

Dann ist S(x) = x(x+1)/2 - x. Wird $f(n) = 2\sqrt{n}$ angenommen, so wird $n \le S(f(n))$ und es gilt also $A(n) = (\beta - \alpha)n + O(\sqrt{n})$.

2. $a_n = a^n \ (a > 1, \text{ ganz}).$

Jetzt ist $S(x) = (a^{x+1}-1)/(a-1)-x$. Setzt man

$$f(n) = \frac{\log(\frac{1}{2}(a-1)n+1)}{\log a} = 1,$$

so gilt

$$S(f(n)) = \frac{1}{2}n + O(\log n),$$

$$a_{\text{I}/(n)_{\parallel}} = a^{\text{I}/(n)_{\parallel}} > a^{\text{I}(n)_{-1}} = \frac{\frac{1}{2}(\alpha - 1)}{a^2} \frac{n + 1}{2} \neq o(n).$$

Die Folge (1) ist deshalb für $a_n = a^n$ nicht gleichverteilt.

3. $a_n = p_n \ (p_1, p_2, \dots \text{ die Primzahlenfolge}).$

Dann ist

$$S(n) = \sum_{r=1}^{n} p_r - n = \sum_{p \leq p_n} p - n,$$

daher $S(x) \sim \frac{1}{2} p_x^2 / \log p_x$ and, we gen $p_x \sim x \log x$,

$$S(x) \sim \frac{1}{2}x^2 \log x.$$

Setzt man $f(n) = 3\sqrt{n/\log n}$ und ist n hinreichend groß, so erhält man $S(f(n)) \le n$ und daraus

$$A(n) = (\beta - a)n + O(\sqrt{n \log n}).$$

Wird $f(n) = \sqrt{n/\log n}$ gesetzt, so hat man $S(f(n)) \le n$ $(n \ge n_0)$ und daraus $A(n) = (\beta - \alpha)n + \Omega(\sqrt{n\log n})$ für jedes Intervall $[\alpha, \beta) \ne [0, 1)$.

Reçu par la Rédaction le 29. 10. 1956

ON THE EQUATION
$$x^3 + y^3 = 2z^3$$

B

A. WAKULICZ (GLIWICE)

The purpose of this paper is a solution of the following problem¹) set up by prof. W. Sierpiński: Does the infinite sequence 1^3 , 2^3 , 3^3 , ... contain an arithmetic progression with three (or more) terms? In other words, does there exist a solution of the equation $x^3 + y^3 = 2z^3$ with natural x, y and z?

By the way I want to give elementary proofs of the following theorems:

THEOREM 1. An equation

$$27d^4 + 9a^2d^2 + a^4 = l^2$$

has no solutions in natural numbers if (a, 3) = 1.

THEOREM 2. An equation

$$(2) x^3 + y^3 = 2z^3$$

has no solutions in integers if $x \neq y$, and $z \neq 0$.

From Theorem 2 the following inferences are deduced:

i. There are no three natural cubics in arithmetical progression.

ii. The equations $x^3-2z^3=\pm 1$ have no integer solutions, except $x=\pm 1,\ z=0,$ and $x=z=\pm 1.$

In fact, according to Theorem 2 the solutions of (2) exist only in case of: z=0, or x=y. If z=0, then on account of $y=\pm 1$ we have $x=\pm 1$; if, however, x=y then $x=\pm 1$ and $z=\pm 1$.

iii. A triangular number > 1 is never a natural cube.

Really, if $m(m+1)/2 = n^3$, then $m(m+1) = 2n^3$ and m = 2k or m+1 = 2k. If m = 2k, then $k(2k+1) = n^3$, whence $k = n_1^3$, $2k+1 = n_2^3$ and $n_2^3 - 2n_1^5 = 1$, which is impossible for natural n_1 , n_2 . If, however, m+1 = 2k, then $k(2k-1) = n^3$, and thus $k = n_1^3$, $2k-1 = n_2^3$ and

³⁾ Siehe E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig-Bertin 1909, Bd I, S. 226.

