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Abstract: A numerical coupling of two recent methods in shape
and topology optimization of structures is proposed. On the one
hand, the level set method, based on the classical shape derivative,
is known to easily handle boundary propagation with topological
changes. However, in practice it does not allow for the nucleation
of new holes (at least in 2-d). On the other hand, the bubble or
topological gradient method is precisely designed for introducing
new holes in the optimization process. Therefore, the coupling of
these two method yields an efficient algorithm which can escape from
local minima in a given topological class of shapes. Both methods
rely on the notion of gradient computed through an adjoint analysis,
and have a low CPU cost since they capture a shape on a fixed
Eulerian mesh. The main advantage of our coupled algorithm is to
make the resulting optimal design largely independent of the initial
guess.
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1. Introduction

This paper is a logical sequel of our previous work Allaire, Jouve, Toader (2002,
2004), where we proposed a numerical method of shape optimization based on
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the level set method and on shape differentiation. Indeed, in Allaire, Jouve,
Toader (2002, 2004) we clearly indicated that, although the level set method
makes possible topology changes during the optimization process, it does not
solve the inherent problem of ill-posedness of shape optimization which mani-
fests itself in the frequent existence of many local (non global) minima, usually
having different topologies. The reason is that the level set method can easily
remove holes but can not create new holes in the middle of a shape since the
level set function obeys the maximum principle. In practice, this effect can be
checked by varying the initialization which yields different optimal shapes with
different topologies. To the best of our knowledge, other works on the level
set method in shape optimization were also subject to this difficulty, see Osher,
Santosa (2001), Sethian, Wiegmann (2000), Wang, Wang, Guo (2003). This
absence of a nucleation mechanism is inconvenient mostly in 2-d: in 3-d, it is
less important since holes can appear by pinching two boundaries (which can
occur without destroying the connectivity of the structure).

In the present paper we propose as a remedy to couple our previous method
with the topological gradient method of Schumacher, Masmoudi, Sokolowski
and their co-workers (Eschenauer, Schumacher, 1994; Céa et al., 2000; Garreau,
Guillaume, Masmoudi, 2001; Soko�lowski, Żochowski, 1999, 2001). Roughly
speaking the topological gradient method amounts to decide whether or not it
is favorable (for decreasing the objective function) to nucleate a small hole in a
given shape. As a matter of fact, creating a hole changes the topology and is thus
one way of escaping local minima (due to topological constraint). Our coupled
method of topological and shape gradients in the level set framework is therefore
a great improvement (at least in 2-d) with respect to previous methods and is
much less prone to finding local, non global, optimal shapes. In particular, for
most of our 2-d numerical examples of compliance minimization, the expected
global minimum is attained from the trivial full domain initialization. Never-
theless there are some (relatively few) examples of local minima if we choose
a different initialization. For the 2-d mechanism design our coupled method is
not fully independent of several parameters, including initialization, although
it already produces excellent results with the trivial full domain initialization.
To which extent the computed optimal shape depends on the initialization is
presumably varying with the type of considered objective functions. As we al-
ready said, this improvement is far less important in 3-d where there is more
geometrical freedom for the sole level set method, as confirmed by numerical
experiments (see Allaire, Jouve, Toader, 2004, and the examples of Section 8).
In practice, our 3-d numerical experiments for compliance minimization show
that the optimal shapes are the same for the level set method with or without
topological gradient (again, this may not be the case for other objective func-
tions). In any case we do not claim that our coupled method is the ultimate
one since local minima may still exist (even in the class of shapes sharing the
same topology) and the speed of convergence can probably still be improved.



Structural optimization using topological and shape sensitivity via a level set method 61

The main contribution of this paper is algorithmic and numerical. Actually,
the theoretical tools used here have already been described (albeit separately)
in the above quoted previous works. The novelty is in the coupling and in the
robustness of the proposed numerical implementation. Our basic algorithm is
to iteratively use the shape gradient or the topological gradient in a gradient-
based descent algorithm. The tricks are to carefully monitor the decrease of
the objective function (to avoid large changes in shape and topology) and to
choose the right ratio of successive iterations in each method. We provide several
2-d and 3-d numerical examples for compliance minimization and mechanism
design. In a slightly different context of inverse problems a different coupling
of the shape and topological gradients (using the level set method too) has
been proposed, Burger, Hackl, Ring (2004). There, the topological gradient was
incorporated as a source term in the transport Hamilton-Jacobi equation used
in the shape derivative algorithm for moving the shape. After this work was
completed we learned that a similar method was developed independently in
Wang, Yulin, Wang (2004).

