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suffisante, mais aussi nécessaire pour l'existence du prolongement
demandé, la difficulté que 'on rencontire si 'on veut (positivement)
résoudre le probléme P94 consiste d démonirer que la con-

dition (C,) entraine lexistence d’un module M satisfaisant a la°

condition (C,~M).
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NOTE ON MINIMAX SOLUTIONS OF STATISTICAL
DECISION PROBLEMS
BY
A, 5PACEK (PRAGUE)

Given two non-void sets 4 and B and let r(x,y) be a func-
tion defined for every xeA and ye¢B, such that

(1 rix,y)>0 for each xed, yeB,
@ sup r(x,y)<<co for each yeB.
xe

It is easy to show that there exists the least o-algebra U of
subsets of 4 such that

(3) r(x,y) is A-measurable for each yeB,
(4) ing r(x,y) is A-~measurable.
ye .

Obviousiy, the condition (4) may be omitted if B is enumerable.

Let @, be the set of all probability measures in % Then by
(1} and (3)

(5) 0< w,y)=[r(x,y)do<<co for each yeB, we®,.
4

For each pair w,,w,e2 we shall define the function

(©) e (s, w)=sup [0, (X)— o, (X)].
X6

It is easy to show that Q, is a metric space with respect to
the distance function (6). If 2%, we shall denote by 2 the clo-
sure of © in Q,. A probability measure which assumes only the
values 0 and 1 will be called an elementary probability measure
and the set of all elementary probability measures will be de-
noted by £,. If 4 contains at least two elements, then £, con-
tains no isolated points, because, if weQ,, then there exists an
o’eQ, distinct from o, and we see at once that the sequence
{(t—27) & (X) -2’ (X)}j=1,25.... of pairwise. distinct points of @,
converges to w(X). Obviously, @, is isolated and ecach two ele-

: -18%
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ments of 2, have the distance 1. Throughout this paper we shall
always suppose that 4 as well as B contains at least two ele-
ments, because this assumplion execludes trivial cases.

The purpose of this paper is to show that the following two
theorems hold:

Theorem 1. If Q,CQ and

in —inf sup r(x, ) =c,
© i M LA
then
8 i'iﬁ;?g Flw,y) =11}1611fi sup fw,y)=c
Theorem 2. If 2,CQ and
9 nmax 1;311811 r(x,y)= 1;2311 maxr (x,y)==r(xy,Yy),

then there exists an w*eQ such that
(10)  max min f(w,y)=min max f(w,y)=F(0*,y.) ==r(x,, Yo\
wef2 yeB y6B wef

The application of these two theorems to statistical decision
problems is based on the following interpretations of 4, B, and
r(x,y): According to Wald’s general formulation of the statistical
decision problem, 4 is a given set of probability measures de-
fined for all Borel sets of the finite ox infinitc dimensional
sample space, B is a given set of decision operations, i.c. a set
of transformations of the sample space on the given set of de-
cisions, and r(x,y) is the risk function, i.e. the sum of expec-
tations of a weight function and a cost function. This formulation
may be found in Wald’s paper [1] and [2]. The passage from
r(x,y) to f(w,y) corresponds to the randomization of the proba-
bility measures x from 4. On the other hand, the randomization
of the decision operations seems unreasonable from the point of
view of practical applications. Roughly speaking, the theorems 1
and 2 assert that the restriction to non-randomized decision opex-
ations is legitimate under very general conditions. In particular,
this. simple result may be used in the decision problem in [3].

The proof of Theorem 1 will result from the following three
relations:

11 i
w Sy T < g fon)
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{12) ;n;gf sup flo,y) =yme supr (*,9),
(13) iggiggf(w,y)>§?f;§r(x,y)-

Proof of (11). Since
f(cu,y)<su1§f(w,y) for each we®, yeB
we have
inff(w,y) <infsup f(w,y) for each weR
yeB yeB wel

and the last inequality implies (11).

The proof of the inequality (11) under similar conditions may
be found in Wald’s paper [2] and it is reproduced here only for
the sake of completeness.

Proof of (12). Obviously, it is sufficient to show that

(14) sugf(w,y)=su£>r(x,y) for each yeB.
Since

f(w,y)<su£r(x,y) for each wef, yeB,
we have .
15) sup f(cu,y)\<_su£)r(x,y) for each yeB.

(1] xe
For each yeB and ¢>0 let X be the set of all xed for which
r(x,y)>su£)r(x,y)——s.

From the properties of supremum and using (2) and (3) we have
02 X?e9 and the integral

fr(x, yido
x‘(f)

exists for each yeB, weQ, and ¢>0. Furthermore, there exists
an e, such that
o (X =1 for each yeB, s=0,
because it is sufficient to choose an xeXy such that
1 if xeX,

(e} =
o (&) {0 it xeX.
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Sinee £, 2, therefore, to each §=>0, e=>0 and yeB there exists
an o ¢Q such that

(16) o XN =1 —s

From the properties of supremum and using (16) we have, for
each yeB, e>0 and 6>0,
f rix,y)d

= fr(x,y) dofh> (1 —38) [sup r(x,y)—e],
XJ(JE) xed

4 \/ (8)
sup fw, y) 2 (). y)

and therefore

sup Heo,y) > suﬁ)r x,y) for cach yeB.

