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ON 4 SUMMATION FPORMULA OF E. COHEN
BY

W. NARKIEWICZ (WROCLAW)

The following theorem is well known:
o0
If the series ) g(n)/n is absoluiely convergent and f(n) = >'g(d),
n=1 . an
then
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Recently E. Cohen [2] proved the following generalization of this
theorem:

If the series > g(m)/n is absolutely convergent and g,(n) = > g{@)ve(nfd)
n=1 din
(where to(n) is defined by v, (n) =1, o1 (n) = Dlrg(d)), then
amn

o
. 1 O 1 N 9(%)
lim N T =1 2, ...).
20 210g 0 nZ s (1) (s—1) 24 n (s »25-e)

In this note we give a simple proof of the theorem of E. Cohen, based
on the remark that if ||a,,| is an infinite matrix satisfying the conditions

(i) l@ppl < M with some M independent of k and =,
(ii) for every n the sequence {a,xlh.: is convergent to, Say, Gn,

. oo
then from 3 |¢,| < oo follows
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The following formula is well-known and can be easily proved by
induetion:

(*) lim L 2 To(m) = L[(s—1)l.
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Let us put
1 Q
Onje = o1 % > 17 (1)
tlog” "k sklﬂ

it &>n, and @, =0 if k& <<n. Moreover, let ¢,
(ii) follows from (*) and (i) follows from

lanl = klog Tlog® 'k Z'nra
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in the case k¥ > n» and is obvious in the case &k <mn. As a, = 1/(s—1)
for all n, the theorem follows.
It should be remarked that the same method leads to a similar the-
orem (in case § = 1) regarding the unitary convolution (see [1]), namely:
o0

= g(n)/n. Condition
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If the series ) g(n)/n is absoluiely convergent and f(n) = 2 g(d),
=t d, n/d)ax
then
gin ('n
hm > f(n) = y 7),:{)
n<:r 'n==1
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4 SIMPLE REMARK ON MATRICES
BY

A. GOETZ (WROCLAW)

This paper deals with a certain representation of matrices which
can be useful as a tool for treating the projective group. The author is
sure that the results are known to many persons, but he doubts if they
have ever been published.

1. Consider the group GL(n-+1, K) of matrices of the form

Goy Qo «oo Gy

a: @ @
A 10 11 n
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over any field K of characteristic 0.
It is a matter of elementary calculations to notice that the set &
of matrices with constant sums of rows, i.e. satisfying the econdition

Za,-, = 4 does not depend on j,
=0
as well as the set ¢, of matrices satisfying the condition
n
Z Ay = 1
fml)

are subgroups of GL{n-+1).
The subgroup G, is isomorphic with the subgroup of matrices of

the form
1 0 0 ...0
Q@ Cu1 O1g ... Oy
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