)
.

In view of Lemma 2(iii), H satisfies the following identity at x:

(66) gbcHad + gadHbc − gacHbd − gbdHac = tr(H)(gad gbc − gac gbd).

Transvecting this with Hb
f and using (64) we get

(67) HcfHad −HdfHac = (tr(H)− ρ)(gadHcf − gacHdf ) ,
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whence, by transvection with Hcf and making use of (64) we obtain

(68) ρ(tr(H)− ρ)
(

H − tr(H)
2

g

)
= 0.

Consider two possibilities:

(a)
(

H − tr(H)
2

g

)
(x) 6= 0,

(b)
(

H − tr(H)
2

g

)
(x) = 0.

(a) In this case we have

(69) L = K/2,

(70) ρ(tr(H)− ρ) = 0.

(a1) Suppose additionally that ρ(x) = 0. Then from (64) and (67) it
follows that tr(H)Hae = 0 and, in consequence,

(71) tr(H) = 0.

Now (67), by (21), (69) and (71), turns into (22). Further, (71) gives L =
− tr(T )/(4F ). Thus, from (65) we obtain FL = K̃/2−∆F/(4F ). But this,
together with (64) and (21), yields (23). Now Lemma 5 completes the proof.

(a2) Let ρ(x) 6= 0. Then, in virtue of (70), we get

(72) tr(H) = ρ.

Applying this, (21) and (69) in (67) we obtain (22). Further, (72) yields

tr(T )
4

+ FL =
FL

2
− K̃

4
+

∆F

8F
,

whence

tr(H) = FL− K̃

2
+

∆F

4F
.

But this, together with (72) and (64), yields (23). Now Lemma 5 completes
the proof in this case.

(b) Now (64) takes the form

(73) tr(H)
(

tr(H)
2

− ρ

)
= 0.

If tr(H) = 0, then also H = 0 and Lemma 5 completes the proof. If tr(H) 6=
0, then (73) gives tr(H) = 2ρ, whence we get FK/2 = K̃/2 − ∆F/(4F ).
Moreover, the equality H = 1

2 tr(H)g yields T = 1
2 tr(T )g. Now (8) and (9)

lead to S = (K/4)g, a contradiction. This completes the proof.
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Proposition 6. Suppose R·S = LQ(g, S) on M×F N , where dim M = 3
and dim N = 1. If S − (K/4)g and C are non-zero at x ∈ M ×F N , then
R ·R = LQ(g,R) at x.

P r o o f. We consider two cases:

(a) (S − (K/3)g)(x) = 0,
(b) (S − (K/3)g)(x) 6= 0.

(a) The relation (31) turns into (L −K/6)Q(g,H) = 0, which, by Re-
mark 1, yields

(74)
(

L− K

6

)(
H − tr(H)

3
g

)
= 0.

If H − (tr(H)/3)g = 0, then (29) and (30) yield C = 0, a contradiction.
If H − (tr(H)/3)g 6= 0, then from (74) we obtain L = K/6. Further, (32)
takes the form HcaHc

b = 1
2 (FK + tr(T ))Hab. Let B be a (0, 4)-tensor with

local components Babcd = HadHbc − HacHbd. We note that Ricc(B) = 0
and K(B) = 0. Thus Lemma 2(ii) implies Babcd = 0, whence

K

3
(gabHcd − gacHbd) =

1
F

(TacHbd − TabHcd).

But this turns into (18). Now Lemma 4 completes the proof.
(b) We rewrite (32) in the form

(75)
H2

ab =
(

FL +
tr(T )

2

)
Hab + FAab,

H2
ab = HcaHc

b, Aab = ScaHc
b.

