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1. Introduction. Let (M,g) be a connected n-dimensional, n > 3,
smooth Riemannian manifold with a not necessarily definite metric g. The
manifold (M, g) is said to be pseudo-symmetric ([11]) if its curvature tensor
R satisfies at every point of M the following condition:

() the tensors R - R and Q(g, R) are linearly dependent.

It is easy to see that if () holds at a point of M then the Weyl conformal
curvature tensor C satisfies at this point the condition

(xx) the tensors R - C and Q(g,C) are linearly dependent.

A manifold (M, g) fulfilling (s*) at each point of M is called Weyl-pseudo-
symmetric ([8]).

As was proved in ([12]), if n > 5 then (*) and (**) are equivalent at
each point at which C' is non-zero. In particular, from this result if follows
(see also [16]) that for n > 5 the conditions R-C = 0 and R- R = 0 are
equivalent at each point of (M, g) at which C' # 0. On 4-manifolds, this
is not always the case. A suitable example was given in [5] (Lemme 1.1).
That example, by a certain modification, also gives rise to an example of
a non-pseudo-symmetric manifold satisfying (xx) with R - C non-zero (see
[10]). Moreover, in [2] an example of a non-pseudo-symmetric conformally
flat manifold of dimension n > 4 was described.

In the present paper we shall prove (Section 4) that (x) and (xx) are
equivalent at every point of a 4-dimensional warped product manifold at
which C does not vanish. From this it follows immediately that the above-
mentioned Riemannian manifold obtained in [5] is a non-warped product
manifold satisfying R - C = 0. It is known that (x) and (*x*) are equivalent
on manifolds isometrically immersed as hypersurfaces of a Euclidean space
E"T n > 4 (see [3], Corollary).

If (%) holds at a point of M then at this point the following condition is
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fulfilled:
(k) the tensors R - S and Q(g,S) are linearly dependent,

where S denotes the Ricci tensor. A manifold (M, g) satisfying («xx) at every
point of M is said to be Ricci-pseudo-symmetric ([14]). So, any pseudo-
symmetric manifold is Ricci-pseudo-symmetric. However, the converse fails
in general (see [14], [7]). We shall prove (Section 5) that (%) and (ssx)
are equivalent at every point of a 4-dimensional warped product manifold
at which the tensor S — (K/n)g does not vanish, where K is the scalar
curvature.

Section 2 is concerned with some facts on pseudo-symmetric tensors. We
recapitulate the basic formulas about warped products in Section 3. Finally,
an analogue of Theorem 1 from [19] is mentioned at the end of that section.

2. Pseudo-symmetric tensors. Let (M,g) be an n-dimensional,
n > 3, Riemannian manifold with a not necessarily definite metric g. We
denote by V, R, S, C and K the Levi-Civita connection, the curvature
tensor, the Ricci tensor, the Weyl conformal curvature tensor and the scalar
curvature of (M, g) respectively. For a (0, k)-tensor field T'on M, k > 1, we
define the tensor fields R - T and Q(g,T") by
(R : T)(le v 7Xk;X7 Y) = (R(va) : T)(Xla s an)
=-TRX,Y)X1,Xo,...,Xp)— ... - T(Xy,..., X1, R(X,Y)X}),
Q(g, T)(Xq1,...,. Xi; X, Y)=—((XANY) -T)(X1,...,Xk)
=T(XAY)X1,Xo,..., X))+ ...+ T( X1, ., Xio1, X AY)Xy)
respectively, where R(X,Y) and X AY are derivations of the algebra of ten-
sor fields on M and X,..., Xy, X, Y € X(M), X(M) being the Lie algebra
of vector fields on M. These derivations are extensions of the endomor-
phisms R(X,Y) and X AY of X(M) defined by
R(X,Y)Z =VxWZ - VWVxZ — Vix v|Z,
(XAY)Z =9(2,Y)X —9(Z,X)Y
respectively. A (0, k)-tensor field T is said to be pseudo-symmetric if the
tensors R-T and Q(g,T) are linearly dependent at every point of M. In the
special case when R-T vanishes on M, the tensor T is called semi-symmetric.
A (0,4)-tensor field T" on M is said to be a generalized curvature tensor [18]
if
T(X1, Xo, X3, Xy) +T(X1, X3, X4, Xo) + T(X1, X4, X2, X3) =0,
T(X1,Xo, X3, Xy) = —T(X2, X1, X3, X4),