2. Setting of the problem

In this paper we restrict ourselves to linear elasticity although there is no con-
ceptual difficulty in extending our work to non-linear elasticity (see Allaire,
Jouve, Toader, 2004). A shape is a bounded open set Ω ⊂ R

d (d = 2 or 3) with
a boundary made of two disjoint parts

∂Ω = ΓN ∪ ΓD, (1)

with Dirichlet boundary conditions on ΓD, and Neumann boundary conditions
on ΓN . All admissible shapes Ω are required to be a subset of a working domain
D (a bounded open set of R

d). The shape Ω is occupied by a linear isotropic
elastic material with Hooke’s law A defined, for any symmetric matrix ξ, by

Aξ = 2µξ + λ
(
Trξ

)
Id,

where µ and λ are the Lamé moduli of the material. The displacement field u
in Ω is the solution of the linearized elasticity system⎧⎨

⎩
−div (Ae(u)) = f in Ω

u = 0 on ΓD(
Ae(u)

)
n = g on ΓN ,

(2)

where f ∈ L2(D)d and g ∈ H1(D)d are the volume forces and the surface loads,
respectively. Assuming that ΓD �= ∅ (otherwise we should impose an equilibrium
condition on f and g), (2) admits a unique solution in u ∈ H1(Ω)d.

The objective function is denoted by J(Ω). A first classical example is the
compliance (the work done by the load)

J1(Ω) =
∫

Ω

f · u dx+
∫

ΓN

g · u ds =
∫

Ω

Ae(u) · e(u) dx, (3)
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which is very common in rigidity maximization. A second choice is a least square
error between u and a target displacement

J2(Ω) =
(∫

Ω

k(x)|u − u0|αdx
)1/α

, (4)

which is a useful criterion for the design of compliant mechanisms. We assume
α ≥ 2, u0 ∈ L∞(D) and k ∈ L∞(D), a non-negative given weighting factor. In
both formulas (3) and (4), u = u(Ω) is the solution of (2). We define a set of
admissible shapes that must be open sets contained in the working domain D
and of fixed volume V

Uad =
{

Ω ⊂ D such that |Ω| = V
}
. (5)

A model problem of shape optimization is

inf
Ω∈Uad

J(Ω). (6)

In practice we rather work with an unconstrained problem. Introducing a La-
grange multiplier �, we consider the Lagrangian minimization

inf
Ω⊂D

L(Ω) = J(Ω) + �|Ω|.

3. Shape derivative

In order to apply a gradient method to the minimization of (6) we recall the
classical notion of shape derivative, going back to Hadamard (see e.g. Murat,
Simon, 1976; Pironneau, 1984; Simon, 1980; Soko�lowski, Zolesio, 1992). Starting
from a smooth reference open set Ω, we consider domains of the type

Ωθ =
(

Id + θ
)
(Ω), (7)

with Id the identity mapping from R
d into R

d and θ a vector field inW 1,∞(Rd,Rd).
It is well known that, for sufficiently small θ, ( Id + θ) is a diffeomorphism in
R

d. We remark that all admissible domains Ωθ belong to the class of homo-
topy of the reference domain Ω (it implies that in 2-d the number of connected
components of the boundary remains constant). In other words, no change of
topology is possible with this method of shape variation.

Definition 3.1 The shape derivative of J(Ω) at Ω is defined as the Fréchet
derivative in W 1,∞(Rd,Rd) at 0 of the application θ → J

(
( Id + θ)(Ω)

)
, i.e.

J
(
( Id + θ)(Ω)

)
= J(Ω) + J ′(Ω)(θ) + o(θ) with lim

θ→0

|o(θ)|
‖θ‖ = 0 ,

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).
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We recall the following classical result (see Allaire, Jouve, Toader, 2004, and
references therein) about the shape derivatives for the two functionals under
consideration: the compliance J1 (see (3)) and the least square error J2 (see
(4)).

Theorem 3.1 Let Ω be a smooth bounded open set and θ ∈ W 1,∞(Rd; R
d).

