ON 4 PROBLEM OF BANACH
BY .
V. L. KLER (SEATTLE, WASHINGTON)

Banach [1] has asked for a characterization. of those metric Bpaces
which can be mapped in a continuous biunique faghion onto some com-
pact metric space, and in particular has inquired whether the Banach
gpace (¢,) can be mapped in this way.

Relevant rvesults were obtained by Sikorski [7] and Katetov [3],
but the case of (¢) was not settled.

We remark here that for (¢,) the answer 48 affirmative, reasoning as
follows: by a recent result of Kadee [2], (¢,) is homeomorphic with (1');
by Mazur’s theorem [6], (I*) is homeomorphic with (12); by a theorem. of
the author [4], (1*) is homeomorphic with ifs wnit cell O, = {w:||a]| < 1)
(in the norm topology). Now the natural map of 0, onto C,, the unib
cell in the weak topology, is continmous, and O, is known [B] to be
homeomorphic with the Hilbert parallelotope P. Thus (¢,) admits a con-
tinuous biunique map onto P, which is a compact metric space, and the
proof is complete.
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ON T'HE NOTION OF UNIFORM CONVERGENCE
WITH RESPECT T0O A FUNDAMENTAL SET OF PUNCTION ALS,
' AND ITS APPLICATION

BY
W. KLONECKI (POZNAX)

When formulating the mean-value theorem for vector-valued func-
tions we need the notion of a convex. However, the application of the
mean-value theorem thus formulated is often inconvenient. In this paper I
give a method which malkes it sometimes possible to avoid applying the
mean-value theorem. This may be obtained by introducing the uniform
convergence with respect to a fundamental set of linear functionals. I was
led to the idea of this notion through the study of the proof given by
Alexiewicz and Orliez in [3]. I wrote this paper under the direction of Profes-
sor W. Orlicz, whom I wish to thank for his help and valuable remarks.

Let X be a linear, normed and complete Banach space. Further
let llz]| be the norm of the element z¢.X, & the space of linear functionals
over X and & an element of 5. x(t), (s, ?) indicate here vector-valued
functions defined in the intervals {(a,b> and (a,b;c,d) respectively,
with values in the Banach space X. .

We call the set I' of linear functionals a fundamental set if there
exist positive constants o >0, % > 0 such that for every fel and we X
the inequality

.SGF, et < K

holds. The unit sphere in the space &, {£:l1&|> 1}, is an example of
a fundamental set of linear functionals.

The set I, of functionals will be called sirongly fundamental if the
condition

sup o] 2 ajld,

sup |fw,) < oo for every el
implies "

lim|z,| < oo.
n
It is known that every closed fundamental set of functionals is strongly

fundamental. We shall indicate by I' a fundamental set of functionals
and by I a strongly fundamental one.
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The funetion o(t) is strongly differentiable ot the point by to the eloment
' (ty) if »
\ _ |
|2t 40— () *m'uo)l] 50 a8 Al-s 0.
l At i
The function #(t) is weakly differentiable ot the point i, to the element
r'(hy) it, for every feX,

[t 4nete

—a' ()} =0 as  Al-> 0
1 )

The sequence {mn} is uniformly convergent with respect to the fundamen-
tal set I' of linear functionals to the element x, if for every ¢ > 0 there existy
a number N such that for an arbitraxy integer » > N and for each &el’
we have |&x,— &xy| << .

We say that the function x(t) is wuniformly continuous with respect
to the set I' at the point t, if for arbitrary e > 0 there exists a number 6 > 0
guch that for every feZ and |4t < 6

|&m (g Ab) — £ (ty)] < .

We call the function z(t) wniformly differentiable with respect to the
set I' at the point t, to the element »'(t,) if for arbitrary ¢ > 0 there exists
a number & > 0 such that for every |4t < § and &el'

(ol A)—o(ty)

1
yr £x'(t,) <

Let 5, C B. The funection «(f) is Hy-quasidifferentiable at the point
t, if for every £eX, there exists a derivative of the real-valued funection
Ew (), dén(t)/di, at the point f,.

