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Abstract: Traditional time series forecasting models, like ARI-
MA and regression models, can hardly capture nonlinear patterns.
Support vector regression (SVR), a novel neural network technique,
has been successfully used to solve nonlinear regression and time se-
ries problems. The SVR model applies the structural risk minimiza-
tion principle to minimize the upper bound of the generalization er-
ror, instead of minimizing the training error, employed by most con-
ventional neural network models. Thus, parameter determination
for an SVR model is appropriate for achieving high forecasting ac-
curacy. Several evolutionary algorithms, such as genetic algorithms
and simulated annealing algorithms have been used in parameter
selection, but these algorithms often suffer from the possibility of
being trapped in local optimum. This study used an improved ant
colony optimization algorithm in an SVR model, called SVRCACO,
for selecting suitable parameters, with encouraging local search in
areas where forecasting accuracy improvement continues to be made,
then, autocatalytically converge to promising regions. Numerical ex-
amples of exchange rate forecasting from the existing literature are
employed to assess the performance of the proposed model. Ex-
perimental results show that the proposed model outperforms other
approaches from the literature.

Keywords: support vector regression (SVR), continuous ant
colony optimization algorithms (CACO), exchange rates, financial
forecasting.

1. Introduction

Exchange rate forecasting is one of the most important and challenging issues
in the modern financial forecasting fields (Beran and Ocker, 1999; Fernandez-
Rodriguez, Sosvilla-Rivero and Andrada-Felix, 1999). Numerous models were
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expected to provide the investors with more precise predictive information. Tra-
ditionally, researchers and practitioners employed economic theory to under-
stand the structural relations between exchange rate and other variables. They
also applied some statistical approaches to identify the structure of correlation in
historical tendencies. The famous representatives are ARIMA model, regression
model, and random walk model. However, due to linear or specific assumptions,
these models can hardly ensure accurate forecasting (Brooks, 1997; Diebold,
Gardeazabal and Yilmaz, 1994; Kilian and Taylor, 2003; Trapletti, Geyer and
Leisch, 2002). To overcome this drawback, Engle (1982) proposed the ARCH
(autoregressive conditional heteroscedasticity) model, followed by the GARCH
generalization of Bollerslev (1986). Henceforth, a series of successors (Kilian and
Taylor, 2003; Fernandes, 1998; Vilasuso, 2002) extended the GARCH model to
capture the salient data patterns of the exchange rate volatility. The superior
predictability of those succeeding models is still controversial.

Recently, due to their nonlinear mapping capabilities and data processing
characteristics, artificial neural networks (ANNs) attracted increasing attention
in financial forecasting. Many researchers applied ANN concepts to construct
appropriate forecasting models, including the original ANN models (Yao and
Tan, 2000; Zhang and Hu, 1998; Hann and Steurer, 1996; Lisi and Schiavo,
1999; Chen and Leung, 2004; Chun and Kim, 2003; Davis, Episcopos and Wet-
timuny, 2001; Nag and Mitra, 2002), hybrid models of fuzzy logic (Kodogiannis
and Lolis, 2002), multi-layer feed-forward network (Qi and Wu, 2003; Wu, 1995),
general regression neural networks (GRNN), Leung, Chen and Daouk (2000),
etc. These studies demonstrated that ANN-based models outperform the econo-
metric forecasting models. ANN-based models seem to achieve improved and
acceptable performance in financial forecasting, but the training procedure of
ANN models is not only time consuming but can also get trapped in local min-
ima and behave subjectively in selecting model architecture (Suykens, 2001).

Support vector machines (SVMs) are a significant development in overcom-
ing the shortcomings of ANN, mentioned above. SVMs are based on statisti-
cal learning theory and kernel functions, i.e. the so-called kernel based neural
networks. Rather than implementing the empirical risk minimization (ERM)
principle to minimize the training error, SVMs employ the structural risk min-
imization (SRM) principle to minimize an upper bound on the generalization
error, and allow learning any training set without error. Thus, SVMs might
theoretically guarantee achieving global optimum, instead of being trapped in
local optima like ANN models. In addition, the learning algorithm of SVMs
may decide on suitable architecture, i.e. the number of units in the hidden
layer. Furthermore, SVMs employ kernel functions to implicitly map the data
into a higher, possibly infinite, dimensional space (Fig. 1). Thus, the solution
of a non-linear problem in the original lower dimensional input space could be
linear in a higher dimensional feature space. This makes SVMs a feasible choice
for solving a variety of problems in many fields which are non-linear in nature.
For more detailed introduction to SVMs, a reader is referred to, e.g., Vapnik
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Figure 1. Transformation of the second-order polynomial hypersurface over
a three-dimensional original space in a SVR model
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(1995, 1998), Cortes and Vapnik (1995), Cristianini and Shawe-Taylor (2000),
and Scholkopf and Smola (2002).