Assume that the data f and g as well as the solution u of (2) are smooth, say
f ∈ H1(Ω)d, g ∈ H2(Ω)d, u ∈ H2(Ω)d. The shape derivative of (3) is

J ′
1(Ω)(θ) =

∫
ΓN

(
2

[
∂(g · u)
∂n

+Hg · u+ f · u
]
−Ae(u) · e(u)

)
θ · n ds

+
∫

ΓD

Ae(u) · e(u) θ · n ds
(8)

where H is the mean curvature defined by H = divn. The shape derivative of
(4) is

J ′
2(Ω)(θ) =

∫
ΓN

(
C0

α
k|u− u0|α +Ae(p) · e(u) − f · p

−∂(g · p)
∂n

−Hg · p
)
θ · n ds

+
∫

ΓD

(
C0

α
k|u− u0|α −Ae(u) · e(p)

)
θ · n ds

(9)

where p is the adjoint state, assumed to be smooth, i.e. p ∈ H2(Ω)d, defined as
the solution of⎧⎨

⎩
−div (Ae(p)) = −C0k(x)|u − u0|α−2(u− u0) in Ω

p = 0 on ΓD(
Ae(p)

)
n = 0 on ΓN ,

(10)

and C0 is a constant given by

C0 =
(∫

Ω

k(x)|u(x) − u0(x)|αdx
)1/α−1

. (11)

Remark 3.1 The shape derivative of the volume constraint is easily computed.
The result is

V (Ω) =
∫

Ω

dx ⇒ V ′(Ω)(θ) =
∫

∂Ω

θ · n ds.

4. Topological derivative

One drawback of the previous method of shape derivative is that there is no
change of topology in the parametrization Ωθ. Numerical methods based on the
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shape derivative may therefore fall into a local minimum (corresponding to the
initial topology). Recently, a remedy to this inconveniency has been proposed as
the bubble method, or topological asymptotic method, Eschenauer, Schumacher
(1994), Garreau, Guillaume, Masmoudi (2001), Soko�lowski, Żochowski (2001).
The main idea is to test the optimality of a domain to topology variations by
removing a small hole with appropriate boundary conditions.

We give a brief review of this method that we shall call in the sequel topo-
logical gradient method. Consider an open set Ω ⊂ R

d and a point x0 ∈ Ω.
Introduce a fixed model hole ω ⊂ R

d, a smooth open bounded subset contain-
ing the origin. For ρ > 0 we define the translated and rescaled hole

ωρ = x0 + ρω.

Then we define the perforated domain

Ωρ = Ω \ ω̄ρ. (12)

The goal is to study the variations of the objective function J(Ωρ) as ρ goes to 0.
By insertion of a hole, the class of homotopy of Ωρ is different from that of the
limit domain Ω. In particular, in 2-d the number of connected components of the
boundary varies. Therefore, this method, which performs topology variations,
is very different from the previous approach of shape derivative where the class
of homotopy of Ωθ, defined by (7), is always the same. In this respect, the
two methods of topology differentiation and shape differentiation are essentially
distinct. The corresponding sets of admissible domains have actually an empty
intersection, even though both shape and topological derivatives rely on the
adjoint method.

In the framework of structural optimization we put Neumann boundary con-
ditions on ∂ωρ. The objective function J(Ωρ) is computed with the elastic
displacement uρ, solution of the following elasticity problem

⎧⎪⎪⎨
⎪⎪⎩

−div (Ae(uρ)) = f in Ωρ

uρ = 0 on ΓD(
Ae(uρ)

)
n = g on ΓN(

Ae(uρ)
)
n = 0 on ∂ωρ.

(13)

Definition 4.1 If the objective function admits the following so-called topolog-
ical asymptotic expansion for small ρ > 0

J(Ωρ) = J(Ω) + ρdDTJ(x0) + o(ρd),

then DTJ(x0) is called the topological derivative at point x0.

Of course, since the topologies of Ωρ and Ω = Ω0 are different, the objective
function is not differentiable with respect to ρ or ρd, in the sense of the previous
section.
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The following result gives the topological derivative of the volume (or weight)
of the domain Ω. Note that this is a simple case where the functional does no
depend on the state u.

Lemma 4.1 The topological derivative of V (Ω) =
∫

Ω

dx is

DTV (x) = −|ω|.

From now on, we specify the model hole ω to be the unit ball. This simplifies
greatly the computations of the topological derivatives. However, note that the
shape of the model hole ω could also be optimized in order to find the ”best”
topological derivative, i.e. the smallest one if we minimize the objective function.
The following two results give the expressions of the topological derivative for
the compliance J1(Ω) (see (3)) and for the least square error J2(Ω) (see (4))
(for the proofs we refer to Garreau, Guillaume, Masmoudi, 2001; Soko�lowski,
Żochowski, 2001).