Lemma. 1. The sequence {mn} converges strongly to the element
if and only ¥ it is uniformly convergent to the element x, with respect to I

The proof of this lemma follows immediately from the definition
of the fundamental set.

Liemma 2. Let us assume that for every te(a, b) there emists a I'-quasi-
derivative dém(t)/dt and that for arbitrary & > O there exists such a number
6> 0, that for every £el’ and |4 << 6 we have

*( @f.@_,(?).) _ (,dsw(t)) .
s A fopal at J =

Then there cwists in (a, b) a strong derivative a'(t).
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Proof. Let fye(a, b). Then the assumption of lemma 2 implies
aloth) o) _ 20 th—o)| _ (dfm(t) ) _ ( dgx(t) )
h [ S8 1 2 P

for every £ e I'. Hence, the completeness of the space X and lemma 1 imply
the existence of an element &'(%,)¢ X such that there exists a strong limit

lim @ (ty+ Ay~ (1)
A0 At

£

< &

= 2'().

CororLARIES. 1. A function s strongly continuous at the point i,
if and only if ¢ is uniformly continuous at the point 4, with respect to I

2. 4 function is strongly differentioble at the point i, if and only if
it s uniformly differentiable at the point ¢, with respect to I

3. If a function has in an enclosure of the point 1, a weak derivative
strongly continuous at the point %y, then this function has a strong deriva-
tve at the point 1.

4. If the function x(t) has at the point t, a I'-quasiderivative, then x(t)
8 strongly continuous at the point ty.

Corollary 3 is a generalization of theorem 1 in [3] by Alexiewicz and
Orlicz on t"he existence of the strong derivative.

APPLICATIONS

LeMMA 3. Let us assume that the following conditions are satisfied:

(a) in an enclosure of (sy,1,) there exist weak derivatives w, w;;

(b) there ewists in an enclosure of (sy, %) a I-quasiderivative with re-
gard to the variable s, 3°Ex|01ds, and given any & > 0, there exists a number
8 > 0 such that for arbitrary Ee¢l' and for every |At] < 6, [ds| < &, the
imequality

"(fﬂem(s, t)) (62&'(8, t))
dtds byt dt,gy+4s Otds 0,80

holds. .

Then there exist at the point (s, %) strong derivatives i, and Ty
and m;s(so’ ) = a8y, o).

Proof. We have

£ B(8o~ 48, ty-+ A)—m(8y, by -+ Ab) -+ (8o + A3, 1) — (85, 1)
AsAt '

_ (Bz(fw(s, t))
otds sp+-0d8g,+ 074t
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The assunption implies

(8o A8y, Ty + Aty) —m(8y, ty+ A% ) +@ (S 481, Bo) — (8, &) _

d As, A,

B8+ A3y, B+ Aby) — (g, ty+ Aly) @ (834 485, b)) — (80, 1) <9
— < 2
Asq Aty
for every &ell, |dsi| < 6, |46 <8, ©=1,2.

Taking As; — 0, we have

Emy(8y, fot Ab) —Em(8y, 1) _ E(8q, Tyt Alg)— Ex(30, 1) < 9%
At ' Aty

It follows that the strong limit

@8y, ty+AD) '—50;(307 to)
lim
Prav) 4t

= T(30, k)

exists.

In the same way it is possible to prove the existence of (s, %)
Evidently z), = ;.

SCEWARZ’S THEOREM. If in an enclosure of (s,,%,) the weak deriva-
tives g, of, 2y ewist and the derivative w, s strongly comtinuous in the
point (sy, %), then there ewists a weak-strong derivative xy and 2u(sy, &) =
= Tye(80, o).

Proof. The assumption of the existence of the strongly continuous
weak derivative implies condition 2 of lemma 3.