Although originally designed to solve pattern recognition problems, SVMs
also found wide application in the fields of time series/regression, bio-informatics,
and other artificial intelligence relevant applications. Particularly, along with
the introduction of Vapnik’s e-insensitive loss function, SVMs also have been
extended to solve nonlinear regression estimation problems, with the so-called
support vector regression (SVR). Thus, SVR have been successfully employed
to solve forecasting problems in many fields. These include financial time series
(stock index and exchange rate) forecasting (Cao, 2003; Huang, Nakamori and
Wang, 2005; Pai and Lin, 2005a; Pai et al., 2006; Tay and Cao, 2001, 2002),
engineering and software (production and reliability) forecasting (Pai and Lin,
2005b; Hong and Pai, 2006; Hong et al., 2005; Pai and Hong, 2006), atmospheric
science forecasting (Hong and Pai, 2007; Lu et al., 2002; Mohandes et al., 2004),
and so on. The SVR model was also successfully applied to forecast electric load
(Pai and Hong, 2005a,b). The practical results indicated that poor forecasting
accuracy is due to inadequate selection of three parameters (C,e and o) in the
SVR model. These parameters are often hard to determine directly, due to time
consuming and conceptual constraints. It is possible to employ an optimization
procedure to obtain a suitable parameter combination, e.g. by minimizing the
objective function describing the structural risk, mentioned above. The present
authors conducted a series of relevant studies, employing different optimiza-
tion algorithms (genetic, simulated annealing, immunological, and Tabu search)
for parameter determination, in order to identify empirical rules as to which
algorithms are best suited for specific data patterns.

Thus, in this study, the ant colony optimization algorithm (ACO) is tried out
to determine the values of three parameters in an SVR model. In addition, as
ACOs were developed for discrete optimization, their application to continuous
optimization problems requires transformation of a continuous search space to
a discrete one by discretization of the continuous decision variables, the entire
procedure referred to as CACO. Thus, the proposed SVRCACO model is applied
to forecast exchange rates. A numerical example from the literature (Pai et
al., 2006) is employed to demonstrate the forecasting accuracy improvement of
the proposed model. The remainder of this paper is organized as follows. In
Section 2, we explain the methodology. Section 3 gives experimental results.
Finally, Section 4 concludes the paper.

2. Forecasting methodology
2.1. Structural risk minimization

As mentioned above, traditional Al approaches tended to be based on functions
minimizing training errors, i.e., empirical risk minimization (ERM). However,
ERM does not guarantee good generalization to new data sets. To separate
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the classes with a surface (hyperplane) maximizing the margin in the training
data set, SVMs employ the structural risk minimization (SRM) principle that
aims to minimize a bound on the generalization error, rather than minimizing
the mean square error over the training data set. SRM provides a well-defined
quantitative measurement for the capacity of a learned function to capture the
true structure of the data distribution and generalize over unknown test data
set. The Vapnik-Chervonenkis (VC) dimension (Vapnik, 1995) has been applied
to measure this capacity.

We are given a training data set of N elements {(x;,y;),i=1,2,...,N},
where x; is the ith element in n-dimensional space, i.e., X; = [Z14, ..., Tni] € N,
and y; € {—1,+1} is the label of x;. We wish to define a deterministic function
f:x—{=1,+1} for a given input data x and adjustable weights w (w € R"),
according to the same but unknown probability distribution (P(x,y)). The
weights w would be adjusted during the training stage. Since the underlying
probability distribution P(x,y) is unknown, the upper bound for the probability
of classification errors on the test data set (i.e., expected error of f), R(f),
cannot be minimized directly. Thus, one can estimate an approximate function
of R(f), i.e., empirical risk, denoted as Remp(f), that is close to the optimal one
based on the training data pairs (x,y). Then, according to the SRM principle
(Vapnik, 1995, 1998), R(f) and Remp(f) are expressed as:

R(f) S Remp(f) +€1(N7ha777Remp) (1)
N

Remp(f) = % Z |y1 - f(xi)hoss function. (2)
i=1

P Remp(f)_
El(Na hvnaRemzl) - 260(tha77) <1+ 1+ E%(N,h,’l])) (3)
n (2Y ~In (2
50<N,h,n>=\/h(1 G+1) - (i) a

Equation (1) holds with probability 1 —n for 0 < n < 1; £9(V, h,n) is the so-
called VC confidence interval. The values of o(V, h,7n) depend on the number
of training data IV, the VC dimension &, and the value of 7.

For a small empirical risk Remp(f), e.g. close to 0, (1) would approximately
get reduced to Ry (f)+4€3(N, h,n), in contrast, for a large empirical risk, close
to 1, (2) would approximately get reduced to Repmy(f) + €0(N, h,n) (Haykin,
1999).

Thus, there are two strategies for minimizing the upper bound, R(f). The
first one is to keep the VC confidence (g¢(N,h,n)) fixed and to minimize the
empirical risk, and most of ANN models employ it. However, it does not perform
well, because dealing with Repn,(f) alone could not guarantee of reduction VC
confidence. The second one is to fix the empirical risk to a small value and to
minimize the VC confidence, this being the so-called SRM principle. Although
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SVMs implement this principle, their training algorithm that aims to minimize
the VC dimension is still based on a hierarchy that depends on the data (Vapnik,
1995; Shawe-Taylor et al., 1998).

