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Abstract: The aim of this paper is to present bond portfolio
immunization strategies in the case of multiple liabilities, based on
single-risk or multiple-risk measure models under the assumption of
multiple shocks in the term structure of interest rates referring, in
particular, to Fong and Vasicek (1984), Nawalkha and Chambers
(1996), Balbás and Ibánez (1998) and Hürlimann (2002). Immu-
nization problem is formulated as a constrained optimization prob-
lem under a fixed open loop strategy. New risk measures associated
with changes of the term structure are also defined.
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1. Introduction
Management of interest rate risk, control of changes in value of a stream of
future cash flows as a result of changes in interest rates are important issues
for an investor. Therefore, many researchers have examined the immunization
problem for a portfolio when the investor is in debt and obliged to pay it off in
a fixed horizon date. An ideal situation is when the portfolio present value is
equal to the discounted worth of investor’s liability at the present moment and
does not fall below the target value (the terminal value of the portfolio under the
scenario of no change in the interest rate) at prespecified time. Early work on
immunization is based upon the Macaulay definition of duration and it is shown
independently by Samuelson (1945) and Redington (1952) that if the Macaulay
durations of assets and liabilities are equal, the portfolio is protected against
a local parallel change in the yield curve. Fisher and Weil (1971) formalize
the traditional theory of immunization, defining the conditions under which the
value of an investment in a bond portfolio is hedged against any parallel shifts
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in the forward rates. The main result of this theory is that immunization is
achieved if the Fisher-Weil duration of the portfolio is equal to the length of the
investment horizon (see Rządkowski and Zaremba, 2000). Unfortunately, this
traditional approach has serious limitation since it implies arbitrage opportunity
inconsistent with the rules of modern finance theory. To overcome it, the prob-
lem of immunization is formulated as a maxmin (see Bierwag and Khang, 1979)
or the Bayesian strategy (see Kondratiuk-Janyska and Kałuszka, 2005). Unfor-
tunately, the derived results strongly depend on the class of shocks and they are
not duration strategies in most cases. The pioneer work of Fong and Vasicek
(1984) indicates new direction in studying immunization. They propose to de-
termine the lower bound of the change in a portfolio value which leads to a risk
controlling strategy. Nawalkha and Chambers (1996), Balbás and Ibáñez (1998),
Balbás et al. (2002), Nawalkha et al. (2003) and Kałuszka and Kondratiuk-
Janyska (2004ab) follow their approach considering a single liability and a single
shock (a change) in the term structure of interest rates (TSIR for short). This is
far from reality since investors have to deal with multiple liabilities under mul-
tiple shocks in the TSIR. Obviously, multiple liabilities can be handled as an
extension of a single liability case by separately immunizing each of the liability
cash flows. However, this might not be the optimal solution. Therefore we set
different lower bounds on the change of portfolio value throughout the paper
but extending it to the fixed income portfolio with a given liability structure
(see Hürlimann, 2002) under multiple shocks. We choose one of the open loop
strategies and formulate the immunization problem as a constrained optimiza-
tion problem. In consequence, we present immunization strategies based on
single-risk measure models (see Section 3) or multiple-risk measure models (see
Section 4). New risk measures associated with changes of the term structure
are also defined. As a by-product, we generalize the risk measure defined by
Nawalkha and Chambers (1996). In the end, we briefly sketch the problem of
immunization when the open loop strategy is changed. No attempt has been
made here to study closed loop strategies. Some preliminary results can be
found in Ghezzi (1997, 1999, 2000).

2. Preliminary notations

Denote by [0, T ] the time interval with t = 0 the present moment, and let H
be an investor planning horizon, 0 < H < T , when the portfolio is rebalanced.
The portfolio consists of bond inflows At ≥ 0 occurring at fixed time t ≤ T
to cover multiple liabilities Lt due at dates t ≤ T (0 < t1 < t2 < . . . < td = T ).
This is a typical situation e.g. when an insurance company has to discharge
its random liabilities and invests the money in acquiring an immunized bond
portfolio. Denote the set of available bonds by A. Generally, this is an arbitrary
subset of [0,∞)d that might be nonconvex since we do not assume that the
market is complete and bonds are infinitely divisible. Additionally, we assume
that liabilities are nonnegative random variables. Consequently, Nt = At − Lt
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is the net cash flow at time t. By f(t, s) we mean an instantaneous forward
rate over the time interval [t, s] and therefore we can write that investing 1
at time t in a zero coupon-bond we get exp