¹⁾ W. Sierpiński, Remarques sur les progressions arithmétiques, Coll. Math. 3 (1954), p. 44-49; P 116, p. 45.

By setting $b-3a^2=k$, we obtain (k,3)=1 and

(8)
$$v^2 = k(k^2 + 9a^2k + 27a^4).$$

Hence $k = k_1^2$ and $k^2 + 9a^2k + 27a^4 = l^2$ so that

(9)
$$k_1^4 + 9a^2k_1^2 + 27a^4 = l_1^2$$
 with $(k_1, 3) = 1$.

Both in the case 1 and in 2 there exist integer solutions of the equation $x^3 + y^3 = 2z^3$ where $x \neq y$, $xyz \neq 0$ only if there exist natural solutions of the equation of the form

$$27d^4 + 9a^2d^2 + a^4 = l^2$$
 where $(a, 3) = 1$.

II. Solution of equation (1) if (a, 3) = 1. We suppose a lexicographically ordered set of natural solutions (l, a, d) of this equation and seek the smallest one. Then we can assume (a, d) = 1, whence also (a, l) = 1= (d, l) = 1.

Equation (1) leads to

$$27\left(\frac{d^2}{l}\right)^2 + 9\frac{a^2}{l}\frac{d^2}{l} + \left(\frac{a^2}{l}\right)^2 = 1$$

or to an equation for rational x, y

$$27x^2 + 9xy + y^2 = 1.$$

Taking y = mx - 1 we obtain all rational solutions of (11) as

$$x = \frac{2m+9}{m^2+9m+27}, \quad y = \frac{m^2-27}{m^2+9m+27},$$

where m is an arbitrary rational.

Evidently we may exclude m = 0 because y > 0. Thus if m = p/q, then $pq \neq 0$, (p,q) = 1 and

(12)
$$\frac{d^2}{l} = \frac{2pq + 9q^2}{p^2 + 9pq + 27q^2}, \quad \frac{a^2}{l} = \frac{p^2 - 27q^2}{p^2 + 9pq + 27q^2}.$$

On account of $(d^2, l) = (a^2, l) = 1$ we have

$$(2pq+9q^2, p^2+9pq+27q^2) = (p^2-27q^2, p^2+9pq+27q^2) = \delta.$$

By setting $p = 3^s p_1$ where $(p_1, 3) = 1$, we obtain

(13)
$$(3^s \cdot 2p_1q + 9q^2, 3^{2s}p_1^2 + 9 \cdot 3^sp_1q + 27q^2)$$

= $(3^{2s}p_1^2 + 27q^2, 3^{2s}p_1^2 + 9 \cdot 3^sp_1q + 27q^2)$

with
$$(q, 3) = 1$$
.
For $s = 1$ formula (13) is impossible mod 9.

 $n_0^3 - 2n_1^3 = -1$, which is possible for natural numbers only when $n_1 = n_2 = 1$, whence k = 1, m = 1.

iv. The only natural solution of the equation $x^2-y^3=1$ is x=3. y = 2.

In fact, we have $(x-1)(x+1) = y^3$, so for x = 2k it would be 2k-1 $=y_1^3, 2k+1=y_2^3$ and $y_2^3-y_1^3=2$, whence $y_2^2+y_2y_1+y_1^2\mid 2$, which is impossible for natural y_1, y_2 .

If, however, x = 2k-1 with natural k, then $y = 2y_1$, $(k-1)k = 2y_1^3$ and the alternative: $k = y_2^3$, $k-1 = 2y_3^3$, or $k = 2y_3^3$, $k-1 = y_2^3$, whence $y_2^3-2y_3^3=\pm 1$. The only natural solution is $y_2=y_3=1$, and thus k=2, x = 3, y = 2.

I. First we shall show the relation existing between equations (1) and (2).

Putting aside the obvious cases, we shall look for integer solutions of equations (2) such as $x \neq y$, $xyz \neq 0$.