2.2. Support Vector Machines for regression

As mentioned above, SVMs were originally used for classification purposes, but
their principles can be extended easily to the task of regression and time series
prediction. The concept of SVMs for the case of regression will be briefly in-
troduced. A nonlinear mapping ¢(-) : ™ — R is defined to map the input
data (training data set) {(x;, yl)}f\il into a so-called high dimensional feature
space (which may have infinite dimensions), ™ (Fig. 2 (a) and (b)). Then, in
the high dimensional feature space, there theoretically exists a linear function,
f, corresponding to the nonlinear relationship between input and output data.
Such a linear function, namely SVR function, is

fx) = who(x) +b (5)
where f(x) denotes the forecasting values; the coefficients w (w € R™) and

b (b € RN) are adjustable. As mentioned above, SVM aims at minimizing the
empirical risk,

N
emp = Z yu W ¥ Xz) + b) (6)

where ©.(y, f(x)) is the e-insensitive loss function (thick line in Fig. 2(c)),
defined as

O:(y, f(%) = (7)

otherwise

{|f(x)—Y|—57 it [f(x)-yl=e
0,

O:(y, f(x)) is employed to find out an optimum hyperplane in the high dimen-
sional feature space (Fig. 2 (b)) so as to maximize the distance separating the
two subsets of the training data. Thus, SVR focuses on finding the optimum
hyperplane and minimizing the training error between the training data and the
e-insensitive loss function.

Then, the SVR minimizes the overall error

1
wl\gh]g}gR(WS €)= ww—l—C;f +&) (8)
with the constraints
yvi—who(x) —b<e+¢&i=12.,N
—y, —Wio(x) —b<e+&i=1,2,..,N
&>04i=1,2,..,N
& >0i=1,2,...,N.
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The first term of (8) employs the concept of maximizing the distance of two
separated training data and is used to regularize weight sizes, to penalize large
weights, and to maintain regression function flatness. The second term penalizes
training errors of f(x) and y by using the e-insensitive loss function. C is a
trade-off parameter of these two terms. Training errors above € are denoted as
*, while training errors above € are denoted as & (Fig. 2 (b)).

After the quadratic optimization problem with inequality constraints is solv-

ed, the parameter vector w in Eq. (6) is obtained,

N
W= Z 6 _61 z) (9)

=1

where 3, B; are obtained by solving the quadratic program and are the La-
grangian multipliers. Finally, the SVR regression function is obtained in the
dual space,

N
Z 6 _61 Xz; )+b (10)

=1

where K (x;,x;) is a kernel function, and the value of the kernel equals the
inner product of two vectors, x; and x;, in the feature space, p(x;) and ¢(x;),
respectively; i.e., K(xi,X;) = ¢(xi) o0 ¢(x;). Any function that meets Mercer’s
condition (Vapnik, 1995) can be used as the kernel function.

There are several types of kernel functions. The most often used kernel func-
—0-5||Xz'2—xj 2 )
(o

)

tions are the Gaussian one with the width of o : K (x;,%;) = exp(
and the polynomial kernel of order d and constants a; and ag: K(x;,%;) =
(a1x;%; + az)?. If the value of o is very large, the Gaussian kernel approximates
the linear kernel (polynomial of order 1). It is hard to determine the proper type
of kernel functions for specific data patterns (Amari and Wu, 1999; Vojislav,
2001). However, the Gaussian kernel is not only easier to implement, but also
capable of nonlinear mapping of the training data into an infinite dimensional
space. Thus, it is suitable to deal with nonlinear problems. Therefore, the
Gaussian kernel function is used in this study.

The selection of the three parameters, o, € and C, of a SVR model influ-
ences the accuracy of forecasting. However, structural methods for confirming
efficient selection of parameters are lacking. Recently, Pai and Hong (2005a,b)
introduced the traditional approach for parameter determination. They applied
a series of search algorithms to test the potentiality and the suitability involved
in the parameter selection of an SVR model. However, as mentioned above, GA
and SA lack memory functions, which leads to time consuming search for the
suitable parameters of an SVR model. Therefore, continuous ant colony opti-
mization (CACO) is used in the proposed SVR model to optimize parameter
selection.
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Figure 2. Illustration of the transformation process of an SVR model



Exchange rate forecasting with SVR and ant colony algorithms 871

2.3. CACO in selecting parameters of the SVR model

Ant colony optimization algorithms were first proposed by Dorigo (1992) and
Dorigo, Maniezzo and Colorni (1996). The process by which ants can establish
the shortest path between ant nest and food is illustrated in Fig. 3. Initially,
ants leave their nest in random directions to search for food. Roaming around,
ants deposit some amount of pheromone trails, which can be detected by other
ants. For example, assume Ant 1 finds a food source. It will pick up some
food and go back to the nest by following its previous pheromone trail, laying
additional pheromone on the same path while other ants (Ant 2, Ant 3,...) are
still roaming about randomly. When the second ants group leaves the nest to
look for food, those ants can detect higher level of pheromone on Path 1 than
on other paths. Since the probability for a path to be followed is determined by
pheromone amount, more ants will follow Path 1 in this second round of looking
for food. In this way, the ants can establish the shortest paths from their colony
to the food sources. Obviously, even if an isolated ant roams randomly, it can,
informed by pheromones, follow the collective behavior of ant colony.