Theorem 4.1 Take ω to be the unit ball of R
d. Assume for simplicity that

f = 0 and that g as well as the solution u of (2) are smooth, say g ∈ H2(Ω)d,
u ∈ H2(Ω)d. For any x ∈ Ω the topological derivative of J1 is, for d = 2,

DTJ1(x) =
π(λ+ 2µ)
2µ(λ+ µ)

{
4µAe(u) · e(u) + (λ− µ)tr(Ae(u))tr(e(u))

}
(x), (14)

and for d = 3,

DTJ1(x) =
π(λ+ 2µ)
µ(9λ+ 14µ)

{
20µAe(u) · e(u) + (3λ− 2µ)tr(Ae(u))tr(e(u))

}
(x).

(15)

A straightforward calculation shows that the topological derivatives in for-
mulae (14) and (15) are nonnegative. This means that, for compliance mini-
mization, there is no interest in nucleating holes if there is no volume constraint.
However, if a volume constraint is imposed (see Lemma 4.1), the topological
derivative may have negative values due to the addition of the term −�|ω|,
where � stands for the volume Lagrange multiplier.

Theorem 4.2 Take ω to be the unit ball of R
d. Assume for simplicity that f = 0

and g as well as the solution u of (2) are smooth, say g ∈ H2(Ω)d, u ∈ H2(Ω)d.
For any x ∈ Ω the topological derivative of J2 is, for d = 2,

DTJ2(x) = −π
α
C0k(x)|u(x) − u0(x)|α−

π(λ + 2µ)
2µ(λ+ µ)

{
4µAe(u) · e(p) + (λ− µ)tr(Ae(u))tr(e(p))

}
(x),

(16)
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and for d = 3,

DTJ2(x) = −4π
3α
C0k(x)|u(x) − u0(x)|α−

π(λ+ 2µ)
µ(9λ+ 14µ)

{
20µAe(u) · e(p) + (3λ− 2µ)tr(Ae(u))tr(e(p))

}
(x),

(17)

where p is the adjoint state, assumed to be smooth, i.e. p ∈ H2(Ω)d, defined as
the solution of (10), and C0 is the constant defined by (11).

The numerical application of the topological derivative is as follows. Con-
sider the minimization of the Lagrangian

L(Ω) = J(Ω) + �|Ω|,
where � is a given Lagrange multiplier. The corresponding topological gradient
is

DTL(x) = DTJ(x) − �|ω|.
At the points x where DTL(x) is negative, we introduce holes into the current
domain Ω. Since this criterion applies for infinitesimal holes, we should not
remove too much material. In practice it is better to nucleate holes only at
the minimum (negative) points of this topological derivative. We remark that
the application of the topological gradient can only decrease the volume of
the current shape (see Nazarov, Soko�lowski, 2004, for another criterion which
amounts to adding a thin ligament).

5. Level set method for shape optimization

Consider D ⊂ R
d a bounded domain in which all admissible shapes Ω are

included, i.e. Ω ⊂ D. In numerical practice, the domain D will be uniformly
meshed once and for all. We parameterize the boundary of Ω by means of a
level set function, following the idea of Osher and Sethian (1988). We define
this level set function ψ in D such that

⎧⎨
⎩

ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ⇔ x ∈ Ω,
ψ(x) > 0 ⇔ x ∈ (

D \ Ω
)
.

(18)

The normal n to the shape Ω is recovered as ∇ψ/|∇ψ| and the mean curvature
H is given by the divergence of the normal div (∇ψ/|∇ψ|) (these quantities are
computed throughout the whole domain D).

During the optimization process, the shape Ω(t) is going to evolve according
to a fictitious time parameter t ∈ R

+ which corresponds to descent stepping.
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The evolution of the level set function is governed by the following Hamilton-
Jacobi transport equation (Osher and Sethian, 1988)

∂ψ

∂t
+ V |∇ψ| = 0 in D, (19)

where V (t, x) is the normal velocity of the shape’s boundary. Equation (19) is
simply obtained by differentiating the definition of a level set of ψ, ψ

(
t, x(t)

)
=

Cst, and replacing the velocity ẋ(t) by V n.
The choice of the normal velocity V is based on the shape derivative com-

puted in Theorem 3.1

L′(Ω)(θ) =
∫

∂Ω

v θ · n ds, (20)

where the integrand v(u, p, n,H) depends on the state u, adjoint state p, normal
n and mean curvature H . The simplest choice is to take the steepest descent
θ = −vn. This yields a normal velocity for the shape’s boundary V = −v
(remark that v is given everywhere in D and not only on the boundary ∂Ω).
Transporting ψ by (19) is equivalent to moving the boundary ∂Ω (the zero level
set of ψ) along the descent gradient direction −L′(Ω). The length of the time
interval on which (19) is integrated corresponds to the descent step. It is not
obvious that θ = −vn belongs to W 1,∞(Rd,Rd) in general (that depends on the
regularity of Ω). This is one reason for choosing a different smoother velocity.
Various formulas for V are possible and correspond to different choices of the
inner product between L′(Ω) and θ, or to a preconditioning of the gradient
method (see e.g., Allaire, Jouve, Toader, 2004; Burger, 2003; Mohammadi,
Pironneau, 2001).