T(X1, X2, X3, X4) =T(X3, X4, X1, X2),
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for all X; € X(M). For a generalized curvature tensor field 7" we define the
concircular curvature tensor Z(T') by
K(T)
n(n—1)
where K (T') is the scalar curvature of 7" and G is the generalized curvature
tensor defined by
G(X1, X2, X3, Xa) = g((X1 A X2) X3, X4).

A generalized curvature tensor T is called trivial at = € M ([8]) if Z(T')

vanishes at z. Similarly, for a symmetric (0, 2)-tensor field A we define the
tensor Z(A) by

Z(T) =T — G,

Z(A)=A-— Mg.

n
A symmetric (0,2)-tensor field A is said to be trivial at x € M if Z(A)
vanishes at z.

Remark 1 ([2], Lemma 1.1(iii)). Let T be a generalized curvature
tensor (resp. a (0,2)-symmetric tensor) at a point = of a manifold (M, g).
Then the equalities Z(T) = 0 and Q(g,T") = 0 are equivalent at this point.

If a generalized curvature tensor T' (resp. a (0,2)-symmetric tensor A)
is pseudo-symmetric then R-T = LrQ(g,T) (resp. R- A= LaQ(g,A)) on
Upr={xeM:Z(T)(x) # 0} (resp. on Ug ={z € M : Z(A)(x) # 0}),
where L is a function defined on Ur (resp. L4 is a function defined on Uy).
The functions Ly and L4 are uniquely determined and called the associated
functions of the pseudo-symmetric tensors T and A respectively ([8]).

A Riemannian manifold (M, g) is said to be pseudo-symmetric if its cur-
vature tensor R is pseudo-symmetric [11]; then

(1) R-R=LrQ(g,R)

on Ur. Any semi-symmetric manifold (R- R = 0, [20]) is pseudo-symmetric.
Examples of non-semi-symmetric pseudo-symmetric manifolds are given in
2], [3], [6] and [11].

(M, g) is said to be Weyl-pseudo-symmetric if its Weyl conformal curva-
ture tensor C' is pseudo-symmetric [8]; then

(2) R-C=LcQg,0)

on Ue. Any pseudo-symmetric manifold is Weyl-pseudo-symmetric. The
converse fails in general (see Section 1). Note that Uc={x € M : C(z) # 0}.

(M, g) is said to be Ricci-pseudo-symmetric if its Ricci tensor S is pseudo-
symmetric ([14], [7]); then

(3) R-S=LsQ(g,5)
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on Ug. Of course, any pseudo-symmetric manifold is Ricci-pseudo-sym-
metric. The converse fails in general (see [14], [7]). The conditions (1) and
(3) are equivalent on manifolds with vanishing Weyl conformal curvature
tensor C. Namely, we have

LEMMA 1 ([2], Lemma 1.2, [13], Lemma 2). If C vanishes at x € M and
n > 3, then at x the following three identities are equivalent to each other:

<(n—2)a+nl_(1> <S—:g> —SQ—H(;?Q)Q,
R-S:aQ(g,S), R'R:OZQ(Q,R),

where o € R, S2(X,Y) = S(8(X),Y), S(X,Y) = g(S(X),Y) and z,y €
LEMMA 2. (i) If (M, g) is 3-dimensional then C vanishes identically.
(ii) (cf. [15], p. 48) Any generalized curvature tensor T at a point x of
a 3-dimensional Riemannian manifold (M, g) satisfies
T(X17X2a X37X4) = g(XlaX4)A(X27X3) + g(X27X3)A(X15X4)
— 9(X1, X3)A(X2, Xy) — g(Xz, X4) A(Xy, X3),
for all X; € X(M), where A is the (0,2)-tensor defined by

A(Xl,Xg) = RiCC(T)(Xl,XQ) — I(Ef—‘)g(Xl,Xg),

Rice(T) and K(T) being the Ricci tensor and the scalar curvature of T
respectively.