Food - ‘I
‘ /’ # Ant2 &
I % Anes /7 /A ne3!
| \ / / / /
\ \ / | /
% Ant4 \ Path 5 [/Path 1 | /
~ N | Path 2 /
— — Il l
Path 4 ~ \\\\ | / A Path3

Figure 3. Description of establishing the shortest path between ant nest and
food

Due to their learning and search capabilities, ACO algorithms have been
successfully used to deal with different combinatorial optimization problems in-
cluding job-shop scheduling (Colorni et al., 1994), traveling salesman problem
(Dorigo and Gambardella, 1997), space-planning (Bland, 1999), quadratic as-
signment problems (Maniezzo and Colorni, 1999), and data mining (Parpinelli,
Lopes and Freitas, 2002). Application of ACO algorithms to traffic flow predic-
tion problems, however, is quite rare. These algorithms were originally proposed
for discrete optimization and their application to continuous optimization prob-
lems requires some specific transformation techniques. In the literature, only
few approaches for continuous optimization have been proposed, such as con-
tinuous ACO (Bilchev and Parmee, 1995; Mathur et al., 2000; Woodrich and
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Bilchev, 1997), APT algorithm (Monmarche, Venturini and Slimane, 2000), and
continuous interacting ACO (Dreo and Siarry, 2002). However, these algorithms
added some operational mechanisms that are mostly beyond the regular essence
of ACO. Recently, Socha and Dorigo (2006) proposed an extension of ACO to
continuous domain by applying the continuous probability density function to
decide on probabilistic pheromone choice. In this model, though, other exter-
nal parameters should be determined in advance, so that one would be solving
a continuous technological issue instead of appropriate SVR parameter determi-
nation.

Hence, the concept of transforming continuous search space to a discrete
one by discretizing the continuous decision variables (Abbaspour, Schulin and
van Genuchten, 2001) can be employed, the so-called continuous ACO algorithm
(CACO). In this study, the CACO for the traveling salesman problem is modified
to determine the parameters of an SVR model in the discrete search space. The
probability, P(Z,j), that an ant k moves from city i to city j is expressed as

Py - {I7G.9)" W@.9)°}, it g < ao

Eq.(12), otherwise
. @ @) S @S L S) G ¢ My
Py(i,j) = SEM
0, otherwise

(11)

(12)

where 7(, 7) is the pheromone level between cities ¢ and j, 1(7, j) is the inverse
of distance between cities ¢ and j. In this study, forecasting error is represented
by the distance between cities. Parameters a and § determine the relative
importance of pheromone level and My, is a set of cities in the next column of
the city matrix for ant k; ¢ is a random uniform variable [0,1] and the value ¢
is a constant between 0 and 1. The values of a, § and ¢ are set to be 8, 5 and
0.2 respectively.

Once ants have completed their tours, the pheromone deposited by ants
on the visited paths is considered as the information on the quality of paths
from the nest to the food sources. Therefore, dynamic updating of pheromone
plays the main role in real ant colony search behavior. The local and global
pheromone updating rules are expressed as (13) and (14), respectively:

7(i,5) = (L= p)7(i, 5) + p7o (13)
7(i,5) = (1= 8)7(i, j) + 6AT(, j) (14)

where p is the local evaporation rate of pheromone, 0 < p < 1; 7y is the initial
amount of pheromone deposited on each of the paths. In this work, the value of
p is set to be 0.01. In addition, the initial amount of pheromone, 7y, generated
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conform to the approach of Dorigo and Gambardella (1997), is expressed as

1

nLnan

T0 — (15)
where n is the number of cities and L,, is the tour length produced by the
nearest neighbor heuristic.

Global trail updating is accomplished according to (14); § is the global
pheromone decay parameter, 0 < & < 1, set equal 0.2 for this study; Ar(i,7),
expressed as in (16), is used to increase the pheromone on the path of the
solution:

1/L, if (i,7) € global best route

0, otherwise (16)

artid) = {

where L is the length of the shortest route.
The details of the CACO procedure used in this study are as follows:

(1) Initialization: Set upper bounds of the three SVR positive parameters, o,
C and e. In this study, to discretize these continuous parameters, each digit of
the parameters is represented by ten cities. Thus, each digit contains 10 possible
values from 0 to 9. Assume the limits of parameters o, C and ¢ are 1, 10 000,
and 1 correspondingly. The numbers of digits that represent each parameter
are all set as four. Hence, three ant colonies are defined as o-ant-colony, C-ant-
colony, and e-ant-colony in the search for three parameter values. The numbers
of cities for each ant colony are 40, the total number of cities is 120.

