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ON CHORDS OF CONVEX BODIES
BY

A. PLIS (CRACOW) axp A. TUROWICZ (TYNIEC)

In this note we give a theorem conjectured by T. Wazewski, which
gives a limitation for the quotient of the lengths of segments of a chord
passing through the centre of gravity of a convex body.

THEOREM. Let ¢ be the centre of gravity of an n-dimensional convex
body (with an interior point) and a, b the end poinis of its chord passing
through c. Then the following inequalities are satisfied:

. 1 & la—¢|
1) = To—e

Proof. Let A be an ((n— 1)-dimensional) support plane (see Fig. 1)

to the given convex body K at point a and C the plane passing through

< n.

Fig. 1

¢ and parallel to 4 (we consider K in R"). Let E be the cone consisting
of all points lying between 4 and b on straight lines passing through b
and any point of the set K~C. Denote by L the layer between 4 and C.
Plane C cuts K into two parts: U = K~AL and V = K—U. Similarly,
cone K is cut into two parts: W = E~L and Z = E—W. Set K being
convex, we have the inclusions

(ii) UcsW ZcV,.
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Now we shall prove that the centre of gravity p (not marked on
the figure) of ¥ is situated between the planes A and C (on C if and only
if # = K). Cone E is obtained from the set K by removing the set V—Z
lying outside layer L and adding the set W—U lying inside layer L.
Therefore the centre of gravity moves inside layer L, which can be shown
by the following simple calculus. Consider an n-dimensional coordinate
system with origin at ¢ and z-axis perpendicular to ¢ and directed to-
wards A. Because ¢ is the centre of gravity of K = VoU, we have
,! rdv+ Uf xdv = 0, where the integrals are n-dimensional. In virtue of

(ii) and the inequalities 2 = 0 on W,z < 0 on V we obtain [ xdv < [ zdv,
&g W

fwdv gz{xdﬂ. Therefore [xdv >0 (= 0 if and only if £ = K) and it
v B
follows that p belongs to layer L.

Let ¢ be the point (not marked on the figure) of the chord lying on
the plane passing through p and parallel to A. Obviously

la— la—e
la—ql _ la—c|

(i) lg—b " Je—b|"
It is well known that

(i) la—gq| 1

lg—bl — n’

In virtue of (iii) and (iv) we have the first inequality (i). The second
one can be obtained by interchanging the roles of a and b.

Remark 1. The equalities in (i) are possible only for K being a cone
(with the vertex at a or b respectively).

Remark 2. It is known () that the centre of gravity of an n-di-
mensional convex body is further from a support plane F than 1/(n-+1)

(1) See T. Bonnesen and W. Fenchel, Theorie der konvexen Kérper, Berlin
1934, p. 52-53.
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times the width of the body in the direction perpendicular to the plane F,
i.e. 1/(n+1) times the distance between F and the other support plane
G parallel to F. This property can be deduced from our theorem. Indeed,
let g be a point of the convex body K lying on @, f — the intersection
point of F and the straight line N passing through the points ¢ and e,
and b the point on N~ K nearest to f (see Fig. 2). Obviously, |[f—c¢| = [b—¢|.
Therefore by our theorem

f—el _ Ib—el _1
o—gl " le—gl " n

and the property easily follows.
Similarly, our theorem can be deduced from this property.
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