Tll}ls, using the opposite inequality (15) we obtain (14). The re-
lation (12) is an immediate consequence of (14).

Proof of (13). We shall first show that
(17) lnif fmir (x,1)dw

for cach we.
Since

T(x,y)>in£r(x,y) for each xed, yeB,
we have y

f(w,y)}finfr(x,y)dw for each yeB, we,

and (17) follows at once from this inequality. For the proof of (13)
it is necessary to consider separately the following two cascs:

(18) sup inf infr(x,y)=0,
(19) sup mfr(x y) #0,
x6d ydB

We shall first suppose that (18) holds. Then by (17)

Elnffw y) >su j;nh x J)dw—()—supmlr(x y),
A aB

(13) holds. Now let us suppose that (19} holds. Because of (2)
d (11) we have

(20) 0-<su Elnfr(x y)<<co,
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Before proving the inequality (13) under the condition (19) we
shall first show that if the sequence {w;(X)}=125... of probability
measures converges to the probability measure «(X) in the metric
space Q,, then

(21) lim [infr(x,y) dw; fmfr(x y)do

j-»oo 4’ yeB
Let us denote by I' the class of all decompositions € of 4
in a finite number of pairwise disjoint sets from % and put
g€, X)= inf mf r(x,y).

xeXe€ yeB

Then
Jinfrizdo=gup 3 g€ X0 (X),
[infr(x,y)do;=sup 3 g(€,X)o;(X) for j=1,2,3....,
A yeB Cel'XeC
and we have
1!?ﬂllfgr(x,y)dwj——!if;lr:gr(x,y)dw‘<
22 .
22 <sup 3 [5(E, Doy (D—o X[l
Cel' Y€
Since w;(X)—w (X) are ¢-additive set functions in 4, their absolute
variations o;(X) are measures in % for j=1,2,3,... and it is easy
to show that, for j=1,2,3,...,
(23) lojX)—o X)) < @) <2 sup |o;(¥)—o@)].
YCX. Yol

Hence, because of (23), (22) and (6)
|finfr(x,y)dw;—firﬂxgr(x,y)dw’<

\\flnfr x,y)da;j L a;(4) sup infrix,y) <
(24) yeB xed yeB
\\25;:13 [eo; (¥ \su}l) infr(x,y)=

== 2p (wj, )sup infr(x,y).
xed ye B

Since by hypothesis the sequence {w;(X)}j=1,2.5... converges to o (X)
in the metric space 2, and (20) holds, thercfore, for each >0
there exists an index m(e) such that

(25) ol(w;,w)<<el2 sup ingr(x,y)]—1 for each index j=mle).
xed ya
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Because of (24) and (25) we have
| finfr (e, y)do;—f infr(x,y)do|-<e  for cach index j<<m(g),
AyeB A4 yeB

i.e. {21) holds. For cach x¢d let we be the probability measure
from Q, for which
) 1 i xeX,

26 w, (X)—':{ :
26) ) 0 if xnon-¢X.

Since by hypothesis £,¢° 0, there exisls a sequence

(wﬁi‘ (X)}j:ut,z.s,...

of probability measures from £ which converges to the proba-
bility measure w.(X). Obviously,

supinff(w,y)}inff(wg’,y) for cach xed, j=1,2,3,...
wsR yeB yelB

and, because of (17), (21) and (26), we have, for each xed,

‘supinf f(w,y) 2 liminf f (o, y) 2=
O)BSEJ/BBI.( 5y) '/j- >wyﬂb‘/( ® >,l)

>lim finfr(x,y)dol=[infr(x,y) doe= infr(x,y).
Jjrco 4 yeB 4 yeB yaB

The last relation gives at once (13) and Theorem 1 is thus
proved.

The proof of Theorem 2 is very simple. By hypothesis
£, 2; hence, by (20), we may substitute wy, for o* Then

flo*, x,) =Af" @,y da*==r (%0: Yok

and Theorem 2 follows at once from Theorem 1.

Let us consider the following example: 4 consisls of (wo
elements 0 and 1, B is the closed interval [0.2] and r(0,y)=y,
r(Ly)=2—y. Then U is the o-algebra of all subsets of A. l'ur-
thermore let =0, It may be seen at once that

max min r(x,y)=0<<{ =min max rx,y),
xed yaB yeB xad

max min f(e, y) = [ = min max f(w, y).
ws@ yeB yeB wef
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This example shows that the converse of Theorem 1 and 2
does not hold.

A. S. Popov Communications Research Institute, Prague.
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