(iii) Let A be a symmetric (0,2)-tensor on a 2-dimensional Riemannian
manifold (M, g). Then

9(X1, X4)A(X2, X3) + 9(X2, X3)A(Xq, Xy) — g(X2, Xa)A(X1, X3)

- g(Xl, Xg)A(Xg, X4) == tI"(A)G(Xl, Xz, Xg, X4)

on M.

LEMMA 3. Let A and B be non-zero symmetric (0,2)-tensors at a point
x of a manifold (M,qg). If Q(A,B) =0 at x then A = AB, A € R — {0},
at x.

The proof of this lemma was given in [9] (see the proof of Lemma 3.4).

3. Warped products. Let (M,g) and (N,g), dimM = p, dim N =
n —p, 1 < p < n, be Riemannian manifolds covered by systems of charts
{V;2%} and {V;y®} respectively. Let F be a positive smooth function on
M. The warped product M xp N of (M,q) and (N,g) (see [17], [1]) is the
Cartesian product M x N with the metric ¢ = g @ F'g (more precisely,
GOFG=I7g+ (Foll)II5g, Iy : M x N — M and ITy : M x N — N
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being the natural projections). Let {V x Viul =2l ..., uP =aP, uPtl =
yl, ..., u™ = y" P} be a product chart for M x N. The local components
of the metric § @ F'¢ with respect to this chart are
Tub ifr=a, s=0,
(4) 9rs = Fgaﬁ ifT:a, Szﬁv
0 otherwise.
Here and below, a, b, ¢, d, e, f € {1,...,p}, «, 5,7, 9, \, p€{p+1,...,n}
and r, s, t, u, v, w € {1,...,n}. The local components of the tensors R and
S of the metric g ® F'g which may not vanish identically are
(5) Rabcd = Rabcd,
(6) Raab,@ = _%Tabgaﬁv
~ AF ~
(7) Ragys = F Rapys — =~ Gapys,
_ n—p
8 Sa = Sa - 7Ta )
(8) b b op Lab
~ 1 (n—p—1)AF\ .
« — (3 S T - A (67 o)
) a1 = Ban — 3 (wir) + P20 ) 5
1 —ab
Ty = VoFo — 5 FuFy,  t0(T) = g% T,
2F
(10) ;
AF =g®F,F,, F,=—(F).
g b e F)
The scalar curvature K of g & F'g satisfies
— 1~ n-p (n—p—1)AF
11 K=K+ —K — tr(T) + ————— | .
(1) T Gk

Using (5)—(9) and (11), we obtain the following relations for the local
components Cl.4,, of the tensor C of g & Fg:

_ 1 _ _ _ _
(]—2) Cabcd = Rabcd - n—_29 (?adsbc - gachd + gchad - gbdsac)
n—p _ _ _ _
+ m(gadTbc — GacTvd + GpcTad — GpgTac)
K _
- Gabeds
+ n—1)(n—-2) bed
1 p—2 =\ ~ I _ 3
(13) Coeabﬁ = — e ( 5 Top + FSab) Gap — mgabsaﬁ
1
+

T
" <FK LR (n— 2p—i2— 1) tr(T) N (p— 1)(n4—Fp — 1)AF>gab§aﬁ7
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- F - . . .
(14) Coz,@'yé - FRa,B’y& - ni(gaﬁsﬁ’y - ga'yS,85 + g,@’ysaé - gﬁésom)

-2
+ FPGopys,
(15) Cabca = Uabap = Caaﬁry = 0,
1 FK (n—2p)AF
1 P = T+ —F7F— .
(16) n—2<n—1+tr( )+ F >

LEMMA 4 ([6], Theorem 1). The curvature tensor R of a warped product
M xp N satisfies R+ R = LQ(g, R) if and only if

(17) (R R)abedes = LQ(G, R) abeder »

(18) H' 4Ryape = %(Tachd —TapHea)

(19) Heq <ﬁ6aﬂ'y - ﬁémm) = _%deHfaééaﬁ’y7
(20) (R R)apyory = <LF + ﬁ?) QG R)apyonn
where

(21) Haq = 3Toq + FLG,y.