L’HOPITAL'S RULE. Let us assume that the vector-valued function (1)
and the real-valued function y(t) are continuous in {a, b), y'(t) ewists in
(a, b), x(a) = O and y(a) = 0. Further let us assume that for every & emists
the derivative déx(1)[dt and the left-side limit of the function

(29 /i

‘at the point al) uniformly with respect to I
Then there ewisis a strong limit
@ (1
lim—————( ) s
ta y (1)

dgw (t) /i
y'{t)

1) I. e, for 0 <t—a < & and &el, ‘ ——g‘ < .
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4. e., there exists ye X such that

|

Proot. Tor sufficiently small & > 0 and % > 0 and for £eI" we have
£z (a+n)—z(a)) _ ¢(m({a+k)—a(a))

Y ) 0 for a<t—a.

y{a+h)—y(a) y(a+k—y(a)
< ‘ déw(a+sh)jde . dém(t)/di l
t v'(a--0h) ate V(1)
+’ dén(at+8'k)jdt . dgw(t)/d ‘
y'(a+9'k) Esa0 y'(t)
Hence
%% =y where yeX.

This theorem is a generalization of a theorem by Albrycht [1]. Al-
brycht obtains this theorem using stronger assumptions and applying
in the proof the notion of a convex.

CoroLLARY. 5. If a function has a weak derivative, weakly continuous
m (a,b), then it has a strong derivative at each point except a set of the
first category and measure zero. .

Proof. Corollary 4 implies that the function is strongly continuous.
Applying the theorem by Alexiewicz and Orlicz [4], and in view of the
fact that the get of the values of the derivative is separable, we obtain
strong continuity of the derivative in a residual set. According to a theo-
rem by Alexiewiez [2], we conclude that the set of points at which the
function is not strongly differentiable is of measure zero.

6. If the weak derivative ewists and the set of its values is compact, then
the derivative ewists except a set of measure zero.

7. It the weak derivative is weakly continuous and the set of its values
8 compact, then the derivative ewists in a strong sense.

Corollaries 6 i 7 follow immediately from corollary 3 and from theo-
rems by Alexiewicz and Orlicz [4].
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SUR I’UNICITE DE LA MOYENNE DE DOSS
DES VARIABLES ALBATOIRER SITUEES DANS QUELQUES
ESPACES DE BANACH

PAR

SAAD K. NASR (ALEXANDRIE)

1. Introduction. Mourier [3] a donné une définition de la moyenne
pour une variable aléatoire sitnée dans un espace de Banach. Doss [1]
en a donné une autre pour des variables aléatoires situées dans un espace
métrique (D). I a appelé Pélément o moyenne de la variable aléatoire w
8i (@, 4) < B(w, 1) quel que soit I'élément fixe Ae(D), ot (2, y) désigne la
dlsta.nce entre deux éléments queleconques « et y de (D), et F la moyenne
clagsique d’un nombre aléatoire. .

On saif que dans un espace de Banach, dans lequel les sphéroides
sont mesurables, une moyenne quelconque de Mourier est aussi une
moyenne de Doss.

La moyenne de Mourier a ét¢ déterminée [4] pour quelques classes
de variables aléatoires situées dans les espaces de Banach suivants: le-
space (C) des fonctions continues dans [0,1], I'espace (¢) des suites conver-
gentes, I'espace (1) des suites {&;} telles que 3|k < oo, et l'espace (L)
des fonctions sommables dans [0,1], out certaines conditions sont
imposées.

L moyenne de Doss d’une variable aléatoire située dans n'importe
leguel des espaces mentionnés ci-dessus est par conséquent déterminée.
L unicité d’une telle moyenne est démontrée>dans les théorémes 1, 2,
3 et 4. ’

2, Nous aurons & nous appuyer sur les lemmes suivants:

TEMmE 1. 8% le nombre aléatoire x est tel que E|z| < +oo, & > 0 élant
donné, il ewiste un entier positif n, tel que

|B(2)—A] < Blo—A] < |B(z)— A{—|—2(1+ I ')

ol 1 est un nombre réel quelconque tel gue [|A|] = n = ny ([4] élant la partie

entidre du nombre réel A).
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