The main point is that the Lagrangian evolution of the boundary ∂Ω is
replaced by the Eulerian solution of a transport equation in the whole fixed
domain D. Likewise the elasticity equations for the state u (and for the adjoint
state p) are extended to the whole domain D by using the so-called “ersatz
material” approach. It amounts to fill the holesD\Ω by a weak phase mimicking
void but avoiding the singularity of the rigidity matrix. This is a well-known
procedure in topology optimization which we already described in our previous
work, Allaire, Jouve, Toader, 2004. In numerical practice, the weak material
mimicking holes in D \ Ω is chosen as 10−3A.

The Hamilton-Jacobi equation (19) is solved by an explicit second order
upwind scheme (see e.g. Sethian, 1999) on a Cartesian grid. The boundary
conditions for ψ are of Neumann type. Since this scheme is explicit in time,
its time stepping must satisfy a CFL condition. In order to regularize the
level set function (which may become too flat or too steep), we reinitialize it
periodically by solving another Hamilton-Jacobi equation which admits as a
stationary solution the signed distance to the initial interface, Sethian, 1999. In
numerical practice, reinitialization is important because the level set function
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often becomes too steep, which implies a bad approximation of the normal n or
of the mean curvature H . For details of numerical implementation we refer to
Allaire, Jouve, Toader (2004).

6. Optimization algorithm

For the minimization problem (6) we propose an iterative coupling of the level
set method and the topological gradient method. Both methods are gradient-
type algorithms, and so our coupled method can be cast into the framework of
alternate directions descent algorithms.

The level set method relies on the shape derivative L′(Ω)(θ) of Section 3,
while the topological gradient method is based on the topological derivative
DTL(x) of Section 4. These two types of derivative define independent descent
directions that we simply alternate as follows.

In a first step, the level set function ψ is advected according to the velocity
−v where v is the integrand in the shape derivative L′(Ω), see (20). In a second
step, holes are introduced into the current domain Ω where the topological
derivative DTL(x) is minimum and negative. More precisely, at those points
we change the negative sign of the level set function ψ into a positive sign,
according to the parametrization (18).

In practice, it is better to perform more level set steps than topological
gradient steps. Therefore, the main parameter of our coupled algorithm is
an integer nopt which is the number of gradient steps between two successive
application of the topological gradient (typically, the value of nopt is 5 which
means that 4 level set steps are performed for each topological gradient step).
Our proposed algorithm is an iterative method, structured as follows:

1. Initialization of the level set function ψ0 corresponding to an initial guess
Ω0 (usually the full working domain D).

2. Iteration until convergence, for k ≥ 0:

(a) Elasticity analysis. Computation of the state uk and adjoint state
pk through two problems of linear elasticity posed in Ωk. This yields
the values of the shape derivative and of the topological gradient.

(b) Shape gradient. If mod (k, ntop) < ntop, the current shape Ωk,
characterized by the level set function ψk, is deformed into a new
shape Ωk+1, characterized by ψk+1 which is the solution of the trans-
port Hamilton-Jacobi equation (19) after a time interval ∆tk with
the initial condition ψk and a velocity −vk computed in terms of uk

and pk. The time of integration ∆tk is chosen such that L(Ωk+1) ≤
L(Ωk).

(c) Topological gradient. If mod (k, ntop) = 0, we perform a nucle-
ation step. We obtain a new shape Ωk+1 by inserting new holes into
the current shape Ωk. Namely, the sign of the level set function ψk

is changed from negative to positive values (see (18)) in the regions
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of Ωk where the topological derivative DTLk, depending on uk and
pk, has minimum negative values. If the objective function has in-
creased, i.e. if L(Ωk+1) > L(Ωk), then no holes are nucleated and we
just take Ωk+1 = Ωk.

For details about the shape gradient step, we refer to our previous work,
Allaire, Jouve, Toader (2002, 2004). Let us simply recall that the time interval
∆tk plays the role of the descent step in the minimization of L(Ω), and is
usually one order of magnitude bigger than the explicit time step used for solving
the Hamilton-Jacobi equation (19) (which is limited by the CFL condition).
Since one explicit time step for (19) is much cheaper, in terms of CPU time
and memory requirement, than solving the state equation (2) or adjoint state
equation (10), for each single evaluation of uk and pk (that we call iteration) we
perform many explicit time steps for the Hamilton-Jacobi equation.