LeMMA 5 ([6], Corollary 1). Let (M,g), dim M > 2 and (N,g), dim N >
2, be manifolds of constant curvature. The curvature tensor R of the warped
product M x g N satisfies R+ R = LQ(g, R) if and only if

2K 1
22 ————(GapHed — GacH = = (TacHpa — TapHea) ,
(22) - 1)(9ab d = GacHba) F( bd vHed)
K AF 1
2 Ha ~ 5 ) = 5Tl a,
29) d((n—pxn—p—l) 4F) 277

Using (4)-(16), (21) and Lemma 2(iii), we obtain

LEMMA 6. The only local components of the Weyl conformal curvature
tensor C' of a 4-dimensional warped product M x g N which are not identi-
cally zero are

1. [~ K _
(24) Callﬁ = _5911 (Saﬁ - 39a/3>7
F__ ~  _ ~ o~ o~ FK ~
(25)  Capys = 5(9&656’\/ — GayS35 + 98yvSas — 935Say) — TGQ,BWS,

provided that dim M = 1;

P 1 — ~ AF
2 = — P=—-|FK+ K T)— —
) Cumi= pGuea. P=g (FR+R4uln) - 57).
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P
(27) Capys = 7 Gaprs;
P
(28) Coaabﬁ - _ﬁGaabﬂa
provided that dim M = 2;
1. tr(V) _ — 1
(29) C4ab4 = _5944Wab7 Wab = Vab - (?))gaba Vab = FSab + iTaba
1
(30) Cabeda = ﬁ(?adec + G0 Wad = GacWod — GpaWae),

provided that dim M = 3.
From the above lemma the following theorem follows immediately:

THEOREM 1. Suppose dim M xp N = 4.
(i) If dim M = 1, then M X N is conformally flat if and only if

~ K
S =—q.
3 g
(ii) If dim M = 2, then M x g N s conformally flat if and only if
FK
tr(T) = -5

(iii) If dim M = 3, then M x g N is conformally flat if and only if

= T 1 —  tr(T)\ _

Remark 2. (i) Necessary and sufficient conditions for M xp N,
dimM xp N > 4 and dim N > 2, to be conformally flat are given in [19]
(Theorem 1).

(ii) An example of a 4-dimensional conformally flat warped product
M xp N, dim N = 1, is described in [2] (Lemma 4.3). The manifold (M,7)
considered in that example is non-semi-symmetric, conformally flat and
pseudo-symmetric, but M X g N is not pseudo-symmetric.

(iii) The assertion (iii) of Theorem 1 can be easily generalized (by making
use of (12)—(16)) as follows: The manifold M xp N, dim M =n —1, n > 4,
is conformally flat if and only if

2 n—1 2

on M.
Another consequence of Lemma 6 is

THEOREM 2. Suppose dimM Xgp N =4 and dim M = 2. Then C - C =
—%Q(g,C) on M xr N.
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The tensor C' - C' is defined analogously to the tensor R -7 in Section 2.
Riemannian manifolds satisfying the condition C'- C' = 0 were considered in
[4] (see also [13], Corollary 1).

LeEMMA 7 ([7], Theorem 1). The Ricci tensor S of M xp N satisfies
R-S=LQ(g,S) if and only if

(31) (R S)avea — LQ(T, S)abea = ((R H)avea — LQ(G, H)apea),

(32) Hw<im—2;<nuw+<n p_UAF>gM>
+(8

Ca ) 9aps,

)aBys-

032

(53) (B S)ans = (L5 + ff:) Q@

LEMMA 8 ([7], Corollary 1). Let (M,q), dim M > 2 and (N,g), dim N >
2, be Einstein manifolds. Then the Ricci tensor S of M xp N satisfies
R-S = LQ(g,S) if and only if

(34) (E : H)abcd = LQ(?? H)abcda
F (K K
#) (St
+% ( (T) + (n _p2;1)AF)> Hab = HacHClr

4. Not conformally flat 4-dimensional warped products satis-
fying R-C = LQ(g,C)

PROPOSITION 1. Suppose R-C' = LQ(g,C) on M xp N, where dim M = 1
and dim N = 3. If C is non-zero at v € M xp N then R- R = LQ(g, R)
at x.