(2) Assigning tasks to each ant colony: On step one, pathway-structure list
of each ant-colony would be generated. Fig. 4 shows the parameters represented
by the CACO algorithms and pathway-structure list in this study. Each ant will
randomly select a pathway from the pathway list in its colony and remember
the values of the represented parameters (o, C or €). At the end of the pathway,
the three parameter values enter the SVR model (i.e., objective function) and
the forecasting error is calculated. The shortest travel pathway in each search
loop would be determined based on the smallest forecasting error. In this work,
the normalized mean square error (NMSE) is used as the forecasting error index
as given by

NMSE =24 — (17)

where n is the number of forecasting periods; a; is the actual exchange rate at
period i; a denotes the mean of the actual exchange rate; and f; is the forecasting
exchange rate at period i.
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(3) Determining the numbers of ants and calculating distance between
cities: The numbers of ants are set to be 10 in each ant colony, i.e., total of 30
ants for each search iteration. The maximum number of iterations is set to 20

000.

(4) Stop criterion I: When the maximum number of iterations is reached, the
algorithm stops and the shortest travel path of the ant colony is an approximate
optimal solution. Otherwise, continue to the next step.

(5) Calculating probability of visiting: If the maximum number of iter-
ations has not been reached, calculate the probability that an ant k in city
moves to city j in accordance with (11). Repeat preceding steps.

(6) Stop criterion II: If each ant finished its pathway-structure list from the
nest to the food source, passing through all cities, then the shortest path is
an approximate optimal solution. Otherwise, conduct the pheromone updating
process of (13) and (14) to renew the reinforcement of pheromone. Then, go
back to Step 3.

Notice that, in any iteration, when the shortest path is determined, the
appropriate solution is obtained, and for those three parameters, a new search
space is then re-discretized. The framework of the proposed SVRCACO model
is depicted in Fig. 5. CACO is used to find a better combination of the three
parameters in the SVR so that a smaller NMSE is obtained during forecasting
iteration.

i . '

‘ Testing data %

‘ Selecting parameters }—-{ Perform SVR forecasting
f

No

top by checking Training errors
stop conditions

Recording validation errors

‘ The SVR model with the smallest validation error is selected [+——

‘ Training data ‘ ‘ Validation data
[ I

Testing errors

Figure 5. Framework of SVRCACO
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3. Numerical example and experimental results

The exchange rate data of four European currencies, used by Lisi and Schiavo
(1999) and Pai et al. (2006), and the forecasting results therein, are employed
in this study to assess accuracy improvement with the proposed SVRCACO
model. There are monthly exchange rates of four currencies, namely French
Franc (FF), Deutschmark (DM), Italian Lira (LIT), and British Pound (GBP),
all against the American Dollars (USD). The time period of the data is from
January 1973 to October 1995. Then, the data are divided into three sets:
the training set (from January 1973 to July 1987), the validation set (from
August 1987 to September 1991), and the testing set (from October 1991 to
October 1995). In this study, a rolling-based forecasting procedure is carried out
and three-step-ahead forecasting policy is implemented. Four other approaches,
namely the hybrid support vector machine with genetic algorithms (HSVMG),
the neural networks model (NN), the chaotic model (vector-valued, local linear
approximation; VLLR) and the random walk model (RW), are used to compare
the forecasting performance with the proposed model.

Values of the three parameters obtained by CACO for four currencies are
listed in Table 1. Due to lack of forecasting values indicated in Lisi and Schiavo
(1999), Figs. 6-9 show point-to-point comparisons of actual values, HSVMG
(Pai et al., 2006), and values forecasted by the proposed SVRCACO model.

Table 1. Values of three parameters for four currencies according to SVRCACO
models

Currencies Parameters NMSE* of testing
exchange rates o C 5 (%)
FF/USD 0.5339 33.4960  0.2099 0.3921
DM/USD 1.3467 13.8350 0.0365 0.4467
LIT/USD 0.6815 3186.1 19.7100 0.0620
GBP/USD 2.8125 9.8047  0.0117 0.4123

* — the values of NMSE are based on levels of exchange rates.

Lisi and Schiavo (1999) used the proportional error reduction (per) to com-
pare the improvement of forecasting accuracy. The per is defined as

NMSE,
per < NMSEryw > (18)

where NMSE,,,; is the NMSE of the proposed model, the SVRCACO model,
the HSVMG model, the NN model, or the VLLR model; NMSERry refers to
the NMSE of the random walk model. To compare the forecasting perfor-
mance of different models on the same basis, the proportional error reduction
(per) is employed in this study. However, comparison should be based on the
same conditions, for example, in Lisi and Schiavo (1999), due to the value of
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NMSErw = 0.999, the forecasting results are referred to returns of exchange
rates instead of levels of exchange rates. Therefore, the forecasting results from
Pai et al. (2006) and this research should be transferred from levels to returns
by the following relation:
After transformation by (19), the values of NMSEgnsyme and NMSEsvrcaco
are calculated, as shown in Table 2. The experimental results compared with
the other four approaches are also illustrated in Table 2. These results indicate
that the SVRCACO model provides more accurate forecasting results than the
HSVMG, NN, VLLR and RW models.