The topological gradient step is performed only if the topological gradient
is negative. If an infinitesimal small hole is inserted where DTLk(x) < 0, then,
by Definition 4.1 of the topological asymptotic, the objective function must
decrease. However, in numerical practice, a hole can not be smaller than a single
mesh cell, which is not so infinitesimally small. Even more, if the topological
gradient DTLk is negative in several touching cells, it amounts to remove from
the current shape a large zone which is not small at all. For this reason, our
algorithm has two additional parameters. First we never remove more than a
given proportion of the total volume (typically we impose a bound of 1% at
most in the decrease of the volume). Second, even if only few cells are removed,
the objective function may increase because a single cell is too large. If it is
the case, we do not accept the new nucleated holes and we simply keep the old
shape, Ωk+1 = Ωk. Nevertheless, such a decision may be too conservative: the
shape of a cell (usually rectangular) is not optimal, the numerical evaluation
of the topological gradient may be pessimistic because of discretization errors,
and in any case, if a suboptimal hole is created the level set method will easily
cancel it afterwards. Therefore, we accept the topological gradient step even
if the objective function increases slightly. With introduction of a threshold
parameter εgt (typically 0.1), the new perforated shape is kept if

L(Ωk+1) ≤ (1 + εgt)L(Ωk).

In our computer code, nucleating a hole in a cell means switching the sign of the
level set function which has the effect of replacing in this cell the true material
properties by those of the weak ersatz material. We always reinitialize the level
set function after a hole nucleation in order that it becomes the signed distance
to the shape boundary, Sethian (1999).

The choice of the coupling parameter ntop is more delicate since it has ob-
viously some influence on the computed optimal shape. Recall that we perform
ntop shape gradient steps between two topological gradient steps. If ntop is too
small (say 1 or 2), then the objective function may not decrease smoothly and
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the resulting shape may be very irregular. If ntop is too large, the level set
method may have already converged to a local minimum where it is difficult to
nucleate a new hole while decreasing the objective function. In most of our nu-
merical examples we choose ntop = 5, but a different choice may yield a different
final result. This is clearly a limitation of the method.

Finally, if we had chosen εgt = 0, the objective function would always de-
crease and our algorithm would converge to a (local) minimum. At convergence,
stability is attained in both optimization processes (shape and topology). In
practice, for efficiency reasons (already explained) we take εgt = 0.1, so the ob-
jective function does not always strictly decrease during a topological gradient
step (in the hope to escape local minima) as can be checked on Figs. 2 and 6.

7. Numerical examples in 2-d

We begin with single loads, minimal compliance problems, i.e. we minimize the
Lagrangian

inf
Ω⊂D

L(Ω) = J1(Ω) + �|Ω|

for a fixed positive Lagrange multiplier � > 0, and J1 being defined by (3).
Our first example is the well-known cantilever problem which is fixed on the
left wall and supports a unit vertical point load on the middle of the right
wall. The working domain of size 2× 1 is discretized by 3200 squared elements.
The Lagrange multiplier for the volume constraint is � = 100. For the sake of
comparison we recall the result of our previous level set method based on shape
gradient without topological gradient in Fig. 1.

Figure 1. Shape gradient method (without topological derivative) for the can-
tilever problem: initializations (left) and optimal designs (right)
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We choose two different initializations: the ”best” one (i.e. yielding the
global minimum), and the trivial one (without holes). Then, we run our new
method with coupling parameter ntop = 5: namely, every 5 iterations of the
shape gradient method we compute the topological derivative and nucleate new
holes accordingly. We start from the trivial initial design with no holes in the
working domain and perform 50 iterations. The result displayed on Fig. 2 is
very similar to the best one in Fig. 1 and the objective function takes the same
value. As we explained in Section 6, the choice of the coupling parameter ntop

is very important (which is a default of the method). On Fig. 3 we obtain a
suboptimal shape with less holes for a larger coupling parameter ntop = 10,
and another suboptimal shape with irregular boundary for a smaller coupling
parameter ntop = 1 (implying that we perform only topological gradient steps).

0 10 20 30 40 50

200

150

250

With topo. grad.                         
Without topo. grad.                      
Without topo. grad. but with a good init.