Proof. From (2) we have
(R : C)Ocﬁ'yé)\u = LQ(97 C)aﬁ'yéz\u )
whence, by (7), it follows that

AF

(é ) C)aﬁfvé/\u = <LF + 4F> Q(7, C)amaw-

This, by an application of (25) and contraction with g”7, yields

~ ~ AF o~
(R : S)aéx\u - (LF + 4_F) Q<97 S)oeéx\/u
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which, in view of Lemma 2(i) and Lemma 1, implies (20). Further, the
relation (R - C)1apy1s = LQ(9,C)1ap+1s, in virtue of (6), (15), (24) and
(21), turns into
1 K ~ 1. = =
Hll (Fcéaﬁfy - gGéaﬁ'y + 5(976'9045 - gﬁésa'y)> =0.

Applying (25) and contracting the resulting equality with §7°, we get
Hy1(Sap — K 9ap) = 0, which, by (24), (25) and the assumption C(z) # 0,
gives Hy1(z) = 0. Now Lemma 4 completes the proof.

PROPOSITION 2. Suppose R-C = LQ(g,C) on M x g N, where dim M =
dim N = 2. If C is non-zero at x € M xp N then R- R = LQ(g,R) and
H =0 atx.

Proof. The relation (R-C)qapyas = LQ(9, C)aapyds, by making use of
(15), (27), (28), (6) and (21), gives PH = 0. Since C'(x) # 0, it follows that
H(xz) = 0. But this, in view of Lemma 5, completes the proof.

PROPOSITION 3. Suppose R-C' = LQ(g,C) on M x pN, where dim M =3
and dim N = 1. If C is non-zero at © € M xp N then R- R = LQ(g, R)
at x.

Proof. From the equality (R - C)iapsca = LQ(g, C)aabscd, by making
use of (15) and (29), it follows that

(36) (E ' W)abcd = LQ(?, W)abcd-
Furthermore, the equality (R - C)aabeds = LQ(g, C)aabeds, by an application
of (6), (15), (29) and (21), yields

1
(37) Hedceabc = ﬁ(Hdeac - Hchab)a

whence, by (30), we get

(38) GapH aWee = Goc H aWer + 2(WapHeg — WacHpa) = 0.
Contracting this with g%¢ and g°¢ respectively, we obtain

(39) H Wep = HWea,

(40)  H®Weq = 27Wap + 5090,  p=HWep, 7=tx(H),
respectively. Now (38) takes the form

(41) (WavHea — WacHoa) + 37(GasWed — GaeWoa) + §pGdave = 0.
Transvecting the above equality with H% and using (39) and (40) we find
(42) Heq = 27°Wed + 370G cq-
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From this we have pR- H = 272R - W and, by (36),
R-H =272LQ(g,W).

Applying (42) in the last equality, we get

(43) o H — LQ(3. H)) =0,

which, by (21), implies

(44) o(B-T — LQ@T)) = 0.

Thus (36), in virtue of (29) and (44), turns into

(45) p(R-S—LQ(g,5)) =0.

We have now the two possibilities: (a) p(x) # 0 and (b) p(z) = 0.

(a) In this case R-S = LQ(g,S). Thus, in view of Lemma 1, (17) holds
at x. Now, we prove that (18) also holds at x. (42) shows that this is trivial
if 7(x) = 0. Suppose that 7(z) # 0. First of all, we note that from (41),
by transvection with H%; and an application of (40) and (42) the following
relation can be obtained at x:

(46) HyfHeq — HepHpg = 0,
whence
(47) Hbefd = THbd.

