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1. Introduction

The behaviour of a number of control systems (e.g. air traffic control, chemical
engineering, transportation, manufacturing systems, robotics) can be modelled
by differential and algebraic equations with delay. They are models of inhomo-
geneous systems (Grossman et al., 1993; de la Sen, 1996). These systems are
described by a combination of differential and difference equations, with some
variables being continuous and some other piecewise continuous. In that sense
they are hybrid systems. It should be noted that the term ”hybrid systems”
has been widely used in the literature in various senses (Grossman et al., 1993;
de la Sen, 1996; Marchenko, Poddubnaya, 2002). Hybridity, however, reflects a
double structure of the systems and so linear differential-algebraic systems with
delays belong to the ”hybrid” class.

Observability of linear differential-algebraic systems with delays (DAD sys-
tems) has been studied for some years (Marchenko, Poddubnaya, Zaczkiewicz,
2006; Marchenko, Zaczkiewicz, 2005), but there are still open questions concern-
ing the classification of observability of DAD systems. The aim of this paper is
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to establish observability of nontrivial small solutions of DAD systems, which
is missing in the current classification.

A small solution of a DAD system is a solution that goes to zero faster
than any exponential function. Existence of such solutions for linear retarded
systems was proved by Henry (1970) and later by Kappel (1976) for linear
neutral systems. Lunel (1986) gave an explicit characterization of the smallest
possible time for which small solutions vanish. Observability of small solutions
for the retarded case was first studied by Manitius (1982) and for general neutral
systems with output delays by Salamon (1984).

2. Preliminaries

In this paper, we investigate the simplest linear time invariant differential-
algebraic systems with delays (DAD):

ẋ(t) =A11x(t) +A12y(t), t > 0, (1a)

y(t) =A21x(t) +A22y(t− h), t ≥ 0, (1b)

with output

z(t) = B1x(t) +B2y(t), (1c)

where x(t) ∈ Rn, y(t) ∈ Rm, z(t) ∈ Rr, t ≥ 0;A11 ∈ Rn×n, A12 ∈ Rn×m, A21 ∈
Rm×n, A22 ∈ Rm×m, B1 ∈ Rr×n, B2 ∈ Rr×m are constant (real) matrices,
0 < h is a constant delay. We regard an absolutely continuous n-vector function
x(·) and a piecewise continuous m-vector function y(·) as a solution of System
(1) if they satisfy the equation (1a) for almost everywhere t > 0 and (1b) for
t ≥ 0.

System (1) should be completed with initial conditions:

x(+0) = x0, y(τ) = ψ(τ), τ ∈ [−h, 0), (2)

where x0 ∈ Rn; ψ ∈ PC([−h, 0),Rm) and PC([−h, 0),Rm) denotes the set of
piecewise continuous m-vector-functions on [−h, 0]. Observe that y(t) at t = 0
is determined from the equation (1b).

3. Small solutions

In this section, following retarded functional-differential case described by Hale
and Lunel (1993), we introduce the concept of small solutions for DAD systems.

Let E(h) denote the exponential type of h : C → C, assuming h is an entire
function of order 1, for details see Boas (1954). Then

E(h) = lim sup
|s|→∞

log |h(s)|

|s|
.
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For h : C → Cq, the exponential type of h is defined by

E(h) = max
1≤j≤q

E(hj), where h = cal{h1, . . . , hq}.

Let ∆(p) be the characteristic matrix function

∆(p) =

(

pIn −A11 −A12

−A21 Im −A22e
−ph

)

.

The matrix function ∆(p) appears by applying the Laplace transform to System
(1). Let det ∆(p) be the determinant of ∆(p). It follows from the above that
the exponential type of det ∆(p) is less than or equal mh. Define ε by

E(det ∆(p)) = mh− ε.

Let adj ∆(p) be the matrix function of cofactors of ∆(p). Since the cofactors
Cij are (n + m − 1) × (n + m − 1) subdeterminants of ∆(p), the exponential
type of the cofactors is less than or equal to mh. Define σ by

max
1≤i,j≤n+m

E(Cij(p)) = mh− σ.

