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ON THE DIMENSION OF SEMI-COMPACT SPACES
AND THEIR QUASI-COMPONENTS

BY

TOGO NISHIURA (DETROIT, MICH.)

All spaces under discussion will be separable and metrizable. X is
called semi-compact if each point of X has arbitrarily small neighborhoods
with compact boundary.

In [4] A. Lelek has proved the following interesting theorem:

THEOREM. Suppose X has the following three properties:
(1) each quasi-component of X is locally compact;
(2) each quasi-component of X is of dimension < 0;
(3) X is semi-compact.
Then the dimension of X 18 < 0.

In the same paper, A. Lelek posed the following question ([4], P 373,
p- 244): Is the above theorem true if zero is replaced by n? In the pre-
sent paper, we prove a theorem (Theorem 2) which has the above theorem
as a special case and gives an affirmative answer to the above question*.

1. A lemma on embedding. In this section, we prove a lemma which
leads to a special embedding of a space X into a subspace Z of an appro-
priate compact space.

Given a space X, there is a continuous function f defined on X into
O, where C is the Cantor ternary set, such that {f '(y) | yef(X)} is the
collection of all quasi-components of X ([3], p. 93). This function f gives
rise to a family % of simultaneously open and closed subsets of X defi-
bers ned as follows:

% ={U|U=f"@), @ is both open and closed in f(X)}.

% has the property that the intersection of a finite number of mem-
bers of % is again a member of %.

* This research was supported by the National Science Foundation, Grant
NSF-G24841.
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LEMMA 1. Let X be given and f be the function defined above. Suppose
Y is a compactification of X and I = [0,1]. Then there is a subspace Z
of I XY with the following properties:

(1) Z is the union of a family of mutually disjoint compact sets Zg
indexed by the quasi-components Q of X;

{2) for each quasi-component Q of X, Zy = {f(Q )} %@, where Q = Q
and 9~ Q <« Y X;

(3) for each Z,, there are arbitrarily small simultaneously open and
closed neighborhoods of Z, in Z.

Proof. Let % = {U} be the family of simultaneously open and
closed subsets U of X defined above. Since U is closed in X, U~X = U,
where U is the closure of U in ¥. For each quasi-component @ of X,
we have a collection %, = {Ue# |Q = U}. @ is the intersection of all
U, Uey. Let Q = (U where the intersection is taken over all Ue%,.
Clearly, Q is compact, @ = Q, (X> Q)~Q = 0 and Q" Q < Y X.

For each quasi-component @ of X, let Z, = {f(Q)} xQ and Z = U Z,,
where the union is taken over all quasi-components  of X. Clearly, (1)
and (2) are satisfied by Z. We need only verify (3).

Let W be an open neighborhood in IxY of Z,. Since Z; is com-
pact and Z, = {f(Q)} X, we may assume W = (a, ) XV, where (a, )
is an open interval containing f(Q) and V is an open set in ¥ containing ().
By the Lindelof theorem, there is a countable collection U,,e%, such

m

that @ = M T,,. Let V,, = M T;. Then,
=1

me=1

n n
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e

Let V,,=U;. Then, @ =V, < V,.. Hence, ﬁ V,, = Q. Since

= hire=1

{Vm} is nested and V is an open neighborhood of @), there is an n, such
that V < V. Let ' be any quasi-component of X" such that " = Vag-
Then Q = V cV. Smce f(Vy,) is both open and closed in F(X) 11101 e
is an open 1ntelval @, f) such that f(@)e(a, ) = (a, B), f 1((&',3)) c Vy,
and (a, f)~f(X) is both open and closed in f(X). Consider the neigh-
borhood W' = (a, B)xV of Z,. Obviously, W' = W. If 7 is the union
of all Z, such that a < f(Q') < p, then T > Z~W' and 7 is both open
and closed in Z. Consider auy Z, contained in 7. Then, a < f(Q') < f.
Hence Q' = V. Consequently, Zy. = {f(Q")} xQ" < (a, p)xV = W'. The-
refore, T = W'~Z. This completes the proof of (3). The proof of lemma 1
is now complete.

It is clear that the graph of f is contained in Z. Since the graph of
f is homeomorphic with .Y, we have the following lemma:
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LEMMA 2. Let X and Z be as in lemma 1. If dimZy < n for all quasi-
components @ of X, then n > dimZ = dim X .

Proof. The collection of sets {Z,} has the properties that dimZy < »
and each Zy has arbitrarily small neighborhoods with empty boundary
in Z. Hence, by [2], proposition G, p. 90, dimZ < n. Since X can be
embedded in Z, dimX < dimZ. The proof of lemma 2 is completed.

2. Main theorems. In order to state the theorems of this section,
we need the following definitions:

Definitions. By an n-compactification of X' we mean a compact
space ¥ such that X is dense in ¥ and dim(Y X) = mn.

By the deficiency of X we mean the integer defX = min{n | for
some Y, Y is an n-compactification of X}. Clearly, defX is a topolo-
gical invariant. This invariant was first defined by J. de Groot who also
exhibited for each integer n (n > —1) a space X with defX ==n. In
[1] J. de Groot essentially proves

TueoreM 1. X is semi-compact if and only iof defX <0,

We now prove a theorem which extends the theorem of A. Lelek.

TueorEM 2. Let X be a space with the following three properties:

(1) each quasi-component Q of X s locally compact;

(2) for each quasi-component @ of X, dim Q < n;

(3) def X < n.

Then dimX < n.

Proof. Let Y be a k-compactification of X (k = defX) and Z be
the subspace of I x Y defined in lemma 1. We need only show that
dimZ, < n for each quasi-component @ of X. If @ is the closure of @
in Y, then Q = Q = @ since () is compact. Since @ is locally compact,
@ is open relative to Q. @~ Q < 9~Q < Y X. Hence dim(@Q Q) < n.
By [2], Cor. 1, p. 32, dim@ = dim (@ Q)u@Q) < n. Again by [2], Cor. 1,
p. 32, dim@Q = dim((@ @)o@) < n. Hence, by lemma 2, dimX < n.

By combining theorems 1 and 2, we have

CoroLLARY. If X is a space which satisfies (1) and (2) of theorem 2
and furthermore is semi-compact, then dimX < n.

Finally, we extend a remark made in [4] concerning upper bounds
for the difference between the dimension of a space and the maximum
dimension of the quasi-components of X.

TueoreEM 3. Let X be a space with the property that dim@Q < n for
all quasi-components @ of X. Then dimX < defX-+n-+1.

Proof. Let Y be a k-compactification of X and Z be the subspace
of I x Y defined in lemma 1. We need only prove that dimZ, < n-+k--1
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for all quasi-components @ of X. §\Q < Y\ X. Hence, dim (Q\Q) < k.
By [2], proposition B), p. 28, dim§) < dim(@\Q)+dimQ+1<n+k+1.
By lemma 2, dimX <n-+k+1. Let k = defX.

When defX < 0, we have the remark referred to above. By [2],
Theorem V6, we have def X < dimX. If X is the n-dimensional space
with zero dimensional quasi-components constructed by Mazurkiewicz
[6], then theorem 3 implies defX > n—1. Thus, we have examples of
spaces with large deficiency.
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