Next, transvecting the equality Ceqpe = 0 with H¢; we obtain

(48) Hedﬁeabc = Hcdgab - Hbdgac + ?abgecHed - gacgebHed

K
- E(EQbHCd - gachd)'
The formula (42), by making use of (29), can be rewritten in the form
(49) P, = (2L 1H+FLi*
ab = {5 TQP ab 27_,0 Gabs

which, by transvection with H®; and the use of (47), yields
— 1
FS.,H®; = <p - T+ FL> H,q.
T
Applying the last two equalities in (48) we get

— 1 3
HedReabc — <2p - 1) (HcdHab - Hdeac)
1

1 KF
(27_P —T7+2FL — 2) (GavHed — GocHpa) 5
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which, by (46), reduces to

— 1 /1 KF
HeqReagpe = — | —p—7+2FL — —— | (G Hea — Goo Hpa)-
50)  H R = 1 (50 7+ ) @t~ Fucti)
This, by the Ricci identity, yields
— 1 /1 KF
1 "H==(—p—7+2FL—— ) Q(g,H).
51) R =g (go-re2rn- 57 ) Q. a)

Comparing (51) with (43) we obtain

1 /1 KF _

whence

(52) (; <2l7_p—7'+2FL—K2F>—L> (H—;g>—0.

If (H— (7/3)g)(z) = 0, then (49) gives S = (K/3)g. But this, by (29),
gives W = 0 and, consequently, C(z) = 0, which is a contradiction. So
(H — (7/3)g)(x) # 0. Applying now (52) in (50) we get

(53) H4Reabe = L(GapHed — GacHba)-
Note that (46) can be expressed in the following form:

1
LG Hed — GocHba) = =5
(gab cd Yac bd) 2F
Thus (53) turns into (18).
(b) Since p vanishes at z, the formula (42) takes the form 71 = 0,

whence, by (29), (30) and the assumption C(x) # 0, we obtain the equality

(TocHpa — TarHea)-

(54) = tr(QT) F3FL =0

at this point. The tensor W now takes the form
(55) Wap = FSap — %?ab + Hap-
The formula (40), by (54), gives

(56) H¢ W, =0.

Thus (38) turns into

(57) WavHea — WacHpa = 0,

which can be rewritten in the form

_ _ FK
(58) F(SabHcd - Sachd) = HueHpg — HopHeg + T(yabHCd - gachd)'
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From (57), by transvection with H¢, and making use of (56), we find
(59) HcdHce - 0.
Further, transvecting (55) with H%4 and applying (56) and (59) we get

— K
(60) HCaScd = §Had‘

Next, transvecting (58) with S.° and using (60) we obtain

F (Sebsab - I?fsea> Hcd

K FK ([~ K
- ?(HacHed - Hechd) + T <Sac - 3gac) H€d7

which, by (58), turns into

= 2KS K?
<52—3+99>H:0, or

(7~ 5%5) - 5) (o~ 53 o=

and

() - (5 E) 5B

Suppose that H(z) = 0. Then, of course, (18) holds at x. The formula (36)
turns into R-S = LQ(g, S). But this, in view of Lemma 2(i) and Lemma 1,
implies (17). Consider now the case H(z) # 0. Then (61) gives

S k)

But this, in view of Lemma 2(i) and Lemma 1, yields R- R = LQ(g, R) and
(62) L=K/6.

Thus the condition (17) is fulfilled. Finally, the identity (48), in virtue
of (60), gives

HedEeabc = Hcdgab - Hbdgac - (gabHcd - gachd)7

| =

which, by (58), turns into

_ FK
FHedReabc - Hachd - HabHcd + T(?abHac - gachd)-

This, by making use of (61) and (21), leads to (18). Our proposition is thus
proved.

Combining Propositions 1-3 we obtain
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THEOREM 3. Suppose dim M xp N = 4. If at a point of M xp N the
tensor C' is non-zero, then the relations R - C = LQ(g,C) and R- R =
LQ(g, R) are equivalent at this point.

The following corollary is a consequence of Theorem 2.

COROLLARY 1. Let M xp N be an analytic not conformally flat 4-
dimensional warped product. Then the relations R - C = LQ(g,C) and
R-R=LQ(g,R) are equivalent on M xp N.

5. Non-Einstein 4-dimensional warped product satisfying R-S =
LQ(g,5)

PROPOSITION 4. Suppose R-S = LQ(g,S) on M xp N, where dim M = 1
and dim N = 3. If S — (K/4)g is non-zero at © € M xp N, then R- R =
LQ(g,R) at x.