We can accept as well (x, y) = 1 and x, y odd, for in the case $x = 2x_1$ we have $y = 2y_1$ and $z = 2z_1$ and the equation $x_1^3 + y_1^3 = 2z_1^3$, whence, after a certain number of such substitutions, the equation $x^3 + y^3 = 2z^3$, where x, y are odd: in the case of (x, y) = d > 1 and (d, 2) = 1 we have $x = dx_1, y = dy_1, z = dz_1$, whence $x_1^3 + y_1^3 = 2z_1^3$, where $(x_1, y_1) = 1$.

Now we substitute (x+y)/2 = u, (x-y)/2 = v in (2). We get (u, v) = 1 and

(3)
$$u(u^2 + 3v^2) = z^3$$
 where $uvz \neq 0$.

1. If (u, 3) = 1 so $u = z_1^3, u^2 + 3v^2 = z_2^3$ and $(z_1, z_2) = 1$. We have then $z_1^6 + 3v^2 = z_2^3$, $z_2^3 - z_1^6 = 3v^2$ and

$$(z_2-z_1^2)[(z_2-z_1^2)^2+3z_2z_1^2]=3v^2.$$

Let us set $z_2 = k + z_1^2$, then $(k, z_1) = 1$ and $k(k^2 + 3kz_1^2 + 3z_1^4) = 3v^2$. Hence $k = 3k_1$, $3k_1(9k_1^2 + 9k_1z_1^2 + 3z_1^4) = 3v^2$, and thus $v = 3v_1$, $k_1 = 3k_2$ and

(4)
$$k_2(27k_2^2+9k_2z_1^2+z_1^4) = v_1^2$$
 where $(k_2, z_1) = 1$.

Since $(k_2, 27k_2^2 + 9k_2z_1^2 + z_1^4) = 1$, we obtain $k_2 = k_3^2$ and

(5)
$$27k_3^4 + 9k_3^2z_1^2 + z_1^4 = l_1^2$$
 with $(z_1, 3) = 1$.

2. If 3|u then (v,3)=1 and $u=3u_1, z=3z_1, 27u_1^3+9u_1, v^2=27z_1^3$. Hence $u_1 = 3u_2$ and $27u_2^3 + u_2v^2 = z_1^3$ or

$$u_2(27u_2^2+v^2)=z_1^3.$$

Since $(u_2, v) = 1$ then $u_2 = a^3$, $27u_2^2 + v^2 = b^3$ and (a, b) = 1, (b, 3) = 1and

$$27a^6 + v^2 = b^3.$$

For s=2 or $p=9p_1$ we have

$$(p^2-27q^2, p^2+9pq+27q^2) = 27(3p_1^2-q^2, 3p_1^2+3p_1q+q^2).$$

But

$$(3p_1^2-q^2, 3p_1^2+3p_1q+q^2) = (6p_1^2+3p_1q, 3p_1^2+3p_1q+q^2)$$

$$=(2p_1+q,3p_1^2+3p_1q+q^2)=(2p_1+q,3p_1^2+p_1q)=(2p_1+q,3p_1+q)=1.$$

Thus $l = 3p_1^2 + 3p_1q + q^2$ and $a = 3p_1^2 - q^2$, which is impossible mod 4. If $s \ge 3$ then (13) is impossible mod 27.

It follows that s = 0, (p, 3) = 1 and on account of (p, q) = 1

$$(2pq+9q^2, p^2+9pq+27q^2) = (p^2+3pq, 2pq+9q^2)$$

= $(p+3q, 2p+9q) = (p, 3) = 1$.

and consequently $\delta = 1$.

We have $p^2 + 9pq + 27q^2 > 0$ for $pq \neq 0$, and from (12) and (13) $l = p^2 + 9pq + 27q^2$, $d^2 = 2pq + 9q^2$ and $a^2 = p^2 - 27q^2$ with (p, 3) = 1, (p, q) = (a, q) = (a, p) = 1.