Figure 2. Coupled shape and topological gradient method for the cantilever:
optimal design (left) and convergence history of the objective function (right)

Figure 3. Optimal cantilever for the coupled shape and topological gradient
method: ntop = 10 (left) and ntop = 1 (right)

The working domain of the bridge problem is a 2× 1.2 rectangle discretized
with 3840 elements. The two lower corners have zero vertical displacement and a
unit vertical load is applied at the middle of its bottom. The Lagrange multiplier
is � = 22. The initialization is the full domain. The coupling parameter is
ntop = 5. The final result as well as the intermediate results where new holes
are nucleated by the topological gradient are displayed on Fig. 4.
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Figure 4. Optimal bridge in 2-d: iterations 6, 11, 16 and 100

This bridge problem is an example where local minima still exist despite
the use of the topological gradient (with fixed value of the coupling parameter
ntop). Indeed, we run the same numerical example with a different initialization,
namely the lower half of the domain. The resulting optimal shape, displayed on
Fig. 5, is better as can be checked on Fig. 6.

Figure 5. Optimal bridge in 2-d: half domain initialization and optimal shape
after 100 iterations

For the optimal mast problem, we use a T-shaped working domain with
height 6, width 2 at the bottom and 4 at the top. The two lower corners are
fixed while two loads are applied at the lower corners of the horizontal branch
of the T (see Fig. 8). The quadrangular mesh is made of 3600 square cells. The
Lagrange multiplier for the weight is equal to 15. The initialization is the full
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Figure 6. Convergence history of the objective function (left) and of the weight
(right) for the 2-d optimal bridge

domain. We run 100 iterations of the level set method with coupling parameter
nopt = 5. The first topological gradient step occurs after iteration 5 where a
hole is created in the upper part of the structure. Other holes are nucleated
after iterations 10 and 15 and allow for a noticeable decrease of the objective
function. However, the hole nucleated after iteration 20 is not so favorable and
disappears in the final optimal result. The convergence is smooth except for
small peaks in the objective function after each topological gradient step (see
Fig. 7).
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Figure 7. Convergence history of the objective function (left) and of the weight
(right) for the 2-d optimal mast of Fig. 8

We now turn to mechanism design, i.e. we minimize the Lagrangian

inf
Ω⊂D

L(Ω) = J2(Ω) + �|Ω|

for a fixed Lagrange multiplier �, and J2 being defined by (4) with the exponent
α = 2. The first example is a negative Poisson ratio mechanism: when we pull
on the lateral sides it expands vertically. By symmetry, only 1/4 of the whole
domain (of size 2 × 2) is meshed by 80 × 80 squared cells. All sides are made
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Figure 8. Optimal mast in 2-d: boundary conditions and iterations 6, 11, 16,
21 and 100

of a stiff material and excluded from optimization. In the formula for J2, the
localization coefficient k(x) is non-zero (equal to 1) only at the boundary and the
target displacement u0 is (0, 1) on the top boundary, (0,−1) on the bottom one
and (0, 0) on the lateral ones. The Lagrange multiplier is � = 0. Starting from a
full domain initialization we perform 500 iterations with the coupling parameter
ntop = 15 (see Fig. 9). As usual, the convergence is slower than for compliance
minimization (see Fig. 10). Furthermore, the computed optimal design is very
sensitive to all parameters of the algorithm including the stiffness ratio between
the weak ersatz material and the true material (which is here equal to 10−2),
the coupling parameter ntop, and the initialization. Different choices of these
parameters lead to different topologies with similar performances.

Our second example is a gripping mechanism. Fig. 11 shows the boundary
conditions and the target displacement. A small force, parallel to the target
displacement in the opposite direction, is also applied on the jaws of the me-
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Figure 9. Optimal design (left) for the negative Poisson ratio mechanism, and
deformed configuration (right)
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Figure 10. Convergence history of the objective function (left) and of the weight
(right) for the negative Poisson ratio mechanism

chanism in order to simulate a reaction force. We also add a constraint that
the displacement of the location of the input forces are not too large. Starting
from a full domain initialization we perform 300 iterations with the coupling
parameter ntop = 5 (see Fig. 12). The resulting optimal design is very similar
to those obtained by the level set method, Allaire, Jouve, Toader (2004), or the
homogenization method, Allaire (2001).