(∫ s

t f(t, u)du
)

at time s. The set
of instantaneous forward rates {f(t, s) : 0 < t ≤ s} determines a random term
structure of interest rates defined on a probability space (Ω,F , P). At time
t = 0, s → f(0, s) is deterministic. Hence

• at = At exp
(∫H

t f(0, u)du
)

is the time-H value of At,

• lt = Lt exp
(∫H

t f(0, u)du
)

is the time-H value of Lt,

• nt = at − lt is the time-H value of net worth,
• A(t) =

∑
s≤t as is an accumulated value of assets,

• L(t) =
∑

s≤t ls is an accumulated value of liabilities,
• N(t) = A(t) − L(t),

• V (0) = E
∑

t nt = E
∫ T

0 dN(t) is the time-H average value of the portfolio
of asset and liability flows if forward rates equal future spot rates.

A decision problem of an investor is to design the stream of bonds to cover a
stream of liabilities. If among available bonds there are such that Nt = 0 for all
t, then the portfolio is immunized. In reality, the market is incomplete which
excludes an ideal adjustment of assets to liabilities. An investor constructing
a bond portfolio meets two kinds of risks: reinvestment and price. The first
one is connected with the way of reinvesting coupons paid before an investment
horizon. The other appears by pricing bonds before their expiry dates. Since a
portfolio value at time H depends on the reinvestment strategy, we require the
following open-loop strategy:
(a) If t < H then the value of Nt at time H is equal to

Nt exp

(∫ H

t

f(t, s)ds

)
.

That means that if Nt = At −Lt > 0 for 0 < t < H , an investor purchases
(H−t)-year strip bonds. Otherwise, he sells short (H−t)-year strip bonds.

(b) If t > H , the value of Nt at H equals

Nt exp
(
−
∫ t

H

f(H, s)ds

)
= Nt exp

(∫ H

t

f(H, s)ds

)
,

which means that at time H the portfolio priced according to the TSIR
is sold by the investor.

As a consequence, the value of a portfolio at H equals

∑
t

Nt exp

(∫ H

t

f(t ∧ H, s)ds

)
=
∑

t

nt exp (k(t)) ,
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where

k(t) =
∫ H

t

[f(t ∧ H, s) − f(0, s)] ds (1)

is a shock in the instantaneous forward rate and a∧ b = min(a, b). From the in-
vestor’s standpoint, the average time-H value of his portfolio under assumptions
(a)-(b) is given by

V (k) = E

(∫ T

0

exp k(t)dN(t)

)
. (2)

The classical immunization problem consists in finding a portfolio such that
V (k) ≥ V (0) for all k ∈ K, where K stands for a feasible class of shocks. Our
aim is to find a lower bound on infk∈K V (k) which is dependent only on bond
portfolio proportions. Next, we select at t = 0 such a portfolio among available
bonds on the market that this lower bound is maximal.

3. Single risk measure models

3.1. M-Absolute as a risk measure

The linear cash flow dispersion measure, the M-Absolute defined by Nawalkha
and Chambers (1996),

MNCh =

∫ T

0 |t − H | dA(t)∫ T

0 dA(t)

is an immunization risk measure designed to build immunized bond portfolios
in the case of a single liability. In the case of multiple liabilities, we define the
generalized M-Absolute of Nawalkha and Chambers by

M =
∫ T

0

|A(t) − A(T ) + E(L(T )− L(t))| dt.

Lemma 3.1 In the case of a single nonrandom liability at time H such that
N(T ) = 0,

M = A(T )MNCh.

Proof. Since L(t) = 0 for t < H and L(t) = L for t ≥ H thus integrating by
parts we get

M =
∫ T

0

|A(t) − L(t)| dt =
∫ H

0

(t − H)′ A(t)dt +
∫ T

H

(t − H)′ (A(T ) − A(t)) dt

=
∫ T

0

|t − H |dA(t),
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which is the desired conclusion.

Introduce a class of shocks related to Nawalkha and Chambers (1996):

KNCh =
{
k(·) : k1 ≤ (E exp(k(t)))′ ≤ k2 for all t ∈ [0, T ]

}
,

where k1, k2 are arbitrary numbers. We assume that the function

t → (E exp(k(t)))′

is continuous for all k(·) ∈ KNCh. Here and subsequently, a prime denotes a
partial derivative with respect to t.