We present some useful tools for computing the exponential type of functions.

Lemma 1 (Lunel, 1993) Let F and G be entire functions such that F and G are
O(zl), l ∈ Z, in the closed right half plane. Then

E(F ·G) = E(F ) + E(G).

We can now prove the following result.

Theorem 1 For x(·), y(·) being solutions of System (1) the following implica-
tions hold: i) if

∀k ∈ Z x(t)ekt → 0 as t→ +∞, (3a)

then x(t) = 0 for all t ≥ ε− σ;
ii) if

∀k ∈ Z y(t)ekt → 0 as t→ +∞, (3b)

then y(t) = 0 for all t ≥ ε− σ.

Proof. Let x̂(s) =
∫ ∞

0 e−stx(t)dt and ŷ(s) =
∫ ∞

0 e−sty(t)dt. By (3), x̂(s) in case
i) (and ŷ(s) in case ii) is an entire function of order 1. Laplace transform of
System (1) yields

∆(s) ·

(

x̂(s)
ŷ(s)

)

=

(

x0

A22e
−sh

∫ 0

−h
e−τsψ(τ)dτ

)

.
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Hence

det ∆(s) ·

(

x̂(s)
ŷ(s)

)

= adj ∆(s) ·

(

x0

A22e
−sh

∫ 0

−h
e−τsψ(τ)dτ

)

. (4)

To compute the exponential growth of the right-hand side let us write it as
follows

adj ∆(s) ·

(

x0

A22e
−sh

∫ 0

−h
e−τsψ(τ)dτ

)

=

(

K11 K12

K21 K22

)

·

(

K1

K2

)

, (5)

where K11 ∈ Cn×n, K12 ∈ Cn×m, K21 ∈ Cm×n, K22 ∈ Cm×m, K1 ∈ Rn×1,
K2 ∈ Cm×1. We have (for details see Hale and Lunel, 1993)

E(K11) = mh− σ, E(K12) = (m− 1)h− σ,

E(K21) = (m− 1)h− σ,

E(K22) = (m− 1)h− σ,

E(K1) = 0,

E(K2) = h.

By the representation above, taking into account (4), (5) and Lemma 1, we
compute the exponential type of x̂(s) and ŷ(s) as follows

E(x̂(s)) = E((K11 ·K1 +K12 ·K2)/ det ∆(s)),

E(K11 ·K1) = mh− σ + 0,

E(K12 ·K2) = (m− 1)h− σ + h,

E(x̂(s)) ≤ mh− σ − (mh− ε) = ε− σ.

Similarly

E(ŷ(s)) = E((K21 ·K1 +K22 ·K2)/ det ∆(s)),

E(K21 ·K1) = (m− 1)h− σ + 0,

E(K22 ·K2) = (m− 1)h− σ + h,

E(ŷ(s)) ≤ mh− σ − (mh− ε) = ε− σ.

Hence, by the Paley-Wiener theorem, x(t) = 0 and y(t) = 0 for all t ≥ ε−σ.
This proves the theorem.

Now, we can define the following notions.
A solution of System (1) is said to be trivial if it vanishes for t ≥ 0.

Definition 1 We say that System (1) has a nontrivial small solution if there
exists a solution x(·), y(·) such that conditions (3) hold and at least x(·) or y(·)
is not trivial.
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Definition 2 We say that System (1) has a nontrivial small solution with
respect to x if there exists a solution x(·), y(·) such that condition (3a) holds
and x(·) is not trivial.

Similarly

Definition 3 We say that System (1) has a nontrivial small solution with
respect to y if there exists a solution x(·), y(·) such that condition (3b) holds
and y(·) is not trivial.

We illustrate the notions introduced by examples.