Table 2. The comparison of forecasting performances for different models

Model Index FF/USD | DM/USD | LIT/USD | GBP/USD
NMSE* 0.7831 0.7239 0.7530 0.6452
SVRCACO per 21.6%** 26.3%** 23.6%** 34.4%**
NMSE* 0.8489 0.7579 0.7757 0.6530
HSVMG per 15.0% 22.9% 21.3% 33.6%
NN NMSE* 0.864 0.808 0.891 0.658
per 13.5% 17.8% 9.6% 33%
%k
VLLR NMSE 0.864 0.845 0.780 0.792
per 13.5% 14.0% 20.9% 19.4%
RW NMSE* 0.999 0.983 0.986 0.983

* — the values of NMSFE are based on returns of exchange rates.

** — indicating the highest improvement rate (Per)

Furthermore, due to the same forecasting theoretical background of the
HSVMG and SVRCACO models, it is necessary to verify the contributions from
the employed heuristics, i.e., genetic algorithms versus continuous ant colony
optimization algorithm. To assess the statistical significance of the forecasts,
we used a statistical test proposed by Diebold and Mariano (1995). First, the
actual and forecasted changes of four currencies are shown in Figs. 10-13, in
which the forecasted values of HSVMG and SVRCACO move over time, and,
particularly, the movements of HSVMG are more sensitive than those of SVR-
CACO in terms of exchange rates. Secondly, the loss-differential series of the
two models for the four currencies are shown in Figs. 14 to 17. The sample au-
tocorrelation function (shown in Figs. 18 to 21), which decays quickly, indicates
that the approximate stationarity is supported in the four currency cases. In
addition, because the forecasts in this paper are three-step-ahead, thus, at least
two-dependent forecast errors should be allowed. Based on the autocorrelation
function of the loss differential for the four currencies (shown in Figs. 18 to 21),
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in which significant autocorrelations appear at lags 1 and 2, the intuition of
two-dependence is confirmed.

Based on Diebold and Mariano’s suggestion, the asymptotic test (S7) is
applied, because one or more assumptions are violated necessary for the simple F'
test, the Morgan-Granger-Newbold test, and the Meese-Rogoff test. Therefore,
the S; statistic, defined as below, is employed in this study,

§=—L (20)

/27 f4(0)
T

where d; is the loss-differential series of HSVGM and SVRCACO models, defined
as

di = e%i - e%i (21)

e1 and ez denoting the errors of the HSVMG and SVRCACO models, respec-
tively; 27 f4(0) is the weighted sum of the available sample autocovariances:

T-1

5 T
2 = 1 — | Ya(T 22
w0 = X 1 (i) ) (22)
T=—(T-1)
where T is the sample size; 94(T") is defined as below:
1 & : .
Ya(T) = T > (de = d)(dyyr) — d) (23)
t=|7|+1

and 1 % ( S(TT)) is the lag window, defined as:

T 1 it ‘L <1
1x = S(T)| —= 24
<S(T)> { 0 otherwise (24)

obviously, S(T) = k — 1, where k denotes as the number of forecasting steps
ahead.

The test was performed at the 0.05 and 0.10 significance levels in two-tail-
tests under the null hypothesis of equal forecast accuracy for the HSVGM model
and the SVRCACO model. The test results (Table 3) showed that the SVR-
CACO model only yields significantly improved forecast accuracy in comparison
with the HSVMG model in FF/USD and DM /USD currencies. Altogether, with
the forecasting results at hand, we could only conclude that the CACO may be
a useful alternative evolutionary algorithm to determine more suitable parame-
ter combination in a SVR model in terms of FF/USD and DM/USD currencies
exchange rates forecasting.




Exchange rate forecasting with SVR and ant colony algorithms 879

Exchange rates
7.0000

—&— Actual —{—HSVMG
—#—SVRCACO -- O-- Random walk model

6.5000

6.0000

5.5000

5.0000

4.5000 -

4.0000

Oct-91  Feb-92  Jun-92  Oct-92  Feb-93  Jun-93  Oct-93 Feb-94 Jun-94 Oct-94 Feb-95 Jun-95
Months

Figure 6. Monthly exchange rates of French Franc (FF)

Exchange rates
1.9000

—&— Actual —{—HSVMG
—/x—SVRCACO - - O-- Random walk model

1.8000

1.7000

1.6000

1.5000

1.4000

1.3000

1.2000
Oct-91 Feb-92 Jun-92 Oct-92 Feb-93 Jun-93 Oct-93 Feb-94 Jun-94 Oct-94 Feb-95 Jun-95

Months

Figure 7. Monthly exchange rates of Deutschmark (DM)



880 W.M. HUNG, W.CH. HONG

Exchange rates

1900.00

1800.00

1700.00

1600.00

1500.00

1400.00

1300.00

1200.00

1100.00 —&— Actual —{—HSVMG
—Zx—SVRCACO --O-- Random walk model

1000.00

900.00
Oct-91 Feb-92 Jun-92 Oct-92 Feb-93 Jun-93 Oct-93 Feb-94 Jun-94 Oct-94 Feb-95 Jun-95

Months

Figure 8. Monthly exchange rates of Italian Lira (LIT)

Exchange rates
0.750

0.700

0.650

0.600

0.550

0.500 - —— Actual —{—HSVMG
——SVRCACO -- O- - Random walk model
0.450
Oct-91 Feb-92 Jun-92 Oct-92 Feb-93 Jun-93 Oct-93 Feb-94 Jun-94 Oct-94 Feb-95 Jun-95
Months

Figure 9. Monthly exchange rates of British Pound (GBP)



Exchange rate forecasting with SVR and ant colony algorithms

881

Changes
1.5000

1.0000

0.5000

0.0000

-0.5000

-1.0000 -

-1.5000 -

Oreseninn 1T

[—#—Actual --O-- HSVMG -4~

'SVRCACO |
-2.0000 !