Remark 7.1 In all our examples the volume was not fixed. Rather, for a fixed
Lagrange multiplier, we minimized the Lagrangian L(Ω) = J(Ω) + �|Ω|. The
reason is that we want to use a trivial initialization which do not bias the result.
If we have to respect a volume constraint, the initial shape must include holes
and the location and shapes of those holes may influence the result. Of course, it
is not difficult to update the Lagrange multiplier � to satisfy a volume constraint,
Allaire, Jouve (2005).
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input force

output force

Figure 11. Boundary conditions and target displacement for the gripping mech-
anism

Figure 12. Optimal design (left) for the gripping mechanism, and deformed
configuration (right)

8. Numerical examples in 3-d

As we already said, the level set method works better in 3-d than in 2-d be-
cause holes are easier to create in 3-d, Allaire, Jouve, Toader (2004). In all
our 3-d numerical experiments, incorporating the topological gradient did not
help in finding better optimal shapes. Of course, it may happen that the topo-
logical gradient speed up a little the convergence process but this effect is not
striking and was not systematically studied here. We begin with compliance
minimization problems.

We first optimize a 3-d cantilever where the right side is fixed and a horizontal
unit point load is applied at the middle of the left side (see Fig. 13). The working
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Figure 13. Optimal cantilever in 3-d (right). Convergence history of the objec-
tive function (left).

domain is of size 3× 2× 5 and only half of it is discretized (by symmetry) using
15000 quadrilateral elements. The Lagrange multiplier for the weight constraint
is � = 20. The coupling parameter is ntop = 5. We obtain precisely the same
optimal shape with the level set method and our coupled method (incorporating
the topological gradient). More than that, the result of the level set method was
the same for two different initializations: either we start from the full working
domain (without holes) or from a periodic collection holes as in Allaire, Jouve,
Toader (2004). We believe that for any non-pathologic initialization we always
get the same optimal shape. Finally, the result of our coupled method is also
independent of the parameter ntop which characterizes the number of level set
iterations between two evaluations of the topological gradient.

The same conclusions can be drawn from the 3-d optimal mast example (see
Fig. 14). Its result is independent of the method and of the initialization. We
tried other simple examples in 3-d that confirm this behavior. Therefore, in
view of this (limited) number of numerical experiments, we believe the level set
method alone in 3-d is as good as the coupled method (level set plus topological
gradient).

9. Conclusion

We have proposed a coupled method of shape and topology differentiation in
the level set framework. It is an iterative algorithm where repeatedly the shape
boundary evolves smoothly and new small holes are nucleated. In 2-d numeri-
cal practice, this method is more insensitive to the initialization and is thus a
great improvement over the previous level set method (at least for compliance
minimization). In 3-d, our numerical experiments show that the improvement
is not sensitive since the optimal shapes are the same than those obtained by
the level set method (at least for compliance minimization).
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Figure 14. Optimal mast in 3-d (right). Convergence history of the objective
function (left).

There is still some room for improvement in the following directions: first,
extend and test the robustness of our method for more general objective func-
tions, second increase the speed of convergence, third implement a recent idea of
Nazarov and Sokolowski (2004) for another type of topology variations. Indeed,
removing a hole in a shape is not the only possibility for changing the topology.
Another issue, investigated in Nazarov and Sokolowski (2004), is to add a thin
ligament between two separated boundaries of the shape. It is somehow the
opposite process of hole perforation, since it adds some material to the shape.
Numerically this could be an interesting process that may avoid, for example,
the two different optimal shapes obtained for the 2-d bridge problem.

Finally, we remark that, for compliance minimization problems, the homog-
enization method, Allaire (2001), Bendsøe (1995), Bendsøe, Sigmund (2003), is
still the most reliable method since it is the only one which is fully independent
of the initialization and free of any important parameters.
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ture Notes in Computer Science 41, Springer Verlag, Berlin, 54-62.

Nazarov, S.A. and Soko�lowski, J. (2004) The topological derivative of the
Dirichlet integral under formation of a thin ligament. Siberian Math. J.
45, 341-355.

Osher, S. and Santosa, F. (2001) Level set methods for optimization prob-
lems involving geometry and constraints: frequencies of a two-density in-
homogeneous drum. J. Comp. Phys. 171, 272-288.

Osher, S. and Sethian, J.A. (1988) Front propagating with curvature de-
pendent speed: algorithms based on Hamilton-Jacobi formulations. J.
Comp. Phys. 78, 12-49.

Pironneau, O. (1984) Optimal Shape Design for Elliptic Systems. Springer-
Verlag, New York.

Sethian, J.A. (1999) Level Set Methods and Fast Marching Methods: Evolv-
ing Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision and Materials Science. Cambridge University Press.



80 G. ALLAIRE, F. de GOURNAY, F. JOUVE, A.-M. TOADER

Sethian, J. and Wiegmann, A. (2000) Structural boundary design via level
set and immersed interface methods. J. Comp. Phys. 163, 489-528.

Simon, J. (1980) Differentiation with respect to the domain in boundary value
problems. Num. Funct. Anal. Optimz. 2, 649-687.
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