We will make the following assumption:
A1. A random variable lt is independent from the TSIR for every t > 0 .

Proposition 3.1 Under assumption A1, a lower bound on the post-shifts change
in the portfolio expected time-H value is given by

inf
k∈KNCh

V (k) − V (0) ≥ −k3M, (3)

where k3 = max(−k1, k2).

Proof. From assumption A1, we get

V (k) =
∑

t

E
[
nte

k(t)
]

=
∫ T

0

Eek(t)dEN(t)

= Eek(T )EN(T )−
∫ T

0

EN(t)
(
Eek(t)

)′
dt

=
∫ T

0

(EN(T ) − EN(t))
(
Eek(t)

)′
dt + EN(T ).

As EN(T ) = V (0), we have

inf
k∈KNCh

V (k) − V (0) ≥ −k3

∫ T

0

|EN(t) − EN(T )|dt = −k3M,

as desired.

As a corollary of Proposition 3.1 we get the following immunization strategy:

min (At)∈A

∫ T

0

|A(T ) − A(t) + E (L(t) − L(T ))| dt.

Example 3.1 Suppose that d kinds of zero coupon bonds are available on the
market. The face value of the bond at the maturity date t is Bt. Denote
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by bt = Bt exp
∫H

t
f(0, u)du the time-H value of Bt. An investor builds an

immunized portfolio to discharge his liabilities Lt under the assumption that
EN(T ) = 0. Denoting by xt the amount of purchased t-year bond units, the
immunization problem should be solved according to the model:

min
(xt)

∫ T

0

∣∣∣∣∣∣
∑
s≤t

xsbs − EL(t)

∣∣∣∣∣∣ dt (4)

subject to
∑

t

xtbt = EL(T ), xt ≥ 0 for all t.

Remark 3.1 If the sequence (Nt) is nonrandom, it is necessary to assume that
k1 < 0 and k2 > 0 in order to exclude the arbitrage opportunity. Then the lower
bound in (3) is negative.

Proposition 3.1 holds under assumption A1. On the other hand, in the
portfolio consisting of options for interest rates or other derivative instruments
whose values depend on TSIR, this requirement is not satisfied. However, by
omitting it we get the following result:

inf
k∈Kmod

NCh

V (k) − V (0) ≥ −k3Mmod, (5)

where
• Kmod

NCh =
{
k(·) : k1 ≤ (ek(t)

)′ ≤ k2 for all t ∈ [0, T ], ω ∈ Ω
}

and k1, k2 ∈ R,
• Mmod = E

∫ T

0
|N(t) − N(T )|dt.

3.2. Duration gap as a risk measure

Duration is the most commonly used by practitioners measure of risk in bond
investing. We define

DA =
∫ T

0

tdA(t) =
∑

t

tat and DL =
∫ T

0

tdL(t) =
∑

t

tlt

as durations of the asset and liability cash flows, respectively. It is easy to check
that

DA = A(T )DFW
A and DL = L(T )DFW

L ,

where

DFW
A =

∑
t tAt exp

(
− ∫ t

0 f(0, s)ds
)

∑
t At exp

(
− ∫ t

0
f(0, s)ds

)
is the Fisher and Weil time-honored duration.
Following Fong and Vasicek (1984) define the class of shocks:
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KFV =
{
k(·) :

(
Eek(t)

)′ ≤ k1 for all t ∈ [0, T ]
}

, where k1 > 0.

The appropriate strategy would be to hold a portfolio of assets whose schedule of
cash flow at least covered the pattern of liabilities. But one might be interested
in more careful scenario, that is A(t) ≥ L(t) + c(t) for all t, where c(t) is
a nonnegative function. Thus, it is worth considering immunization among
portfolios belonging to the set:

AE (c) = {A(·) : A(t) ≥ E(N(T ) + L(t)) + c(t) for all t ∈ [0, T ]} . (6)

Proposition 3.2 For A(·) ∈ AE (c) and under assumption A1,

inf
k∈KF V

V (k) − V (0) ≥ k1 (DA − EDL) . (7)

Proof. By the proof of Proposition 3.1 we get

V (k) − V (0) =
∫ T

0

(EN(T ) − EN(t))
(
Eek(t)

)′
dt

≥ k1

∫ T

0

(EN(T ) − EN(t) + c(t)) dt −
∫ T

0

c(t)
(
Eek(t)

)′
dt

= k1E
∫ T

0

(N(T ) − N(t)) dt +
∫ T

0

c(t)
(

k1 −
(
Eek(t)

)′)
dt.