Nov-91

Jan-92

Mar-92

May-92

Jul-92

Sep-92

Nov-92

Jan-93
Mar-93

May-93

Jul-93

Sep-93

Nov-93

Jan-94

Mar-94

May-94

Jul-94

Sep-94
Nov-94

Jan-95

Mar-95

May-95

Jul-95

Sep-95

Time (FF)

Figure 10. Actual and forecasted changes of the exchange rate of French Franc
(FF)

Changes
0.3000

0.2000

0.1000

0.0000

-0.1000

-0.2000 -

-0.3000 -

-0.4000

o

| —+— Actual --0-- HSVMG - A- SVRCACO]

o«
=

Figur
(DM)

Nov-91

Jan-92

Jul-92

Mar-92
May-92

Sep-92

Nov-92

Jan-93

Mar-93

May-93

Jul-93

9
@
o)

Nov-93

Jan-94

Mar-94

May-94

Time (DM)

e 11.

Jul-94
Sep-94
Nov-94

Jan-95
Mar-95

May-95

Jul-95

Sep-95

Actual and forecasted changes of the exchange rate of Deutschmark



882 W.M. HUNG, W.CH. HONG

Changes
200.00
150.00
100.00
50.00
0.00
-50.00 :
-100.00 - s a! o
[—*—Actual --0-- HSVMG - - SVRCACO :
[m]
-150.00 |
- aQ Qq Qa Qqa QqQ a o« o« g} bsg) bsg) s = = = =+ =+ = w w w w w
2232922292933 3223323239229 29
> = - [ 2 = =} - [ 2 = = - 1 2 z = - [ 2
EEFEREEEFEREEEEEREREEFER
Time (LIT)
Figure 12. Actual and forecasted changes of the exchange rate of Italian Lira
(LIT)
Changes
0.08
o
0.06 h
0.04
0.02
0
-0.02
-0.04 ;
Is] u]
| —+—Actual --0-- HSVMG - A- SVRCACO]
-0.06
Y QN QA o Qq q o [sg) (s fsg (s [sg) [ag) =+ = - =+ = =3 w w w w w
22 9222333 FFgF 33333333 3 9
= = - == 2 z = = == 2 14 = -] = = =% z = - == =3
55 2853552853552 58:35E8¢8;
Time (GBP)

Figure 13. Actual and forecasted changes of the exchange rate of British Pound
(GBP)



883

Exchange rate forecasting with SVR and ant colony algorithms

Pl

20
15

Differential
10

0
-5

-10

S6-3ny
S6-unf
S6-1dy
S6-924
$6-22a
$6P0
$6-3ny
p6-unf
p6-1dy
$6-924
€6-920
£6P0

€6-3ny ¢

€6-unf
€6-1dy
€6-924
76-2a
6P0
76-3ny
z6-unf
26-1dy
76-924
16-2d
1600

Time (FF)

Figure 14. Loss differential (HSVMG-SVRCACO) of French Franc (FF)

Differential

-0.2
-04
-0.6
-0.8

S6-3ny
Se-unf
S6-1dy
S6-924
$6-920
$6P0
p6-30y
p6-unf
p6-1dy
$6-994
£6-2Q
€6P0
€6-3ny
€6-unf
€6-1dy
€6-924
76-9a
26P0
76-3ny
76-unf
26-1dy
76-924
16-2d
16P0

Time (DM)

Figure 15. Loss differential (HSVMG-SVRCACO) of Deutschmark (DM)



W.M. HUNG, W.CH. HONG

/

-200000 -

Differential
400000 -
200000 -
0
-400000 -

600000
-600000

884

S6-3ny
S6-unf
s6-1dy
S6-924
$6-92
$6-P0
$6-3ny
p6-unf
p6-1dy
Y6-92d
€6-90
£6-0
€6-3ny
€6-unf
€6-1dy
£6-924
76-92a
60
76-3ny
z6-unf
26-1dy
6~
16-2d
16-120

Time (LIT)

Figure 16. Loss differential (HSVMG-SVRCACO) of Italian Lira (LIT)
Differential

02

015 |

0.1

0.05 |-

005 |-

0.1

S6-3ny
S6-unf
S6-1dy
S6-424
$6-92a
$60
$6-30y
p6-unf
p6-1dy
+6-924
£6-24
£6-0
€6-3ny
€6-unf
£6-1dy
£6-424
76-20
6-P0
76-3ny
6-unf
26-1dy
76-924
16-2d
16-P0

of British Pound (GBP)