Example 1 Consider System (1) of the form :

ẋ(t) =
(

1
)

x(t) +
(

−1 1
)

y(t),

y(t) =

(

2
1

)

x(t) +

(

−2 4
−1 2

)

y(t− h), (6)

with initial conditions

x(+0) = −h+ h2, y(τ) =

(

3 + 4τ
1 + τ

)

, τ ∈ [−h, 0).

The characteristic matrix is given by

∆(s) =





s− 1 −1 1
−2 1 + 2e−sh −4e−sh

−1 e−sh 1 − 2e−sh



 with determinant det ∆(s) = s−2.

Then E(det ∆(p)) = 0 = 2h− 2h, so ε = 2h. The cofactor

C12(s) = −

∣

∣

∣

∣

s− 1 1
−1 1 − 2e−sh

∣

∣

∣

∣

= 2se−sh − 2e−sh − s

has exponential type h, then σ = h and ε− σ=h.
Upon computing the solutions, we obtain

x(t) = ((t− h) + 1)(t− h)

y(t) =

(

2((t− h)2 − 1 − (t− h))
(t− h)2 − 1 − (t− h)

)

for t ≥ 0.

It is easy to check that x and y satisfy (6) and there exist initial conditions
for which x, y vanish for all t ≥ h , then such a system has a nontrivial small
solution.

Example 2 Let us take System (1) of the form:

ẋ(t) =
(

1
)

x(t) +
(

1 1
)

y(t),

y(t) =

(

0
0

)

x(t) +

(

0 1
0 0

)

y(t− h), (7)
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with initial condition

x(+0) = 1, y(τ) =

(

τ
τ

)

, τ ∈ [−h, 0).

By integrating, we obtain

x1(t) = (2 − h)et + h− t− 1,

y1(t) =

(

t− h
0

)

for t ∈ [0, h)

and

x2(t) = (2 − h)et − et−h,

y2(t) =

(

0
0

)

for t ≥ h.

So we obtain a nontrivial small solution of the system with respect to y.

4. Observability of small solutions

Definition 4 (observability of nontrivial small solutions) The nontrivial small
solutions of System (1) are said to be observable if every nontrivial small solution
has a nonzero output for some t ≥ 0. This means that

∃T > 0
x(t) = 0 ∀ t ≥ T
y(t) = 0 ∀ t ≥ T
z(t) = 0 ∀ t ≥ 0







⇒ x(t)=0, y(t)=0, ∀t≥0.

Theorem 2 The nontrivial small solutions of System (1) are observable if and
only if the following conditions hold:

i) max
λ∈C

rank









A11 − λIn A12 0
A21 −Im A22

0 A22 0
B1 B2 0









=n+m+rankA22, (8)

ii) rank











B2

B2A22

...
B2(A22)m−1











= rank















B2

B2A22

...
B2(A22)m−1

A22















. (9)

Proof. Introduce notation:

A(λ) =





A11 − λIn A12 0
A21 −Im A22

0 A22 0



 , B =
[

B1 B2 0
]

, (10)
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K = max
λ∈C

rank

[

A(λ)
B

]

, k = rankA22.

Then K is always less than or equal to n+ m+ k.

Necessity

Suppose that K < n+m+ k. We shall prove that there exists a nontrivial
small solution of (1) with zero output in three steps.

Step 1. There exist polynomials

l(λ)=

ν
∑

j=0

ljλ
j , p(λ)=

ν
∑

j=0

pjλ
j , q(λ)=

ν
∑

j=0

qjλ
j ,

with l ∈ Rn[λ], p ∈ Rm[λ], q ∈ Rm[λ] such that l(λ) 6≡ 0 or p(λ) 6≡ 0 and

A(λ)





l(λ)
p(λ)
q(λ)



 = 0, B





l(λ)
p(λ)
q(λ)



 = 0 ∀λ ∈ C. (11)

Proof. Let M(λ) and N(λ) be unimodular matrices of appropriate size such that

M(λ)

[

A(λ)
B

]

N(λ) =





















α1(λ) 0 · · · 0
. . .

...
...