Integrating by parts we obtain

E
∫ T

0

(N(T )− N(t)) dt = −E
∫ T

0

td (N(T ) − N(t)) = E
∫ T

0

tdN(t)

= DA − EDL,

which completes the proof.

Example 3.2 Let assume that a sequence of liabilities is nonrandom. Proposi-
tion 3.2 yields

inf k∈KF V V (k) − V (0) ≥ k1 (DA − DL) . (8)

Since for all A(·) ∈ AE(0)

DA − DL =
∫ T

0

(N(T ) − N(t)) dt ≤ 0

then the right-hand side of inequality (8) is negative and the arbitrage opportu-
nity is excluded. Immunization in a class of feasible portfolios consists in finding
a portfolio whose duration gap is the smallest.
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Remark 3.2 The generalized M-Absolute and duration gap DA − EDL are re-
lated by

|DA − EDL| ≤ M.

This means that the portfolio for which M is minimized has small duration gap.
The proof is straightforward.

Introduce

A (c) = {A(·) : A(t) ≥ N(T ) + L(t) + c(t) for all t ∈ [0, T ], ω ∈ Ω} .

Upon dropping of assumption A1, the following Proposition holds:

Proposition 3.3 If A(·) ∈ A(c), then

inf
k∈K0

V (k) − V (0) ≥ k1(DA − EDL), (9)

where K0 = {k(·) : supt∈[0,T ]

(
ek(t)

)′ ≤ k1 for all ω ∈ Ω} with k1 being a real
number.

Proof. The proof is extremely similar to that for Proposition 3.2 and we omit
it.

3.3. Other single risk measures

In this subsection we present different lower bounds on V (k)− V (0) and define
new single risk measures not presented in the literature so far.

Proposition 3.4 Let assumption A1 holds. Then for every A(·)

inf
k∈K1

V (k) − V (0) ≥ −k1

(∫ T

0

[EN(T ) − EN(t)]2 dt

) 1
2

, (10)

where K1 =
{

k(·) :
∫ T

0

[(
Eek(t)

)′]2
dt ≤ k2

1

}
with k1 being a positive number.

If assumption A1 is not satisfied, then

inf
k∈K2

V (k) − V (0) ≥ −k2

(∫ T

0

E (N(T ) − N(t))2 dt

) 1
2

, (11)

where K2 =
{

k(·) :
∫ T

0 E
[(

ek(t)
)′]2

dt ≤ k2
2

}
, k2 > 0.
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Proof. By the Cauchy-Schwarz inequality we get

V (k) − V (0) =
∫ T

0

E [N(T ) − N(t)]
(
Eek(t)

)′
dt

≥ −
[∫ T

0

[(
Eek(t)

)′]2
dt

] 1
2
[∫ T

0

[EN(T )− EN(t)]2 dt

] 1
2

,

which completes the proof of (10). The proof for (11) is quite similar.

Inequality (10) implies the following immunization problem:

find a portfolio which minimizes∫ T

0

[A(T ) − A(t) + E(L(t) − L(T ))]2 dt. (12)

Example 3.3 Under the assumptions like in Example 3.1, strategy (12) leads
to the following optimization problem:

min
(xt)

∫ T

0

⎡
⎣∑

s≤t

xsbs − EL(t)

⎤
⎦

2

dt (13)

subject to
∑

t

xtbt = EL(T ), xt ≥ 0 for all t.

Since all the functions occurring in (13) are convex with respect to xt, the
Karush-Kuhn-Tucker conditions are necessary and sufficient for the optimality
of a portfolio (see e.g. Panjer, 1998, p. 426).

Remark 3.3
If the Hölder or Young inequalities are applied instead of the Schwarz inequality,
one gets other measures in the form of

∫ T

0 |EN(T )− EN(t)|p dt for p > 1. How-
ever, these problems become so complicated that numerical methods are needed
to obtain the optimal portfolio composition.