Time (GBP)

Figure 17. Loss differential (HSVMG-SVRCACO)



Exchange rate forecasting with SVR and ant colony algorithms

885

Autocorrelation Function for FF

10 4

04 o

Autocorrelation
&
I

=)
™
I T

Figure 18. Loss differential autocorrelations of French Franc (FF)

Autocorrelation Function for DM

Figure 19. Loss differential autocorrelations of Deutschmark (DM)

Autocorrelation
&
9
|

Autocorrelation Function for LIT

04 -

Autocorrelation
Lhs
S5n
1

)
=
I

Figure 20. Loss differential autocorrelations of Italian Lira (LIT)

Autocorrelation Function for GBP

Autocorrelation
&
2

&
@
[ |

Figure 21. Loss differential autocorrelations of British Pound (GBP)



886 W.M. HUNG, W.CH. HONG

Table 3. Asymptotic test

Currencies exchange Asymptotic (S1) test
rates a=0.05 a=0.10
FF/USD H02€1=62 H0261:€2
HSVMG v.s SVRCACO | 51=1.913; p-value=0.0277 | S1=1.913; p-value=0.0277
(reject Ho) (reject Ho)
DM/USD H02€1=62 H0261:€2
HSVMG v.s SVRCACO | S1=1.707; p-value=0.0440 | S1=1.707; p-value=0.0440
(not reject Ho) (reject Ho)
LIT/USD Ho 1e1 = e2 H() e = e2
HSVMG v.s SVRCACO | §1=1.126; p-value=0.1296 | S1=1.126; p-value=0.1296
(not reject Ho) (not reject Ho)
GBP/USD Ho €1 = €2 Ho €1 = €2
HSVMG v.s SVRCACO | 51=0.936; p-value=0.1748 | S1=0.936; p-value=0.1748
(not reject Ho) (not reject Ho)

4. Conclusions

Accurate exchange rate forecasting is crucial for researchers and practitioners to
reduce the fluctuation clustering effect that worsens the efficiency and effective-
ness of time series prediction, particularly for avoiding large investment risk of
an enterprise during international business purchasing. The historical exchange
rate data of exemplary four currencies in this paper show a fluctuation trend,
which occurs in many currency exchange rate data. Therefore, overshoot or
undershoot of exchange rates influences the hedging decisions of an enterprise.
This study introduces the application of a forecasting technique, SVRCACO,
to investigate its feasibility for forecasting currency exchange rates. The ex-
perimental results indicate that the SVRCACO model has better forecasting
performance than the HSVMG, NN, VLLR, and RW models. The superior per-
formance of the SVRCACO model is firstly due to the generalization ability of
SVR model for forecasting and the proper selection of SVR parameters by the
CACO algorithm. Secondly, the SVR method employs the quadratic program-
ming technique which is based on the assumptions of convex set and existence
of global optimum solution. Therefore, SVR could theoretically approximate
global optimum solution if superior search algorithms were employed. As it is
known, genetic algorithms lack knowledge memory or storage functions, previ-
ous knowledge of the problem being associated with the population. Thus, this
drawback of GA would lead to time consuming and inefficient search for suit-
able parameters of an SVR model, which also often suffers from being trapped in
local optimum (Angeline, 1998; Liu et al., 2005). ACO is designed with knowl-
edge memory (pheromone updating) to efficiently learn and quickly search, and,
in this paper, three homogeneous ant colonies (for determination of three pa-
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rameters) could independently and simultaneously establish the shortest path
between ant nest and food. Thus, the algorithm is capable of avoiding being
trapped in local optimum and of maintaining forecasting accuracy.

Concerning forecasting accuracy improvement, based on the accuracy im-
provement significance test, it was shown that the SVRCACO model could
significantly outperform the HSVMG model only if minor changes of the ac-
tual exchange rate occurred (like for FF/USD and DM/USD), because minor
changes often generate several local minima; on the other hand, while changes of
the actual exchange rate are important (like for LIT /USD and GBP/USD), the
HSVMG model could significantly outperform the SVRCACO model as there
were less local minima.

This study is the first application of SVR with CACO for forecasting cur-
rency exchange rates. Many forecasting methodologies have been proposed to
deal with the fluctuation clustering effects. However, most models are time
consuming in verifying the suitable time-phase divisions, particularly when the
sample size is large. In this investigation, the SVRCACO model was shown to
provide a convenient and valid alternative for exchange rates forecasting. The
SVRCACO model directly uses historical observations from currency exchange
rate data and then determines suitable parameters by efficient optimization al-
gorithms. The next step would be to develop strategies to involve other factors
and meteorological control variables during investment period, such as critical
social events (e.g., terrorist attacks), the percentage of foreign direct investment
of the target country, and the hedging financial goods selection can be included
in the exchange rate forecasting model. In addition, as the proposed SVRCACO
model is a hybrid forecasting model, other advanced optimization algorithms for
parameter selection can be applied for the SVR model to satisfy the requirement
of real-time currency exchange rate data. The goal of the authors was to show
that combination of novel techniques is at least as good as the pure techniques.
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