Now, transvecting the identity Cebcd = 0 with Ha
e and Sa

e
respectively, we

obtain

Ha
eRebcd = HadSbc −HacSbd + gbcAad(76)

− gbdAac −
K

2
(gbcHad − gbdHac) ,

Sa
eRebcd = SadSbc − SacSbd + gbcS

2
ad

− gbdS
2
ac −

K

2
(gbcSad − gbdSac)

respectively, where S2
ad = SeaSe

d. From the last two relations, by sym-
metrization in a, b and making use of the Ricci identity and (31), it follows
that
(77)

Q

(
g, FS

2 − F

(
K

2
+ L

)
S −A +

(
K

2
+ L

)
H

)
abcd

= −Q(H,S)abcd.
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Contracting (77) with gad we get

FS2 =
F tr(S2)

3
g + F

(
K

2
+ L

)(
S − K

3
g

)
− tr(H)

3
S +

K

3
H(78)

+
(

A− tr(A)
3

g

)
−
(

K

2
+ L

)(
H − tr(H)

3
g

)
.

Substituting this in (77) we find

(79) Q

(
S − K

3
g,H − tr(H)

3
g

)
= 0.

We may assume that H − (tr(H)/3)g 6= 0. Of course, if H = 0, then
R ·R = LQ(g,R) at x. If H 6= 0 and H − (tr(H)/3)g = 0, then (75) yields
S = (K/3)g, a contradiction. Now (79), in view of Lemma 3, implies

(80) S − K

3
g = λ

(
H − tr(H)

3
g

)
, λ ∈ R− {0}.

Thus (31) yields (λF − 1)(R · S − LQ(g, S)) = 0. Assume that

(81) λF = 1;

then (80) gives A = 1
3 (K − tr(H)/F )H + H2/F . Substituting this into (75)

we obtain (K + tr(T )/F )H = 0, whence K + tr(T )/F = 0. But the last
relation, together with (80), (81), (8), (9) and (11), leads to S = (K/4)g, a
contradiction. Thus λF − 1 6= 0 and

(82) R · S = LQ(g, S).

Now, in view of Lemma 1, we obtain (17). Furthermore, the equality (31),
in virtue of (82), (76)–(78), turns into

Q

(
g,

(
L +

K

6

)
H +

tr(H)
3

S −A

)
= 0,

whence, by (80), it follows that

A =
tr(A)

3
g +

(
λ tr(H)

3
+ L +

K

6

)(
H − tr(H)

3
g

)
.

On the other hand, combining (75) and (80), we find

(83)
(

1
λ
− F

)
A =

1
3

(
tr(T ) +

K

λ

)
H.

But the last two relations yield

(λ tr(T )− 6L(1− λF ) + K)(1 + λF )
(

H − tr(H)
3

g

)
= 0,
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whence
(λ tr(T )− 6L(1− λF ) + K)(1 + λF ) = 0.

Suppose that 1 + λF = 0. Then (80), (29) and (30) give C = 0, a contra-
diction. Thus we have λ tr(T )− 6L(1− λF ) + K = 0, or, equivalently,

(84)
1
λ

(
L− K

6

)
=

tr(H)
3

.

Thus (83) takes the form

(85) A = 2LH.

Substituting this into (75) we obtain H2 = tr(H)H. Let B be a (0, 4)-tensor
with local components Babcd = HadHbc −HacHbd. Evidently, Ricc(B) = 0
and K(B) = 0. Thus, Lemma 2(ii) implies

(86) Babcd = 0.

From (80), by (86), we obtain

HadSbc −HacSbd = 1
3 (K − λ tr(H))(gbcHad − gbdHac).

Substituting this and (85) into (76) we find

Ha
eRebcd =

(
2L− K

6
− λ tr(H)

3

)
(gbcHad − gbdHac),

whence, by (84), we get Ha
eRebcd = L(gbcHad− gdbHac). But this, by (86),

turns into (18). Now Lemma 4 completes the proof.

Combining Propositions 4–6 and Lemma 1 we obtain

Theorem 4. Suppose dim M ×F N = 4. If S − (K/4)g is non-zero at a
point of M ×F N , then the relations R ·S = LQ(g, S) and R ·R = LQ(g,R)
are equivalent at this point.

This theorem yields

Corollary 2. Let M ×F N be an analytic non-Einstein 4-dimensional
warped product. Then the relations R · S = LQ(g, S) and R ·R = LQ(g,R)
are equivalent on M ×F N .
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