4. Second-order duration risk measures
The goal of researchers is to provide the simplest applicable models since in-
vestors need simplicity and power. Single-risk models such as duration are rela-
tively easy to implement and therefore are worth studying. On the other hand,
multiple-risk-measure models have been developed to improve performance rel-
ative to single-risk-measure models. Higher order duration risk measures can
capture large shifts in different shape parameters of the TSIR. However, they
can be difficult to implement. To keep the balance between complexity and
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satisfactory adjustment to reality, we concentrate on second-order duration risk
measures. Define

CA =
∫ T

0

t2dA(t) =
∑

t

t2at and CL =
∫ T

0

t2dL(t) =
∑

t

t2lt

as convexities of the asset and liability cash flows at time H , respectively. It is
easy to check that

CA = A(T )C(0)
A and CL = L(T )C(0)

L ,

where

C
(0)
A =

∑
t t2At exp

(
− ∫ t

0
f(0, s)ds

)
∑

t At exp
(
− ∫ t

0 f(0, s)ds
)

is a traditionally defined assets convexity.
Introduce a set of admissible investment strategies

A2 =
{

A(·) :
∫ t

0

(A(s) − A(T ) + E(L(T )− L(s))) ds ≥ 0 for all t ∈ [0, T ]
}

.

Note that A2 includes AE(0) (see (6)).

Proposition 4.1 Under assumption A1 and for all A(·) ∈ A2

inf
k∈K3

V (k) − V (0) ≥ inf
k∈K3

[
(DA − EDL)

(
E
(
ek(T )

)′
− k1T

)]

+
1
2
k1 (CA − ECL) , (14)

where K3 =
{
k(·) : inft∈[0,T ] E

[(
ek(t)

)′′] ≥ k1

}
with k1 being a real number.

Proof. Assumption A1 and integration by parts lead to

V (k) − V (0) = E
∫ T

0

[N(T ) − N(t)]
(
ek(t)

)′
dt

= E
∫ T

0

(N(T ) − N(s)) dsE
(
ek(T )

)′

+
∫ T

0

E
(
ek(t)

)′′ ∫ t

0

(EN(s) − EN(T )) dsdt

≥ (DA − EDL)E
(
ek(T )

)′
+ k1

∫ T

0

∫ t

0

[EN(s) − EN(T )]dsdt. (15)
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Note that

∫ T

0

∫ t

0

[EN(s) − EN(T )]dsdt = E

[
t

∫ t

0

(N(s) − N(T )) ds

∣∣∣∣
T

0

−
∫ T

0

t [N(t) − N(T )]dt

]

= −TE(DA − DL) − 1
2
E
[
t2 (N(t) − N(T ))

∣∣T
0

]
+

1
2
E
∫ T

0

t2dN(t)

= −T (DA − EDL) +
1
2
(CA − ECL). (16)

From (15) and (16) we get (14), which is the desired conclusion.

As a corollary of Proposition 4.1 we get the following immunization strategy:

choose a portfolio which minimizes CA (17)

subject to DA = EDL, E
∫ t

0

[N(s) − N(T )]ds ≥ 0 for all t ∈ [0, T ]

under the condition that k1 < 0. Hence an investor’s aim is to find a duration-
matching portfolio with the lowest convexity. In this case, a solution to (17) is
a bullet portfolio. On the other hand, if k1 > 0 an investor should

construct a portfolio which maximizes CA (18)

subject to DA = EDL, E
∫ t

0

[N(s) − N(T )]ds ≥ 0 for all t ∈ [0, T ].

It is well-known that a barbell portfolio has the highest convexity (Zaremba,
1998, Zaremba and Smoleński, 2000ab). A selection of a unique bond portfolio
corresponding to the strategy (17) or (18), respectively, under the conditions
like in Example 1 consists in solving an equivalent problem:

min
(xt)

∑
t

t2xtbt (19)

subject to
∑

t

txtbt = EDL,
∑

t

xtbt = EL(T ),

∫ t

0

∑
u≤s

xubuds ≥
∫ t

0

EL(s)ds, xt ≥ 0, for all t ∈ [0, T ].

Since the function occurring in (19) is linear, the Karush-Kuhn-Tucker condi-
tions are necessary and sufficient for the optimality of a portfolio.



346 A. KONDRATIUK-JANYSKA, M. KAŁUSZKA

Remark 4.1 If it is impossible to construct a bond portfolio such as DA = EDL,
then this condition should be replaced by DA − EDL = G, where G is a fixed
duration gap. Since 0 ≤ ∫ T

0
[EN(s) − EN(T )]ds = EDL − DA holds, G must

be a negative number.

Proposition 4.1 holds for any sequence (Nt) such as
∫ t

0
(EN(s) − EN(T ))ds ≥ 0

for all t. Now we drop this constraint. Put

K4 =

{
k(·) : E

∫ T

0

[(
ek(t)

)′′]2
dt ≤ k2

1

}
, k1 > 0.