αK(λ) 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 . . . 0





















is in Smith-form and

[

A(λ)
B

]

N(λ) =







β11(λ) · · · βK1(λ) 0 · · · 0
...

. . .
...

...
β1 2m+n+r(λ) βK 2m+n+r(λ) 0 · · · 0






.

Then the last 2m+n−K columns





lj(λ)
pj(λ)
qj(λ)



, j = K+1, . . . , n+2m, of N(λ) sat-

isfy (11). Now, suppose that the polynomials lj(λ) and pj(λ) vanish identically.
The determinant of N(λ) equals ±1, then the qj(λ) are linearly independent
(for every λ ∈ C) and satisfy A22q

j(λ) = 0. This implies that

rankA22 ≤ m− (2m+ n−K) = K − n−m < k,

which is a contradiction.
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Let us define lj = 0, pj = qj = 0 for j ∈ Z and j 6∈ {0, . . . , ν}.

Step 2. The following equations hold for all j ∈ Z

0 = A11lj − lj−1 +A12pj ,

0 = A21lj − pj +A22qj ,

0 = A22pj , (12)

0 = B1lj +B2pj .

Proof. These equations follow from (11) by the comparison of coefficients. For
all λ ∈ C we have

0= [A11−λIn]l(λ)+A12p (λ) =
ν

∑

j=0

(A11lj +A12pj)λj −
ν

∑

j=0

ljλ
j+1

=

ν+1
∑

j=0

(A11lj − lj−1 + A12pj)λj ,

0 = A21l(λ) − p(λ) +A22q(λ) =

ν
∑

j=0

(A21lj − pj +A22qj)λj ,

0 = A22p(λ) =
ν

∑

j=0

A22pjλ
j ,

0 = B1l(λ) +B2p(λ) =
ν

∑

j=0

(B1lj +B2pj)λj .

This proves (12).

Step 3.The function

x(t) =

{

∑ν

j=0 lν−j
(t−h)j+1

(j+1)! , 0 ≤ t < h,

0, h ≤ t <∞,

y(t) =











∑ν

j=0 qν−j
(t)j+1

(j+1)! , −h ≤ t < 0,
∑ν

j=0 pν−j
(t−h)j+1

(j+1)! , 0 ≤ t < h,

0, h ≤ t <∞,

defines a nontrivial small solution of System (1) with zero output.

Proof. First note that x(t) or y(t) do not vanish identically for 0 ≤ t < h since
l(λ) or p(λ) is a nonzero polynomial. Secondly, it is easy to see that x(t) or y(t)
is absolutely continuous for t ≥ 0 or t ≥ −h. Finally, it can be proved — by the
use of (12) — that x(t) and y(t) satisfy System (1) for almost every t ≥ 0 and
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that the output z(t) given by (1c) vanishes for t ≥ 0. We have the following:

ẋ(t) =
ν

∑

j=0

lν−j

(t− h)j

j!

=

ν
∑

j=0

(A11lν−j+1 +A12pν−j+1)
(t− h)j

j!
+ (A11l0 +A12p0)

(t− h)ν+1

(ν + 1)!

= A11

ν
∑

j=0

lν−j

(t− h)j+1

(j + 1)!
+A12

ν
∑

j=0

pν−j

(t− h)j+1

(j + 1)!
= A11x(t) +A12y(t),

y(t) =

ν
∑

j=0

pν−j

(t− h)j+1

(j + 1)!
=

ν
∑

j=0

(A21lν−j +A22qν−j)
(t− h)j+1

(j + 1)!

= A21x(t) +A22y(t− h),

for τ ≥ 2h: y(τ)=y(t+h)=A21x(t+h)+A22y(t)=A22

ν
∑

j=0

pν−j

(t− h)j+1

(j + 1)!

=

ν
∑

j=0

A22pν−j

(t− h)j+1

(j + 1)!
=0,

z(t) = B1x(t) +B2y(t) = B1

ν
∑

j=0

lν−j

(t− h)j+1

(j + 1)!
+B2

ν
∑

j=0

pν−j

(t− h)j+1

(j + 1)!
=

=
ν

∑

j=0

(B1lν−j +B2pν−j)
(t− h)j+1

(j + 1)!
= 0.