In order to solve the last equation, we set p/q = x, q/a = y. Thus $x^2-27y^2=1$. Taking x=my-1 we obtain all rational solutions of this equations as follows:

where $p_1q_1 \neq 0$ and $(p_1, q_1) = 1$ (we exclude y = 0 because $q \neq 0$). Hence

(15)
$$\frac{p}{a} = \frac{p_1^2 + 27q_1^2}{p_1^2 - 27q_1^2}, \quad \frac{q}{a} = \frac{2p_1q_1}{p_1^2 - 27q_1^2}$$

On account of (p, a) = (q, a) = 1 we have

$$(2p_1q_1, p_1^2-27q^2) = (p_1^2+27q_1^2, p_1^2-27q_1^2) = \delta_1.$$

By setting $p=3^sp_1',\;(p_1',\,3)=1$ we find as in (13) that s=0 or $s\geqslant 3$.

1. If s=0 then $(2p_1q_1, p_1^2-27q_1^2)=(2, p_1^2-27q_1^2)$ and $\delta_1=1$ or $\delta_1=2$.

If $\delta_1 = 1$ we have an alternative:

$$\begin{cases} a = p_1^2 - 27q_1^2, \\ p = p_1^2 + 27q_1^2, \\ q = 2p_1q_1, \end{cases} \quad \text{or} \quad \begin{cases} a = -(p_1^2 - 27q_1^2), \\ p = -(p_1^2 + 27q_1^2), \\ q = -2p_1q_1. \end{cases}$$

In both cases

$$d = 2pq + 9q^2 = 4p_1q_1(p_1^2 + 9p_1q_1 + 27q_1^2)$$

with $(p_1, p_1^2 + 9p_1q_1 + 27q_1^2) = 1$ and $(q_1, p_1^2 + 9p_1q_1 + 27q_1^2) = 1$.

Hence $p_1 = p_2^2$, $q_1 = q_2^2$, $d^2 = 4p_2^2q_2^2(p_2^4 + 9p_2^2q_2^2 + 27q_2^4)$ and $p_2^4 + 9p_2^2q_2^2 + 27q_2^4 = d_1^2 < d^2 < l^2$. Thus we obtain a solution of the equation (1) in smaller natural numbers, which is contradictory.

If $\delta_1 = 2$ then

$$\begin{cases} 2a = p_1^2 - 27q_1^2, \\ 2p = p_1^2 + 27q_1^2, \\ 2q = 2p_1q_1, \end{cases} \text{ or } \begin{cases} 2a = -(p_1^2 - 27q_1^2), \\ 2p = -(p_1^2 + 27q_1^2), \\ 2q = -2p_1q_1, \end{cases}$$

In both cases $d^2=2pq+9q^2=p_1q_1(p_1^2+9p_1q_1+27q_1^2)$, and we obtain, as above, $p_1=p_2^2$, $q_1=q_2^2$ and $p_2^4+9p_2^2q_2^2+27q_2^4=\delta_1^2< d^2< l^2$, which is contradictory.

2. If $s \ge 3$ then $p_1 = 27p'_1$, $(q_1, 3) = 1$ and we have

$$rac{p}{a} = rac{27p_1'^2 + q_1^2}{27p_1'^2 - q_1^2}, \quad rac{q}{a} = rac{2p_1'q_1}{27p_1'^2 - q_1^2},$$

i. e. a system of the form (15). Hence

$$(2p_1'q_1, 27p_1'^2-q_1^2) = (27p_1'^2+q_1^2, 27p_1'^2-q_1^2) = \delta_1$$

where $\delta_1 = 1$ or $\delta_1 = 2$ and we obtain inferences, as in the case of s = 0 in (15).

The above discussion proves that the equation (1) has no integral solutions if (a, 3) = 1. Hence we have Theorem 1.

It follows from I that there exist no integral solutions of the equation $x^3 + y^3 = 2z^3$ if $x \neq y$, $xyz \neq 0$. Thus we have proved Theorem 2.

The method of indefinite descent used in Part II leads likewise to the solution of the equations $a^4 \pm 3k^2b^2 + 3b^4 = c^2$ to which the equations $a^3 \pm b^6 = c^2$ can be brought 2).

Reçu par la Rédaction le 21. 11. 1955

²) See A. Wakulioz, O bokach sześciennych trójkątów pitagorejskich (in Polish), Zeszyty Naukowe Wyższej Szkoly Pedagogicznej, Katowice 1957, in press.