Proof. The equality (33), in view of Lemma 2(i) and Lemma 1, turns
into (20). Further, (32) yields

~ 1 .
H11 (Saﬁ — (MAF — tI‘(T)) ga,6> = 0,

whence H(S — (K/3)§) = 0. If H = 0, then (18) and (19) are satisfied and
Lemma 4 completes the proof. If § — (K/3)§ = 0, then C' = 0, and our
assertion, by Lemma 1, is also true.

PROPOSITION 5. Suppose R-S = LQ(g,S) on M xp N, where dim M =
dim N =2. If S—(K/4)g is non-zero at x € M xp N then R-R = LQ(g, R)
at x.

Proof. The relations (34) and (35) take the forms

0 (R

(64) caHCb
respectively, where
F(K K tr(7)
= — — — + 2L —AF
(65) PF=3 (2 oF Tt oF T )

In view of Lemma 2(iii), H satisfies the following identity at z:

(66) gbcHad + ?adeC - ?achd - ?deaC = tr(H)(gadgbc - gacybd)'
Transvecting this with H®; and using (64) we get

(67) HefHag — HapHae = (tr(H) = p)(GagHes — GacHar) ,
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whence, by transvection with H¢/ and making use of (64) we obtain

(69) mw@np>01“gﬁg)=
Consider two possibilities:
@ (1~ ") @) 2o
o) (- "3) @) =0
(a) In this case we have
(69) L=K/2,
(70) p(tr(H) —p) = 0.

(al) Suppose additionally that p(x) = 0. Then from (64) and (67) it
follows that tr(H)H,. = 0 and, in consequence,

(71) tr(H) = 0.

Now (67), by (21), (69) and (71), turns into (22). Further, (71) gives L =

—tr(7")/(4F). Thus, from (65) we obtain FIL = K/2— AF/(4F'). But this,

together with (64) and (21), yields (23). Now Lemma 5 completes the proof.
(a2) Let p(z) # 0. Then, in virtue of (70), we get

(72) tr(H) = p.
Applying this, (21) and (69) in (67) we obtain (22). Further, (72) yields
tr(T) _FL K AF
g THEEy oyt
whence
K AF
tr(H)—FL—E‘FE

But this, together with (72) and (64), yields (23). Now Lemma 5 completes
the proof in this case.
(b) Now (64) takes the form

(73) tr(H) <”(2H) - p) —0.

If tr(H) = 0, then also H = 0 and Lemma 5 completes the proof. If tr(H) #
0, then (73) gives tr(H) = 2p, whence we get FK/2 = K/2 — AF/(4F).
Moreover, the equality H = 1 tr(H)g yields T = ;tr(T)g. Now (8) and (9)
lead to S = (K/4)g, a contradiction. This completes the proof.
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PROPOSITION 6. Suppose R-S = LQ(g,S) on M xp N, where dim M = 3
and dim N = 1. If S — (K/4)g and C are non-zero at v € M xp N, then
R-R=LQ(g,R) at x.

Proof. We consider two cases:

(a) (S — (K/3)g)(z) =0,

(b) (5 — (K/3)g)(x) # 0.

(a) The relation (31) turns into (L — K/6)Q(g, H) = 0, which, by Re-
mark 1, yields

(74) <L - [6(> <H - tr(;[)g> = 0.

If H— (tr(H)/3)g = 0, then (29) and (30) yield C' = 0, a contradiction.
If H— (tr(H)/3)g # 0, then from (74) we obtain L = K /6. Further, (32)
takes the form Ho,H, = 3(FK +tr(T))Hqp. Let B be a (0,4)-tensor with
local components Baped = HoaHpe — HaoeHpg. We note that Rice(B) = 0
and K(B) = 0. Thus Lemma 2(ii) implies Bypcq = 0, whence
K _ _ 1
g(gabHcd — GacHra) = F(Tachd — TapHea).
But this turns into (18). Now Lemma 4 completes the proof.
(b) We rewrite (32) in the form

tr(7)
2
Hzab = Hcchln Aab = gcaI—ICb-

H2ab:<FL+ )Hab+FAaba

(75)