Sufficiency

This part of the proof falls naturally into two parts: continuous and dis-
continuous. The first part considers the continuous part of a solution y(t).
The discontinuous part is discrete and finite because by (2) y(t) ∈ PC([ih, (i+
1)h),Rm), i = −1, , 0, 1, . . . and it has a finite number of discontinuities on
[−h, 0), they take place at points Tα = {t1, . . . , tα}.

Continuous Part

Suppose that K = n+m+ k and let x(t), y(t), t ≥ −h, be a solution of (1)
such that x(t) = 0, y(t) = 0 for t ≥ h and z(t) = 0 for t ≥ 0. Then we prove in
three steps that x(t) = 0 and y(t) = 0 for t ≥ 0.

Step 1. The complex functions

x̂(λ) =

∫ h

0

e−λtx(t)dt, ŷ(λ) =

∫ h

0

e−λty(t)dt,

ˆ̂y(λ) =

∫ 2h

0

e−λty(t− h)dt,
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satisfy the equation








A11 − λIn A12 0
A21 −Im A22

0 A22 0
B1 B2 0













x̂(λ)
ŷ(λ)
ˆ̂y(λ)



=









−x(0)
0
0
0









. (13)

Proof. For every λ ∈ C we have

[A11 − λIn]x̂(λ) +A12ŷ(λ) =

∫ h

0

e−λtA11x(t)dt −

∫ h

0

λe−λtx(t)dt

+

∫ h

0

e−λtA12y(t)dt =

=

∫ h

0

e−λt(A11x(t) − ẋ(t) +A12y(t))dt− x(0) = −x(0),

A21x̂(λ) − ŷ(λ) +A22
ˆ̂y(λ) =

∫ h

0

e−λtA21x(t)dt−

∫ h

0

e−λty(t)dt+

∫ 2h

0

e−λtA22y(t− h)dt =

=

∫ 2h

0

e−λt(A21x(t) − y(t) +A22y(t− h))dt = 0,

A22ŷ(λ) =

∫ h

0

e−λtA22y(t)dt = 0,

B1x̂(λ) +B2ŷ(λ) =

∫ h

0

e−λt(B1x(t) +B2y(t))dt =

∫ h

0

e−λtz(t)dt = 0.

Step 2.

There exist matrices D∈R(n+m+k)×(n+m+k+r)[λ] and R ∈ Rk×m such that

A22 = A22 ·R,

D(λ) ·









A11 − λIn A12 0
A21 −Im A22

0 A22 0
B1 B2 0









= In+m+k, (14)

where A22 ∈ Rm×k and rankA22 = k.

Step 3. x(t) = 0, y(t) = 0 for t ≥ 0.

Proof. By (13) and step 2 we have

D(λ) ·









−x(0)
0
0
0









=





x̂(λ)
ŷ(λ)

R · ˆ̂y(λ)



 . (15)
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The function on the left-hand side is of exponential type zero. Hence it
follows from the theorem of Paley and Wiener that x̂(λ) = 0 and ŷ(λ) = 0, thus
x(t) = 0 and y(t) = 0 for 0 ≤ t ≤ h.

Discontinuous Part
For a discontinuous part of a solution of System (1), we have that disconti-

nuities take place at t = ti + jh, ti ∈ Tα; j = 0, 1, . . . , and System (1) reduces
to

x(t) =0,

y(t) =A22y(t− h), t ≥ 0,

z(t) =B2y(t), t > 0.

Then z(ti + h + jh) = B2(A22)j+1y(ti), i = 1, . . . , α and condition (9) implies
(A22)0+1y(ti) = 0, i = 1, . . . , α, which concludes the proof of Theorem 2.

5. Observability of small solutions with respect to y and x

Now we examine the observability of small solutions with respect to y.