Proposition 4.2 Under assumption A1 and for an arbitrary sequence (Nt)

inf
k∈K4

V (k) − V (0) ≥ inf
k∈K4

[
(DA − EDL)E

(
ek(T )

)′]

−k1

[
E
∫ T

0

(∫ t

0

(N(s) − N(T ))ds

)2

dt

] 1
2

. (20)

Proof. Analysis similar to that in the proof of Proposition 4.1 shows that

V (k) − V (0) ≥ E
[
(DA − DL)

(
ek(T )

)′]
+ E

∫ T

0

(ek(t))′′
∫ t

0

(N(s) − N(T ))dsdt.

By the Cauchy-Schwarz inequality,

E
∫ T

0

(ek(t))′′
∫ t

0

(N(s) − N(T ))dsdt ≥ −
[
E
∫ T

0

((
ek(t)

)′′)2

dt

] 1
2

×
[
E
∫ T

0

(∫ t

0

(N(s) − N(T ))ds

)2

dt

] 1
2

,

which is our claim.

From Proposition 4.2 we obtain the optimization problem:

min (At)∈AE
∫ T

0

(∫ t

0

(A(s) − L(s)) ds − t (A(T ) − L(T ))
)2

dt (21)

subject to DA = EDL,

where A is a class of available asset cash flows.

Example 4.1 Reconsider assumptions in Example 3.1 by adding conditions
that L(t) is nonrandom and A(T ) = L(T ). Thus, strategy (21) leads to the
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following optimization problem:

min
(xt)

∫ T

0

⎛
⎝∫ t

0

⎛
⎝∑

u≤s

xubu − L(s)

⎞
⎠ ds

⎞
⎠

2

dt (22)

subject to
∑

t

xtbt = L(T ),
∑

t

txtbt = DL, xt ≥ 0 for all t.

Remark 4.2 The results of the paper can be easily modified to different open
loop strategies. We may, e.g., choose assets satisfying the following conditions:

C1. Nt1 ≥ 0 which states that Lt1 is discharged,
C2. Nt2 + Nt1 exp

(∫ t2
t1

f(0, s)ds
)
≥ 0 which states that Lt2 is discharged

and so on, till tk = H when the portfolio is sold. The above conditions can be
rewritten as follows: for every t ≤ H,

N(t) ≥ 0.

Under this scenario, the time-H value of the portfolio is given by

V (k) = E

(∫ T

0

exp
(
k̃(t)

)
dN(t)

)
,

where

k̃(t) =

⎧⎨
⎩
∑

t≤ti≤H

∫ ti+1

ti
(f(ti, s) − f(0, s))ds for t < H

− ∫ t

H (f(H, s) − f(0, s)) ds for t ≥ H

Obviously, k̃(t) = k(t) for t > H but k̃(t) might be different from k(t) defined in
(1). Nevertheless, by appropriately modifying the class of shocks in Propositions
1-6, one can derive their counterparts for the new reinvestment strategy. How-
ever, the condition: N(t) ≥ 0 for all t ≤ H, should be added to the constrained
set of optimization problems.

5. Conclusions
The traditional approach to the problem of immunization is to construct a port-
folio such that V (k) ≥ V (0) for all k ∈ K, where K is a feasible class of shocks.
Unfortunately, this implies arbitrage opportunity inconsistent with the rules of
modern finance theory. One of the way to overcome it is to view the immu-
nization as a maxmin strategy (see Bierwag and Khang, 1979) guaranteeing the
highest return of a portfolio. However, finding direct solutions is very difficult
on the incomplete market. Hence, Fong and Vasicek (1984) propose to set the
lower bound of the change in a portfolio value which lead to a risk controlling
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strategy. We follow their approach by maximizing lower bounds of the change
in a portfolio value considering the case of multiple liabilities and shocks in
the TSIR in a model of discrete time. This approach implies new strategies
of immunization that consist in maximizing either single-risk or multiple-risk
measures under a fixed open loop strategy. We briefly discuss the problem of
immunization when the open loop strategy is changed.
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Note added in proof

During the review process we found a paper by Gajek (2005) concerning the
problem of asset and liability immunization. However, the problem is formulated
from a different standpoint. Asset and liability streams are hedged on time 0
whereas we consider time H > 0. Moreover, the results obtained under a
martingale structure assumption cannot be reduced to ours and vice versa.
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