Now, transvecting the identity Cepeq = 0 with H,® and S’ae respectively, we
obtain

(76) Haeﬁebcd = Hadgbc - Hacgbd + gbcAad

vo| X

= GpaAac — — GpeHad — GoaHac) ;

gaeﬁebcd - §ad‘§bC - gacgbd + gbc§2ad

=

- ?bdgzac - E@bcgad - ?bdgaC)
respectively, where S?,q = ScqS¢. From the last two relations, by sym-
metrization in a, b and making use of the Ricci identity and (31), it follows
that
(77) -

Q <g, FS - F <[2( + L> S— A+ (5 + L) H> = —Q(H, S)abed-
abed
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Contracting (77) with g% we get

(78) FS5* = FL@)§+ F (IQ{ L)

3

+
(o-9)

- K_ tr(H) - K
) -
(S 3g> 5 S’+3
+

K L> (H - tr(H)g) .
2 3
Substituting this in (77) we find
- K H
(79) Q (5 - S H- tr(3 )g> 0.

We may assume that H — (tr(H)/3)g # 0. Of course, if H = 0, then
R-R=LQ(g,R) at x. If H # 0 and H — (tr(H)/3)g = 0, then (75) yields
S = (K/3)g, a contradiction. Now (79), in view of Lemma 3, implies

(80) S—I;g:)\<H—tr(f)g>, AeR— {0}
Thus (31) yields (A\F —1)(R-S — LQ(g,S)) = 0. Assume that
(81) AF =1,

then (80) gives A = 1(K —tr(H)/F)H + H?/F. Substituting this into (75)
we obtain (K + tr(T)/F)H = 0, whence K + tr(T)/F = 0. But the last
relation, together with (80), (81), (8), (9) and (11), leads to S = (K/4)g, a
contradiction. Thus AF' — 1 # 0 and

(82) R-S=LQ(,>5S).

Now, in view of Lemma 1, we obtain (17). Furthermore, the equality (31),
in virtue of (82), (76)—(78), turns into

K tr(H) -

Qlg | L+ — H+7r( )S—A =0,
6 3

whence, by (80), it follows that

LI ()\tr(H) L K> <H_ tr(H)g> |

3 3 6 3
On the other hand, combining (75) and (80), we find
1 1 K

But the last two relations yield

(Mtr(T) — 6L(1 — AF) + K)(1 + AF) (H - “(;I)g> =0,
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whence
(Atr(T) —6L(1 — AF) + K)(1+ A\F) = 0.
Suppose that 1 + AF' = 0. Then (80), (29) and (30) give C' = 0, a contra-

diction. Thus we have A tr(7) — 6L(1 — AF') + K = 0, or, equivalently,
1 K tr(H)

84 S(r-2) =2

= F(E-5) ="

Thus (83) takes the form

(85) A=2LH.

Substituting this into (75) we obtain H? = tr(H)H. Let B be a (0, 4)-tensor
with local components Bupeq = HoaHpe — HoeHpg. Evidently, Rice(B) =0
and K(B) = 0. Thus, Lemma 2(ii) implies

(86) Babea = 0.
From (80), by (86), we obtain

Hadgbc - Hacgbd = %([? - )\tr(H))(gbCHad - ?deac)-
Substituting this and (85) into (76) we find
K Mr(H)\ ,_ _
e 3( )> (GoeHad — GogHac),

whence, by (84), we get H,Reped = L(GpeHad — GgpHae). But this, by (86),
turns into (18). Now Lemma 4 completes the proof.

Haeﬁebcd = <2L -

Combining Propositions 4—6 and Lemma 1 we obtain

THEOREM 4. Suppose dim M xp N =4. If S — (K/4)g is non-zero at a
point of M X N, then the relations R-S = LQ(g,S) and R-R = LQ(g, R)
are equivalent at this point.

This theorem yields

COROLLARY 2. Let M xg N be an analytic non-Einstein 4-dimensional
warped product. Then the relations R-S = LQ(g,S) and R- R = LQ(g, R)
are equivalent on M xp N.
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