Definition 5 The nontrivial small solutions with respect to y of System (1)
are said to be observable if every nontrivial small solution with respect to y has
a nonzero output for some t ≥ 0. This means that

∃T > 0
y(t) = 0 ∀ t ≥ T
z(t) = 0 ∀ t ≥ 0

}

⇒ y(t) = 0, ∀t ≥ 0.

Theorem 3 The nontrivial small solutions of System (1) with respect to y are
observable if and only if

i) rank





A11 − λIn
A21

B1



 < n, for some λ ∈ C, (16)

ii) rank





−Im A22

A22 0
B2 0



= m+rankA22, (17)

iii) rank











B2

B2A22

...
B2(A22)m−1











= rank















B2

B2A22

...
B2(A22)m−1

A22















. (18)
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Proof.
Necessity

Let us assume that a nontrivial small solution with respect to y exists. Then
for any value of a solution x the output is zero. We have three cases here: first
when x equals zero, second when x changes into zero after some time, third
when x is nonzero. In the third case (the general case) we have

∃λ0 ∈ C rank

[

A11 − λ0In
A21

]

< n

and the condition for the output z(t) = B1x(t) = 0, for t > h implies:

rank





A11 − λ0In
A21

B1



 < n.

Sufficiency

When investigating the solution with respect to y we can split the solution into
a continuous part and a discontinuous one. To observe the continuous part
of the solution with respect to y we proceed similarly to Continuous Part of
Sufficiency proof of Theorem 2. We leave step 1 to the reader and the outline
of steps 2 and 3 is given as follows.

Condition (14) becomes:

A22 = A22 ·R,

Dy(λ) ·









A11 − λIn A12 0
A21 −Im A22

A21 A22 0
B1 B2 0









=

(

0n×n 0n×(n+k)

0(n+k)×n Im+k

)

,

where A22 ∈ Rm×k and rankA22 = k. Then, we arrive at condition (15):

Dy(λ) ·









−x(0)
0
0
0









=





0
ŷ(λ)

R · ˆ̂y(λ)



 .

The function on the left-hand side is of exponential type zero. Hence, it follows
from the theorem of Paley and Wiener that ŷ(λ) = 0, thus y(t) = 0 for 0 ≤ t ≤ h
and condition (17) holds. Proof of observability of the discontinuous part of the
solution with respect to y is the same as the proof of Theorem 2 of sufficiency,
discontinuous part. These conclude the proof of Theorem 3.

Corollary 1 The nontrivial small solutions of System (1) with respect to y
are observable only if nontrivial small solutions of System (1) are observable.
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Proof. If conditions (16), (17) and (18) are satisfied then for λ 6∈ σ(A11) (8)
is true and (9) is the same as (18). However, if condition (8) is true and

rank

[

A21

B1

]

= n, then (16) is always false.

Now we examine the observability of small solutions with respect to x.

Definition 6 The nontrivial small solutions with respect to x of System (1)
are said to be observable if every small solution with respect to x has a nonzero
output for some t ≥ 0. This means that

∃T > 0
x(t) = 0 ∀ t ≥ T
z(t) = 0 ∀ t ≥ 0

}

⇒ x(t) = 0, ∀t ≥ 0.

Theorem 4 The nontrivial small solutions of System (1) with respect to x are
observable if and only if

i) rank





A12 0
−Im A22

B2 0



 < m+ rankA22, (19)

ii) rank





A11 − λI
A21

B1



= n, for some λ ∈ C, (20)

iii) rank











B2

B2A22

...
B2(A22)m−1











= rank















B2

B2A22

...
B2(A22)m−1

A22















. (21)

Proof.
Necessity

Let us assume that nontrivial small solutions with respect to x exist. Then for
any value of solutions y the output is zero. We have three cases here: first when
y equals zero, second when y changes into zero after some time, third when y is
nonzero. In the third case (the general case) we have

rank

[

A12 0
−Im A22

]

< m+ rankA22

and the condition for the output z(t) = B2y(t) = 0, for t > h implies:

rank





A12 0
−Im A22

B2 0



 < m+ rankA22.

Thus, condition (19) holds.
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Sufficiency

When investigating the solution with respect to x we can split the solution into
a continuous part and a discontinuous one. To observe the continuous part
of the solution with respect to x we proceed similarly to Continuous Part of
Sufficiency proof of Theorem 2, we leave step 1 to the reader and the outline of
steps 2 and 3 is given by the following:

Condition (14) becomes:

A22 = A22 ·R,

Dx(λ) ·









A11 − λIn A12 0
A21 −Im A22

0 A22 A22

B1 B2 0









=

(

In×n 0n×(n+k)

0(n+k)×n I(n+k)×(m+k)

)

,

where A22 ∈ Rm×k and rankA22 = k. Then, condition (15) becomes

Dx(λ) ·









−x(0)
0
0
0









=





x̂
0
0



 .

The function on the left-hand side is of exponential type zero. Hence it follows
from a theorem of Paley and Wiener that x̂(λ) = 0 thus x(t) = 0 for 0 ≤ t ≤ h
and condition (20) holds. Proof of observability of the discontinuous part of the
solution with respect to x is the same as the proof of Theorem 2 of sufficiency,
discontinuous part. These conclude the proof of Theorem 4.

6. Examples

Example 3 Consider System (1) composed of the following matrices

A11 =
(

1
)

, AT
12 =





1
1
1



 , A21 =





1
1
1



 , A22 =





0 0 1
0 0 0
0 0 0



 , B1 =
(

−2
)

,

B2 =
(

0 1 1
)

.

Then we check condition (8):

max
λ∈C

rank

























1 − λ 1 1 1 0 0 0
1 −1 0 0 0 0 1
1 0 −1 0 0 0 0
1 0 0 −1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−2 0 1 1 0 0 0

























= 5
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and conditions (16), (17) and (9):

rank













1 − λ
1
1
1
−2













= 1 = n for all λ ∈ C, rank





















−1 0 0 0 0 1
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0





















= 3 < m+ k,

0 = rank





0 0 0
0 0 0
0 0 0



 6= rank

















0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

















= 1.

Thus, this system observes neither its nontrivial small solutions nor nontrivial
small solutions with respect to x and y.

Example 4 Let a system of the form (1) be given by

A11 =
(

1
)

, AT
12 =

(

1
1

)

, A21 =

(

0
0

)

, A22 =

(

0 1
0 0

)

, B1 =
(

0
)

, B2 =
(

3 0
)

.

It is easy to see that condition (8) is satisfied:

max
λ∈C

rank

















1 − λ 1 1 0 0
0 −1 0 0 1
0 0 −1 0 0
0 0 1 0 0
0 0 0 0 0
0 3 0 0 0

















= 4,

while conditions (16) and (17) take the form

rank













1 − λ0

0
0
0
0













λ0=1
= 0 < n, rank













−1 0 0 1
0 −1 0 0
0 1 0 0
0 0 0 0
3 0 0 0













= 3 = m+ k

and conditions (9), (19) are as follows
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1 = rank

[

0 3
0 0

]

= rank









0 3
0 0
0 1
0 0









= 1, rank









1 1 0 0
−1 0 0 1
0 −1 0 0
3 0 0 0









= 3 ≮ m+ k = 3.

This system satisfies the assumptions of Theorem 3, thus, according to Corol-
lary 1, it also fulfils the assumption of Theorem 2 but does not satisfy the
assumptions of Theorem 4.

7. Conclusion

In this paper we investigated the problem of small solutions of linear stationary
differential-algebraic systems with a delay. Existence of small solutions, small
solutions with respect to both x and y were presented. As a result parametric
rank conditions for observability of these types of small solutions were given.
Illustrative examples to every theorem were shown. The results obtained can
be generalized to differential-algebraic systems with many delays and to more
general observability problems for such systems. This will be the object of
another paper.
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